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Abstract. This paper presents the foundational premises for a unified physical theory in which
the vacuum is modeled as an elastic lattice of coupled quantum harmonic oscillators. Rather than
aiming to construct a complete unified theory, our goal is to explore the consequences of a set of
physically motivated assumptions and to demonstrate their consistency with established theoreti-
cal principles and dimensional relations. Within this framework, gravitational, electromagnetic, and
thermo-entropic interactions are interpreted as distinct geometric deformation modes of a single sym-
metric field tensor Gµν , and fundamental constants of nature emerge naturally from the oscillatory
dynamics. We show that these assumptions lead to coherent interpretations of field sources (mass,
charge, temperature) sharing a common oscillatory origin in spacetime. While non-exhaustive, our
treatment lays a physically and mathematically grounded path for future development of a unified
field theory anchored in quantum-elastic principles.

”Entia non sunt multiplicanda praeter necessitatem”
— Ockham’s Razor

”Padre, Señor del cielo y de la tierra, te doy gracias porque has ocultado todo esto a los sabios y
entendidos y se lo has revelado a los que son como niños.”

— Matthew 11:25

I. INTRODUCTION

The quest for a unified theoretical framework
capable of describing all fundamental interactions
from a common origin remains a central theme in
contemporary physics [1]. Despite the tremendous
success of the Standard Model of particle physics
in unifying electromagnetic, weak and strong
forces [2], and of General Relativity (GR) in
geometrizing gravity [3, 4], a conceptual schism
persists between the quantum field theories
(QFTs) of the former and the geometric descrip-
tion of the latter [5]. Moreover, observational
puzzles such as dark energy and dark matter [6–8],
together with the inability to quantize gravity in
a conventional QFT framework [9], underscore
the need for a deeper structure underlying both
regimes.

Thermodynamic and emergent-gravity ap-
proaches have hinted at such a structure.
Jacobson’s derivation of Einstein’s equations from
local entropy balance [10], Verlinde’s entropic
gravity proposal [11], and the striking analogies
between black-hole thermodynamics and vacuum
fluctuations [12] point toward an intimate link
between entropy, quantum vacuum dynamics,
and spacetime geometry. Likewise, the shared
inverse–square dependence of Newton’s law and
Coulomb’s law suggests that disparate forces
may be just different manifestations of a single
underlying field.

In this work, we explore the hypothesis that
the quantum vacuum itself—spacetime at its most
fundamental level—constitutes an active medium
whose local excitations give rise to all observed
fields and particles. Guided by the empirical fact
that both electromagnetic radiation and gravita-
tional waves propagate as oscillatory disturbances
[13], and given that harmonic oscillators occur-
ring in a number distinct physical realities are
equivalent -in the sense that their mathematical
models are identical- [14] we postulate that this
unified field must be inherently oscillatory, and
that dimensionality of -within human perception-
disparate physical sourcing phenomena, such as
mass, charge, temperature, etc., collapse into a
single dimensionality -spacetime- as the source of
this unified field.

As a result, within this framework, conventional
distinctions among electromagnetic, gravitational
and thermodynamic phenomena dissolve: they
emerge as different vibrational, shear or torsional
modes of the same quantum harmonic oscillator’s
lattice. Fundamental constants of nature cease
to be arbitrary uncorrelated inputs, and become
effective parameters describing the coupling
strength or resonant behavior of the vacuum.
By mapping vacuum dynamics to mechanical
and electrical oscillatory phenomena, we derive
novel relations among these constants, and
reinterpret physical quantities—mass, charge,
temperature—as localized topological excitations
in the underlying oscillator network.
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An important clarification is that we do not
attempt to construct a full and complete unified
theory. Rather, we propose and explore a set
of physically motivated postulates, and analyze
how far these assumptions can go in explaining
the emergence of known fields and constants,
and in revealing coherent dimensional structures.
The aim of this paper is to evaluate the internal
consistency, physical plausibility, and predictive
coherence of these assumptions—not to deliver a
fully quantized or dynamically complete theory.
In this sense, the present work should be seen
as a conceptual and dimensional groundwork for
future unified field models.

Part I: General Framework

II. THE COMMON FIELD AS AN
ENSEMBLE OF QUANTUM HARMONIC

OSCILLATORS

A. Harmonic Oscillator Equations in
Mechanical and Electrical Systems

Consider a damped mass-spring system:

mẍ + bẋ + kx = 0, (1)

where m is mass, b is the damping coefficient, and
k is the spring constant. The corresponding La-
grangian (neglecting dissipation) is:

Lmech = 1
2mẋ2 − 1

2kx2.

On the other hand, in an RLC circuit, let q(t) be
the charge on the capacitor:

Lq̈ + Rq̇ + 1
C

q = 0, (2)

where L is inductance, R is resistance, and C is ca-
pacitance. An equivalent Lagrangian (again omit-
ting dissipation) reads:

Lelec = 1
2Lq̇2 − 1

2C
q2.

In developing a unified field theory rooted in
oscillatory dynamics, it becomes essential to
identify a consistent dimensional framework that
naturally connects mechanical and electrical
systems. Classical analogies between mass-spring
and RLC oscillators reveal deep structural equiv-
alences among their parameters: mass m ↔ L
(inductance), damping b ↔ R (resistance), and
stiffness k ↔ 1/C (inverse capacitance). These
analogies go beyond formal resemblance—they
reflect identical structures governing the system’s
evolution, and a common underlying substrate.

To reflect this symmetry at the dimensional
level, we postulate that such correspondences are
not merely mathematical, but encode a deeper
physical equivalence. In particular, we adopt
as our first fundamental postulate that, within
the unified field framework, mechanical and elec-
tromagnetic inertia share the same dimensional
character . That is:

[Inductance] ≡ [Mass].

This equivalence does not imply that mass
and inductance are equal in any conventional
system, but rather that they play isomorphic
roles within the elastic vacuum model: both
represent resistance to changes in oscillatory mo-
tion—mechanical or electromagnetic—and encode
the same form of reactive inertia under field
excitation. Such a postulate is thus not arbitrary,
but a natural requirement of modal unification,
guiding the redefinition of all fundamental units
from first principles.

Taking the SI units of inductance L as
[ML2I−2T −2], this postulate leads directly
to:

[M ] ≡ [ML2I−2T −2],

For dimensional consistency, this postulate re-
quires that the combination [L2I−2T −2] must be
dimensionless. Solving for the dimension of cur-
rent [I] yields:

[I2] ≡ [L2T −2] =⇒ [I] ≡ [LT −1] (3)

This result, stemming directly from our initial
postulate, implies that electric current within this
unified picture acquires the dimensions of velocity.
The consequences of this dimensional assignment
will be explored throughout this work.

As a sanity check, the resistance R in an
RLC circuit is analogous to the damping coeffi-
cient b in a mechanical oscillator. Establishing
the dimensional equivalence between them, we
find that:

[MT −1] ≡ [ML2T −3I−2],

which implies that [L2I−2T −2] becomes dimen-
sionless, as we had obtained just before, and which
leads to the dimensionality found for I.
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B. Redefining the Ampere as a Velocity

In standard SI practice, the ampere (A) is
treated as an independent base unit, separate from
mass, length, and time. However, in the di-
mensional framework of our unified theory—where
mass, length, time, and charge share a common
geometric substrate—this separation becomes un-
necessary. Motivated by the structural analogies
between mechanical and electromagnetic oscilla-
tors, and following our first postulate (IIA), we
adopt the convention:

[I] ≡ [L]
[T ] , (4)

thereby equating the ampere to a fundamental ve-
locity scale. This identification is not arbitrary: it
emerges naturally when current is reinterpreted as
an excitation velocity within the vacuum’s oscilla-
tor network.

1. No Change in Physical Predictions

Redefining the ampere in this manner does
not alter any physical laws or measurable out-
comes. Rather, this shift reorganizes the dimen-
sional bookkeeping:

1. Under the conventional SI system, current I
constitutes an independent dimension, com-
plicating the structure of electromagnetic
quantities (e.g., impedance, field strength,
permittivity).

2. Within our unified framework, I is expressed
as L

T , simplifying the dimensional equiva-
lences to a common ground in spacetime.

Thus, this redefinition introduces no empirical
contradiction—only a reformulation that is inter-
nally consistent and fully compatible with tradi-
tional measurements.

2. Geometric and Physical Interpretation

This shift reveals a deeper physical insight:
electric current is not merely a rate of charge
transfer, but a manifestation of spacetime flow—a
directed, quantized deformation of the elastic
vacuum. The ampere, in this light, becomes the
natural unit of deformation rate within the unified
field, particularly along radial (electromagnetic)
modes of the symmetric tensor Gµν that we will
postulate later on (X).

This reinterpretation also supports a conceptual
bridge between the source terms in gravitational

and electromagnetic field equations. In this
sense, mass and charge both source curvature by
altering the local flow of the vacuum, and their
associated ”currents” (gravitational and electric
flow) emerge as conjugate expressions of the same
geometro-dynamic principle.

3. Toward Unified Source Terms

As a result, this dimensional identification sets
the stage for a unified treatment of source terms
across field equations, and invites a reinterpreta-
tion of current as a dynamical field generator, not
merely a charge derivative. Redefining the am-
pere as velocity not only simplifies the dimensional
landscape, but also aligns electromagnetism with
the spacetime symmetries that govern motion and
gravity, contributing to the internal coherence of
the unified field model.

C. Dimensional Collapse and Space–Time
Equivalence in the Unified Field

The striking structural symmetry between New-
ton’s Law of Gravitation and Coulomb’s Law

F = G
m1m2

r2 , F = K
q1q2

r2 .

provides strong motivation for exploring an even
deeper connection. Within our developing frame-
work, and following the physical interpretation
of current stemming from our first postulate, we
naturally introduce a second key postulate: the
dimensional equivalence of the coupling constants
G and Ke. This postulate embodies the already
stated hypothesis that the fundamental sources,
mass and charge, play analogous roles governed by
similar principles within the unified field structure
II B 2, reflected dimensionally in their respective
force constants.

Let us rigorously derive the consequences of
this postulate combined with our previous
findings. The conventional SI dimensions are:

[G] = [M−1L3T −2], [Ke] = [ML3T −4I−2].

Setting [G] ≡ [Ke], we obtain:

[M−1L3T −2] ≡ [ML3T −4I−2].

Rearranging for [M ], and recalling that within
the unified framework we have established [I] ≡
[LT −1] 4, we substitute I−2 as:

[M−1L3T −2] ≡ [ML3T −4(L−2T 2)].
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Simplifying, we find:

[M−1L3T −2] ≡ [MLT −2] →
[M−1L3] ≡ [ML] →
[L2] ≡ [M2] →

[M ] ≡ [L] (5)

This outcome, contingent on the postulates
[Mass] ≡ [Inductance] and [G] ≡ [Ke], signi-
fies that mass and length share the same funda-
mental dimension within this theoretical structure.
From this result and the previous ones, we can
substitute [M ] and [I] in the previous equivalence
[MT −1] ≡ [ML2T −3I−2], to get that [T −4L4] be-
comes dimensionless; which, in turn, implies that
we have reached the fundamental equivalence

[M ] ≡ [L] ≡ [T ] (6)

This result establishes a profound conclusion:
mass, length and time are fundamentally equiva-
lent in the common unified field. And this equiva-
lence leads to a natural collapse of dimensions -as
we will see-, implying that the evolution of the uni-
verse should be understood in terms of oscillatory
interactions where mass-energy, length and time
emerge as manifestations of a unified, underlying
geometric structure.

D. The dimensions of sources and universal
constants in the unified field framework

We can now establish the dimensions of the most
important constants and physical phenomena that
we will consider throughout this Paper, once we
apply the fundamental equivalence (6):

• Mass: As already stated, we have [M ] ≡
[T ] ≡ [L].

• Energy: As per Einstein’s equation E =
mc2, it has dimensions [L] ≡ [T ].

• Charge: As [Q] = [I · T ] and we have that
[I] ≡ [1], it has dimensions [L] ≡ [T ].

• Temperature: As kBT has dimensions
of energy, and kB becomes dimensionless
(IVC3), it has the same dimensions of en-
ergy, and thus it has dimensions [L] ≡ [T ].

• Current: Becomes dimensionless, as we
have that [I] ≡ [LT −1] ≡ [1]

• Resistance: Becomes dimensionless, as
[R] = [MT −1] ≡ [ML2T −3I−2] ≡ [1]

• Voltage: By Ohm’s law, we have that V =
I · R. As both I and R are dimensionless,
voltage V becomes dimensionless too.

• Power: As we have that P = V ·I, and P =
V 2

R , power P becomes dimensionless too.

• The ”speed of light” c: As any velocity
with dimensions [LT −1], it becomes dimen-
sionless.

• Planck’s constant h: As the quantum of
action, it has dimension [E · T ]. Therefore,
it has dimensions [L2] ≡ [T 2].

• Electric permittivity ε0: As it has dimen-
sion [ε0] = [M−1L−3T 4I2], it becomes di-
mensionless.

• Magnetic permeability µ0: As it has di-
mension [µ0] = [MLT −2I−2], it becomes di-
mensionless.

• The gravitational constant G: Through
Newton’s law, G has dimensions [G] =
[M−1T −2L3]. Thus, it becomes dimension-
less.

• Coulomb’s constant Ke: Being equal to
1

4πε0
, it becomes dimensionless.

• Boltzmann’s constant kB: From the
equivalence derived in IVC3, it becomes di-
mensionless.

• The fine-structure constant α: By its

definition, α = e2

2ε0hc . One can check that
using the previous dimensions described, it
is dimensionless, as expected.

E. Reflection on Dimensional Equivalence
and Its Implications for Fundamental Units

The choice of a unit system in physics is more
than a matter of convenience; it can reveal deeper
structures in the relationships among physical
quantities. In particular, within the context of the
unified field, we formally write

[L] ≡ [Time] ≡ [M ] ≡ [E] ≡ [Q] ≡ [Temp], (7)

meaning that, within the theoretical model, these
quantities share a common dimensional basis.
Strictly speaking, this does not invalidate the tra-
ditional distinction among meters, seconds, kilo-
grams, joules, coulombs, and kelvins in everyday
measurements or standard SI usage. Rather, it as-
serts that when certain fundamental constants are
equated and treated as direct conversion factors,
one can recast these different units as numerically
equivalent:

1 m ≡ 1 s ≡ c2 kg ≡ 1 J ≡ 1C ≡ 1K. (8)

This equivalence is neither arbitrary nor merely a
notational trick; it reflects the idea that universal
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constants play the role of natural conversion fac-
tors between dimensions like length, time, mass,
energy, charge, and temperature. In other words,
once these constants are taken as fundamental
geometric elements of the theory, the differences
among standard SI units become a matter of label-
ing, rather than a manifestation of fundamentally
different dimensions within the unified framework.

Hence, we do not erase the operational defi-
nitions of the meter, second, or kilogram as used
in the laboratory. Rather, we embed them into
a broader dimensional structure, where what
appear as separate units in standard SI can be
seen, at a deeper theoretical level, as different
expressions of the same underlying physical reality.

Under this viewpoint, universal constants
lose their “arbitrary” character. They become
the metric coefficients of a generalized physical
geometry—effectively the “metric” that converts
one nominal unit into another. This unification
thus provides a self-consistency check: if all these
quantities truly emerge from the same resonant
spacetime lattice, then setting them equal at the
fundamental level (via the constants) should lead
to a coherent, contradiction-free description of
nature.

Part II: Fundamental nature
and relationships of universal
constants

III. CORE IDENTIFICATIONS AND
INITIAL EVALUATIONS

Building on the foundational postulates and
the resulting dimensional unification established in
subection IIC, we now summarize the basic core
identifications made within this framework:

Quantum Identification SI Units U. Field

Velocity v v = c m · s−1 Dimensionless

Acceleration a a = v
t

= c
1 s

m · s−2 s−1 ≡ m−1...

Current I I = v = c A Dimensionless

Ang. Freq. ω0 ω0 = c
1 s s−1 s−1 ≡ m−1...

Inductance L L = µ0 · 1 m H Dimensionless

Capacitance C C = ε0 · 1 m F Dimensionless

Spr. Const. k k = 1
C

= 1
ε0·1 m F−1 Dimensionless

Charge Q Q = e C C ≡ s ≡ m ...

Resistance R Z0 =
√

µ0
ε0

Ω Dimensionless

Time Const, τ τ = R C = 1 m
c

s s ≡ m ≡ ...

Voltage V V = I · R = 1
ε0

V Dimensionless

TABLE I. Summary of the basic mapping of funda-
mental constants, showing how each maps onto a me-
chanical or electrical analogue.

We can perform some sanity checks to evaluate the
validity and impact of the above identifications.

A. First sanity check

Consider some total dissipated electromagnetic
energy due to resistance. Using the Rayleigh dis-
sipation function

F = 1
2RI2, (9)

the instantaneous power dissipation in the system
is given by:

Pdis(t) = dEdis

dt
= RI2 (10)

Substituting the defined core parameters, we have

Pdis(t) = Z0 · c2 (11)

To determine the total energy dissipated over the
characteristic time interval τ , we integrate this
power dissipation from 0 to τ :

Edis =
∫ τ

0
Pdis(t) dt (12)

Using τ = 1s
c , we evaluate the integral:

Edis = Z0 · c2 · 1 s

c
= 1

ε0
· 1 s (13)

The above is dimensionally consistent within the

framework of the unified field, as
[

1
ε0

]
≡ [V ] and

1 s ≡ 1C. And, to explore the potential power of
the framework we are developing, we can point
out the following: within the unified field, the
above expression admits a direct mechanical anal-
ogy with Hooke’s law in its linear form, E = −kx2.
Note that we have identified the inverse vacuum
permittivity per meter, 1

ε0·1 m , with an effective
stiffness constant k of the vacuum (I) —repre-
senting its resistance to deformation or response
under excitation—while we also have established
that 1 s ≡ 1 m, which naturally corresponds to
a spatial displacement x. The resulting structure,
Edis = kx2 = 1

ε0
· 1 s, underscores how the uni-

fied field behaves as an elastic medium, in which
energy is linearly related to displacement via an
intrinsic stiffness.

B. Second sanity check

As a second sanity check, consider the energy
stored in a capacitor and inductor:

ELC = 1
2CV 2 + 1

2LI2 (14)

and substitute:
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• C = ε0 · 1 m is the capacitance, consistent
with the definition and SI units of ε0.

• We can apply Ohm’s Law to derive V = I ·
R = c · Z0 = 1

ε0
as some voltage,

• I = c is the current within the context of the
unified field.

Substituting these values yields

ELC = 1
2(ε0 · 1 m) · 1

ε2
0

+ 1
2L · c2 (15)

This discrete LC system serves as a localized anal-
ogy for the vacuum’s elastic behavior. To capture
this oscillatory structure in a continuous, field-
theoretic setting, let Φ(x) denote a field -in gen-
eral, it can be a multi-component scalar, vector,
or tensor, but for illustrative purposes, we treat it
here as a single real scalar field-. Include just the
two couplings (or ‘rigidities”) usual for harmonic
oscillatory systems. Then, one has the following
minimal Lagrangian density:

L(Φ) = 1
2 κ1

(
∂tΦ

)2 − 1
2 κ2

(
∇Φ

)2
(16)

Here,

• κ1 controls the ‘inertial” or kinetic response
of the field mode,

• κ2 represents the elastic/spatial rigidity of
the field mode.

Note that the requirement

κ1 = κ2

is the very condition that makes the field equation
into the Lorentz-invariant wave equation

□Φ = 0,

as for any plane-wave solution

Φ(t, x) ∝ ei(ωt−k·x)

this equality forces ω2 = |k|2, and one finds at
every point (or on average over a cycle)

1
2 κ1(∂tΦ)2 = 1

2 κ2(∇Φ)2

In other words, Lorentz symmetry kinematically
guarantees that each mode carries exactly half its
energy in “kinetic” form and half in “gradient”
form. We may therefore adopt the usual LC-
circuit equipartition

C V 2 = L I2

We can solve 15 for the inductance L to get:

L = CV 2

I2 = 1 m

ε0c2 = µ0 · 1 m (17)

Which serves as a consistency check, as our pro-
posed quantum of inductance is indeed µ0 · 1 m
(I). And, substituting with L and calculating, we
get that

ELC = 1 m

ε0
= µ0 · 1 m · c2 = 4πKe · 1 m

Brief note on the obtained result

The result ELC = 4πKe · 1 m, as within the

unified field we have that
[

1
ε0

]
= [4πKe] ≡ [V ]

and 1 m ≡ 1C, can be interpreted as the quantum
of electrostatic energy.

This expression not only confirms the inter-
nal consistency of our dimensionally collapsed
framework, but also shows that the requirement
κ1 = κ2 —which ensures Lorentz invariance in
the scalar field model— corresponds physically
to energetic equipartition between electric and
magnetic modes (or kinetic and potential modes
in the oscillator analogy).

In this view, the field equation □Φ = 0 rep-
resents the fundamental wave dynamics of the
unified vacuum, and its LC analogue illustrates
how energy is stored and propagated through field
excitations. We will postulate in IXC that each
field mode that we propose (e.g. electromagnetic,
gravito-entropic) can be modeled as a scalar
excitation with effective rigidity κ, matched to the
appropriate constant (ε0, µ0, G, kB) depending
on the physical context.

Thus, the scalar field model drafted above
does more than reproduce known equations—it
captures the essential modal structure of the
symmetric fundamental tensor Gµν X, and jus-
tifies, from energetic and variational grounds,
the emergence of field equations and constants
from a deeper elastic structure. In this light, the
equality κ1 = κ2 becomes not a mere condition
for symmetry, but a physical principle of balance:
the propagation of deformation through the
vacuum respects a universal ratio between inertial
response and spatial rigidity—a signature of a
fundamentally oscillatory spacetime.

C. Third sanity check

In 14, we could have naturally set L = µ0 · 1 m
and C = ε0 ·1 m as the inductance and capacitance
of the system, corresponding to the magnetic and
electric energy storage capacities of the vacuum.
Also, we can naturally set the scaled angular fre-
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quency for the electromagnetic regime (I)

ω0 = c

1 s

In an RLC circuit, the charge Q on the capacitor
and the current I in the circuit are related through
the time derivative. Specifically, the current I is
the time derivative of the charge Q:

I(t) = dQ(t)
dt

For sinusoidal oscillations, we can express the
charge Q and the current I as:

Q(t) = Q0 cos(ωt)

I(t) = −Q0 · ω0 sin(ωt)

where Q0 is the maximum charge on the capacitor.

From these equations, we can see that the
peak current Imax (the maximum value of I(t)) is:

Imax = Q0 · ω0

Then, with the equivalence e = Q0 (where e is the
elementary electric charge) and c

1 s = ω0, we have
that the maximum current of the system is given
by

I = e · c

1 s
(18)

The energy stored in the electric field of a capacitor
with capacitance C = ε0 ·1m and charge Q = e is:

Eelectric = 1
2

Q2

C
= 1

2
e2

ε0 · 1m

The energy stored in the magnetic field of an in-
ductor with inductance L = µ0 ·1m and peak cur-
rent I = e·c

1 s is:

Emagnetic = 1
2LI2 = 1

2µ0·1m·
(e · c

1 s

)2
= 1

2
µ0e2c2

1 m
,

where we have applied 1 s ≡ 1 m to simplify. As
a result, the total energy of the system is the sum
of the electric and magnetic contributions:

Etotal = Eelectric+Emagnetic = 1
2

e2

ε0 · 1m+1
2

µ0e2c2

1 m
.

However, since the electric and magnetic fields are
dynamically coupled in the vacuum (as described
by Maxwell’s equations), the peak energy contri-
butions occur simultaneously [15] [16]. This means
the total energy is effectively doubled, and we have
that:

Etotal =
(

e2

ε0 · 1m + µ0e2c2

1 m

)
(19)

Substituting with the CODATA values of the fun-
damental constants, one gets an approximate value
of Etotal ≈ 5.75 × 10−27 J . This value aligns with
the measurements of the vacuum energy density
ρvac obtained by the Planck Collaboration in 2015
[17]. Note that, within the unified field framework,
we have 1 C ≡ 1 kg, so [ρvac] =

[
Etotal

1 m3

]
.

Final note on the sanity checks section

The sanity checks performed underscore both
the internal consistency and the potential theoret-
ical power of the established framework. In the
next section, we will show the emergence of other
fundamental constants of nature from the applica-
tion of traditional Laws of Physics and the already
proposed core parameters.

IV. THE EMERGENCE OF
FUNDAMENTAL CONSTANTS FROM

TRADITIONAL PHYSICS

In this section, we present a collection of
derivations of fundamental physical constants
and quantities obtained through the direct ap-
plication of well-established physical laws, now
reinterpreted within the unified field framework
developed throughout this work. These deriva-
tions serve a dual purpose: on one hand, they
confirm the internal consistency of the framework
by showing that classical results naturally emerge
from the collapsed dimensional structure; on
the other, they provide new physical insights by
revealing hidden connections among constants
that traditionally appeared unrelated.

The approach taken here does not discard
the conventional form of physical laws such as
Ampère’s law, Gauss’s law, Newton’s law of
gravitation, or thermodynamic identities, all of
which remain valid and demonstrable within their
respective classical domains [16, 18, 19]. Rather,
it recontextualizes them under the assumption of
dimensional unification, where [M ] ≡ [L] ≡ [T ],
and where constants of nature are not arbitrary
scaling factors but geometric or elastic properties
of the vacuum itself.

Each subsection within this part focuses on
a specific law or identity and illustrates how it
leads to compact expressions, derivations and
relationships between constants of nature, often
involving just one or two steps of algebra. This
reinforces the notion that physical constants are
not empirically isolated, but rather interconnected
outputs of a deeper, modal-geometric structure of
spacetime.
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A. Modal Vacuum Actions: Scaling Regimes
and the Emergence of Sref , ℏ and Sth

In the unified elastic framework, each funda-
mental field—gravitational, electromagnetic, and
thermo-entropic VIII—emerges as a modal excita-
tion of the same vacuum substrate IXC. These ex-
citations are characterized by distinct action den-
sities over scaled four-dimensional volumes. We
now derive the characteristic action quantum for
each regime, showing that quantities such as a base
action Sref, the Planck constant ℏ, and a thermo-
entropic action Sth (associated to the cosmological
constant Λ), arise as invariant geometric projec-
tions of the same elastic vacuum.

1. Reference regime — gravitational mode.

We begin by postulating a fundamental uniform
Lagrangian density for the vacuum:

Lref = 1
1 m2 (20)

This corresponds to the minimal areal curvature
of the vacuum per unit 4-volume. In the reference
gravitational regime, time and length are taken
as identical units ([L] = [T ] = 1m). The four-
dimensional integration domain thus becomes:

d4x = 1 m4 (21)

yielding a characteristic action:

Sref =
∫

Lref d4x = 1
1 m2 · 1 m4 = 1 m2 ≡ 1 J · s

(22)
This result represents the baseline modal action of
the vacuum. Using the equivalence 1 kg ≡ 1

c2 J
(derived from Einstein’s fundamental equation),
the gravitational action corresponds to:

Sref = 1 kg · s
c2

Note that, theoretically, it comes naturally to con-
struct the quantum of charge eq as the product of
the structural voltage µ0 (30) and the structural
capacitance ε0 · 1 m (I), to get that

eq = µ0ε0 · 1 m = 1 m

c2 (23)

As a result, using the equivalence 1 m ≡ 1 s, we
have that Sref ≡ eq · 1 kg, where eq denotes the
elementary electric unit in energy form.

This result shows that the elementary quantum of
electric charge eq is not merely a phenomenological
constant but a direct expression of the vacuum’s
structural response to deformation. Consequently,

the reference action Sref = eq · 1 kg encapsulates
how a unit mass couples to the minimal quantum
of curvature or twist in the vacuum substrate.
This connects the emergence of charge with the
elastic geometry of space, reinforcing the idea
that mass, charge, and temperature are unified
as different projections of the same underlying
structure.

2. Electromagnetic mode

In the electromagnetic regime, length scale rela-
tivistically by c2, so both the Lagrangian and vol-
ume are scaled:

xEM = 1 m
c2 ≡ eq ⇒ LEM = c4

1 m2 , d4xEM = 1 m4

c8

Then, the action becomes:

ℏ =
∫

LEM d4xEM = c4

1 m2 · 1 m4

c8 = 1 m2

c4

≡ 1 J · s
c4 ≈ 1.2 × 10−34 J · s (24)

which closely approximates the measured
value of the reduced Planck constant
ℏ = 1.054 × 10−34 J · s. The small numeri-
cal discrepancy (about 15%) may stem from
second-order corrections due to spatial anisotropy,
oscillatory coupling, or the projection geometry
of the modal fields XIII B. That is, while the
lowest-order action is governed by a uniform
energy density over a flat cell, real excitations
involve dynamical distortions that contribute
curvature and tension, modulating the exact
value. These corrections could be associated with
local deviations from the ideal spherical symmetry
or with the full tensorial dynamics of the elastic
vacuum lattice.

This derivation reinforces the idea that the
Planck constant is not inserted by hand but
emerges from the basic structure of the vacuum
when viewed as a quantized, elastic space-time
substrate. The action ℏ becomes a geometric
invariant of the minimal modal excitation volume.

3. Thermo-entropic mode

In this mode, length-time units are further
scaled, yielding:

xth = 1 m
c4 ⇒ Lth = c6

1 m2 , d4xth = 1 m4

c12
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Then the action becomes:

Sth =
∫

Lth d4xth = c6

1 m2 · 1 m4

c12 = 1 m2

c6

≡ 1 J · s
c6 ≈ 1.377 × 10−51 J · s (25)

This quantity is numerically close to the observed
value of the cosmological constant Λ ∼ 10−52 m−2,
suggesting that the cosmological constant itself
may be interpreted as the action density of a
residual modal action projected from ultra-low
frequency deformations of the vacuum.

As a result, we have shown how some of the
most important constants of nature arise not by
empirical insertion, but as geometrically quan-
tized projections of the same vacuum Lagrangian
density over scaled modes of the same deformable
elastic substrate. These results suggest that
Sref , ℏ, and Sth act as modal Noether invari-
ants—emergent from distinct projections of the
same elastic vacuum structure—and that what we
traditionally interpret as fundamental constants of
nature are, in fact, geometric integrals over scaled
deformations of a single quantized substrate.

B. Vacuum impedance Z0 and Ámpères Law

In the quasi-static regime, Ampère’s law (ig-
noring displacement currents) relates the magnetic
field to the current I via∮

B · dℓ = µ0I = µ0c = Z0 (26)

This identity reveals a fundamental insight within
our framework: the vacuum impedance Z0 = µ0c
is not merely an electromagnetic constant, but
a quantized circulation of the magnetic field
in response to the current I = c. Under the
quasi-static regime, Ampère’s law reduces to a
direct proportionality between the magnetic field
circulation and this structural current, leading to
the elegant equivalence

∮
B⃗ · dℓ = Z0.

In this light, Z0 characterizes the vacuum’s
intrinsic resistance to topological twisting—a
kind of ”circulatory stiffness”—analogous to how
µ0 represents linear stiffness to deformation.
When interpreted through the lens of dimensional
collapse, where both µ0 and I are dimensionless,
this equation becomes a quantization condition:
the magnetic excitation mode B⃗ must integrate to
a unit value. This supports the interpretation of
B⃗ as a topological mode of the unified field, con-
strained by geometric and symmetry conditions
of the vacuum itself. In this sense, magnetism
becomes a circulatory polarization of spacetime,

fixed by the internal geometry and encoded in the
impedance of the vacuum medium.

Integration with the Unified Modal Structure.

Within the unified field framework developed
in Part IV IXC, all static field modes—electric,
magnetic, gravitational, and entropic—reduce to
a common structural expression of the form:

Φ⃗X(r) = µ0

4πr
· CX · êX , (27)

where µ0/4π represents the universal elastic cou-
pling of the vacuum, and CX encodes the dimen-
sionless constants specific to each mode (e.g., 2α,
c, α2hc, etc.). This structural form highlights the
role of µ0/4π as the elastic modulus that underlies
all geometric field deformations, establishing a uni-
fying framework across all physical interactions.
In this context, the quasi-static form of Ampère’s
law, ∮

B⃗ · dℓ = µ0I = µ0c = Z0, (28)

naturally integrates into this modal scheme. Inter-
preting I = c as the structural current associated
with a traveling quantum oscillator, the circula-
tion integral of the magnetic field becomes:∮

B⃗ · dℓ ∼
∫ 2π

0

µ0c

4πr
· r dθ = µ0c = Z0.

Thus, the vacuum impedance Z0 is interpreted as a
topological quantization constant associated with
the magnetic mode—a circulatory stiffness analo-
gous to the linear stiffness µ0 of radial modes. In
this context, magnetism is not merely a classical
phenomenon, but a geometric polarization of the
vacuum itself, arising from torsional deformation
constrained by topological symmetry.

Topological Quantization and Modal Flux.

This reinterpretation of Z0 = µ0c as a quantized
circulation constant aligns with well-established
principles of flux quantization in field theory. In
quantum systems such as superconductors, mag-
netic flux is quantized in units of Φ0 = h/2e,
while in classical electromagnetism, integral forms
of Maxwell’s equations impose global constraints
on field flux. The unified modal formulation ex-
tends these principles by embedding them into the
geometry of spacetime: the field circulation

∮
B⃗·dℓ

must yield a fixed value determined by the inter-
nal structure of the vacuum. Hence, the elastic
tensor framework not only recovers the standard
laws, but elevates them to quantization conditions
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on the permissible excitations of the vacuum’s ge-
ometry. This reinforces the central insight of Part
IV: that all physical interactions arise as topolog-
ically constrained modal deformations of a single
Lorentz-invariant field tensor Gµν .

C. Vacuum Electromotive Responses: µ0, Ke,
and kB as Modal Resonances from Faraday

Dynamics

We can reinterpret the vacuum permeability µ0,
Coulomb’s constant Ke, and Boltzmann’s constant
kB as effective electromotive responses—emergent
quantities characterizing the vacuum’s elastic reac-
tion to variations in structural currents over char-
acteristic scales. This unifying view arises from
Faraday’s law, which describes the electromotive
force induced by a time-varying magnetic flux:

E = −dΦB

dt
= −Lind · dI

dt
. (29)

In the framework of the unified tensor field Gµν X,
the current I represents a geometric deformation
rate of the vacuum. Time and length are unified
under the structural identification [L] = [T ], and
current acquires the role of a velocity-like quan-
tity: I = L/T . This dimensional symmetry allows
us to reinterpret µ0, Ke, and kB as different modal
resonances of the same underlying mechanism, de-
pending on the deformation scale.

1. Reference Regime — Gravitational mode.

Let I = 1m/s and t = 1 s ≡ 1m. Using the base
inductance Lind = µ0 · 1m, we find:

E = µ0 · 1 m · 1
1 s

= µ0 (30)

Thus, µ0 characterizes the vacuum’s minimal elec-
tromotive response to a unit deformation flow: the
baseline voltage of the elastic field under quasi-
static excitation.

2. Electromagnetic mode (scaled by c).

Scaling the current as I = c implies t = 1 s
c , and

using the same Lind:

E = µ0 · 1 m · c
1 s
c

= µ0c2 = 4πKe (31)

We recover Coulomb’s constant Ke as a relativisti-
cally scaled version of µ0, confirming its nature as
a voltage response under rapid deformation prop-
agation.

3. Thermo-entropic mode (scaled by 1/c).

Scaling the current as I = 1/c yields t = 1 s · c.
Then:

E = µ0 · 1 m ·
1
c

1 s · c
= µ0

c2 ≈ 1.4 × 10−23 (32)

which coincides numerically with Boltzmann’s
constant kB , up to unit conventions. This
identifies kB as the thermo-entropic counterpart
to µ0 and Ke: an emergent voltage under slow
deformation flux, consistent with the azimuthal
thermal mode T⃗ derived from the unified tensor
field 88.

These results confirm that µ0, Ke, and kB

are not independent constants, but rather modal
projections of the same elastic tensor structure.
Each emerges from Faraday-like dynamics under
a distinct current/time scaling regime:

• Gravitational: base mode, with E = µ0,

• Electromagnetic: relativistic excitation,
with E = µ0c2 = 4πKe,

• Entropic: dissipative/thermal excitation,
with E = µ0/c2 ≈ kB .

In this view, all three constants describe the same
underlying stiffness of the vacuum, observed at
different frequencies of excitation. This directly
supports the modal structure of Part IV, where
each field expression Φ⃗X(r) = µ0

4πr · CX · êX arises
from a specific symmetry and energy scale of the
elastic vacuum.

As a result, Faraday’s law, when interpreted
in modal terms, provides a unified operational
principle: electromotive response emerges from
geometric resistance to deformation. The con-
stants µ0, Ke, kB are expressions of the same
elastic modulus µ0, rescaled by the velocity
I of excitation. This unifies electromagnetic,
gravitational, and thermo-entropic interactions as
frequency-dependent modes of a single deformable
spacetime substrate.

D. The fine-structure constant α as half a
damping ratio ζ and a Lorentz-like factor

The fine-structure constant α [20] can be defined
as the ratio of two energies:

• the energy needed to overcome the electro-
static repulsion between two electrons a dis-
tance of d apart

• the energy of a single photon of wavelength
λ = 2πd (or of angular wavelength d)
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Therefore, we have that

α =
(

e2

4πε0d

)/ (
hc

λ

)
= e2

4πε0d
× 2πd

hc
= e2

4πε0d
× d

ℏc

= e2

4πε0ℏc
(33)

Other hand, in the context of an RLC circuit, the
quality factor or Q factor [21] is a dimensionless
parameter that describes how underdamped an os-
cillator or resonator is. It is defined as the ratio
of the initial energy stored in the resonator to the
energy lost in one radian of the cycle of oscillation.
Therefore, we have that

Q
def= 2π × Energy stored

Energy dissipated per cycle

= 2πfr × Energy stored

Power loss

= ω0 × Energy stored

Power loss
(34)

Where fr is the resonance frequency.

In electrical-engineering and condensed mat-
ter contexts, the fine-structure constant can be
written as

α = 1
4Z0G0,

where Z0 = µ0c = 1
ε0c is the vacuum impedance

and G0 = 2e2

h is quantum conductance [22]. It
follows that

Z0G0 = 4α,

which can be interpreted as the intrinsic en-
ergy loss characteristic per radian for the vacuum
medium itself. Thus, one can naturally define a
vacuum quality factor as

Q = 1
Z0G0

= 2π × ε0ℏc

2e2 = 1
4α

.

where we can identify Estored = ℏc
2λ and

Edissipated = e2

ε0λ .

The appearance of these two energies follows
directly from well-established properties of a sin-
gle electromagnetic vacuum mode of wavelength λ
and the framework we have discussed throughout
this Paper. On the one hand, quantum electro-
dynamics [23] dictates that each mode carries a
zero-point energy

Estored = 1
2ℏω = 1

2ℏ (c/λ) = ℏc

2λ
,

which is the exact reactive energy “stored” in the
vacuum field for an angular frequency ω = c

λ .

On the other hand, using Hooke’s Law, we
can identify the dissipated energy using the for-
mula E = −kx2 where k is the elasticity constant,
and x the displacement [24]. As in the context of
the unified field we have identified k = 1

C = 1
ε0λ ,

and the displacement x with the electric charge

Q, we get that Edissipated = −kx2 = e2

ε0λ .

Alternatively, as a sanity check that the above
is consistent with well-established derivations,
consider an oscillating dipole p(t) = p0 · cos(ωt)
with amplitude p0 = e · d, where d = λ/(2π) is the
separation and ω = c/d is the angular frequency.
Using Larmor formula for time-averaged power
radiated by an oscillating dipole [16]:

⟨P ⟩ = p2
0ω4

12πε0c3 (35)

we can derive the energy dissipated per cycle (pe-
riod T = 2π/ω):

Edissipated = ⟨P ⟩ × T =
(

p2
0ω4

12πε0c3

) (
2π

ω

)
(36)

And substituting and operating, one finally gets
that

Edissipated = πe2

3ε0λ
≈ 1.05 · e2

ε0λ
(37)

Thus, both energies can be derived from first-
principles and lead directly to

Q = 2π × Estored

Edissipated
= 2π × ℏc/(2λ)

e2/(ε0 λ) = 1
4α

,

For an underdamped oscillator, the damping ratio
is defined as

ζ = 1
2Q

,

which leads directly to

ζ = 2α

Interpreting c in terms of the Damped Resonant
Frequency of the System

In a standard underdamped oscillator model
[25–27], the damped frequency ωd is given by

ωd = ω0
√

1 − ζ2, (38)

where ω0 is the undamped resonant (natural)
frequency of the system, and ζ is the damping
ratio.
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Suppose we associate these frequencies with
propagation speeds by multiplying each angular
frequency by a reference length of one meter,
yielding speeds in units of m s−1. Denoting:

vdamped = ωd × 1 m, vundamped = ω0 × 1 m,

we can identify vdamped with themeasured speed of
light, conventionally denoted by c. In other words,

c = vdamped = ωd × 1 m.

From Eq. (38), we thus have

c = ω0 · 1 m
√

1 − ζ2

Or, equivalently,

c2
measured = c2

real(1 − (2α)2) (39)

Which, solving for ζ, can be rewritten as

ζ = 2α =

√
1 −

c2
measured

c2
real

(40)

Note the similarity of the above expression with
the reciprocal of the Lorentz factor formula [28].
Thus, the fine-structure constant α can be re-
garded as the reciprocal of a “Lorentz-like” factor
via

ζ = 2α = 1
γ

=

√
1 −

c2
measured

c2
real

. (41)

These two views—the damped oscillator analogy
for electromagnetic propagation and the Lorentz-
like factor interpretation for α—are not only com-
patible, but in fact reinforce each other: α emerges
as a geometric or relativistic “scaling factor” that
governs attenuation in the oscillatory unified field,
connecting electromagnetic propagation and the
quantum vacuum’s dissipative properties.

Vacuum Damping and potential relationship to
Earth’s Motion

Note that, solving for creal, one gets

creal = c√
1 − 4α2

≈ 299.824.388 m / s (42)

This implies an intrinsic scale difference
∆c = creal − cmeasured = 31, 927 m/s. Note
that this velocity is numerically very close to the
Earth’s translational velocity.

Throughout this Paper, we are proposing that
the quantum vacuum itself acts as a structured,
elastic–dissipative medium. And, just as wave

propagation in a structured medium may exhibit
Doppler-type modulations, a moving observer
within the dissipative vacuum may experience
direction-dependent attenuation—without imply-
ing a classical ether or absolute frame.

One might then ask whether the full damp-
ing effect ∆c could arise solely from Earth’s
motion through a static vacuum rest frame.
While motion through a medium can indeed lead
to velocity-dependent modifications of wave prop-
agation—such as in Fresnel drag [29] or Cherenkov
radiation [30]— if ∆c depended entirely on Earth’s
motion, we would expect measurable deviations
in the speed of light between different inertial
frames, in conflict with local Lorentz invariance.
Instead, we interpret ∆c as arising from the vac-
uum’s intrinsic elastic and dissipative response,
while motion relative to the vacuum introduces
only small, direction-dependent modulations
δc(v) atop this universal baseline. This layered
structure preserves relativistic consistency while
offering a physically grounded mechanism for
both the constant and modulated components of
the observed light speed.

In this picture, the vacuum consists of fluc-
tuating virtual excitations with internal degrees
of freedom that collectively endow it with both
stiffness (reactive elasticity) and finite relaxation
time (viscosity). A propagating electromagnetic
wave then loses energy—not into real particles,
but into the hidden structure of the vacuum—via
coupling to these degrees of freedom. This loss
manifests macroscopically as a damping ratio ζ,
which we identify with the dimensionless fine-
structure constant via ζ = 2α. Such a damping
constant is natural if one treats the vacuum as an
ensemble of coupled oscillators or as an emergent
condensed-matter system, as suggested by various
approaches to quantum gravity and emergent
spacetime [31–33]. The resulting reduction in
propagation speed is then not a kinematic effect,
but a first-principles consequence of quantum
back-reaction. This allows us to interpret the
measured speed of light c as a damped, effective
velocity arising from the underlying dissipative
structure of the vacuum.

Thus, the near-coincidence between the damping
shift ∆c = creal − c and the Earth’s translational
velocity suggests a deeper possibility: that this
difference encodes a global topological feature of
the vacuum field. In our framework, the quantum
vacuum is not an inert background but a struc-
tured elastic-dissipative medium with internal
degrees of freedom. The quantity ∆c may then
reflect a background excitation of this medium —
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a large-scale deformation mode aligned with the
Earth’s translational trajectory.

Importantly, this view does not violate local
Lorentz invariance. All local observers measure
the same effective speed c = cmeasured, and all
physical laws remain Lorentz-invariant in that
frame. The distinction between creal and c thus
becomes a global, geometric feature of the vacuum
— akin to how curvature encodes gravitational
effects in general relativity. In this case, however,
the “curvature” is not geometric but modal: a
manifestation of the vacuum’s internal damping
modes, whose excitation state defines a preferred
frame only at a topological level, not at the level
of measurable kinematics.

Final notes

It is worth noting that although we have
identified a “bare” or “undamped” speed of light,
creal, as exceeding the measured value c, this does
not conflict with the established principle that the
speed of light is the maximum signal velocity. In
our picture, all physical processes remain mea-
sured by the effective, damped value of c; hence,
no measurable signal can exceed c. Analogous to
an RLC circuit, where the “natural” frequency ω0
is never directly observed but rather only inferred
through modeling, the proposed creal > c does
not admit superluminal information transfer, and
thus poses no contradiction to special relativity
or experiment.

Other hand, higher–order radiative effects —
e.g. the electron’s anomalous magnetic moment
ae = α/2π — can be viewed as additional layers
of the same dissipative mechanism. The damping
encoded in the fine-structure constant α would be
the first-order manifestation of how the vacuum’s
oscillator lattice “bleeds” energy back into itself
through quantum fluctuations, and the anomalous
magnetic moment can be viewed, in our frame-
work, as the simplest radiative attenuation of a
bare “undamped” coupling by the lattice’s elastic
resistance. Higher-order Feynman diagrams then
correspond to more intricate couplings among
modes of the vacuum, each contributing successive
powers of α.

More generally, any “ideal” relation among
fundamental constants—whether in electromag-
netism, gravitation or thermodynamics—must be
dressed by a universal, dimensionless form factor
Ξeff(α) that encodes the accumulated effect of
loop-induced damping within the vacuum lattice.
In this way, radiative corrections are not mere

perturbative afterthoughts, but the fingerprint of
the same elastic and dissipative structure that
unifies all fields at their quantum origin.

In this view, the fine-structure constant α
becomes not merely a coupling constant, but a
unifying signature of modal attenuation across
all field interactions — electromagnetic, gravita-
tional, and thermo-entropic alike.

E. From the equipartition theorem to the
harmonic oscillator energy and the

fundamental equation

The equipartition theorem [19] shows that in
thermal equilibrium, some harmonic oscillator has
an average energy of:

⟨E⟩ = kBT. (43)

Other hand, for each quantum harmonic oscillator,
the fundamental action per complete cycle is given
by Planck’s constant h; therefore, the average total
energy required to excite some quantum harmonic
oscillator to the next quantum level is:

⟨E⟩ = hω (44)

Equating both expressions, and incorporating rel-
ativistic corrections -with a Lorentz factor γ-, we
have that:

kBT = hω · γ

Substituting by γ = 1
2α and ω = c

λ , we get the
fundamental equation

kBT = h · c

λ · 2α
(45)

If we set T = 1K ≡ 1 m and λ = 1 m, we get that

kB · 2α = h · c

1 m2 ≈ 2 × 10−25

Moreover, if we consider the minimum structural
voltage µ0 30 and the elementary charge e, one can
posit the fundamental equation

µ0 · e = kB · 1 K · 2α = hc

1 m
(46)

The above makes sense both numerically and the-
oretically. Numerically, note that

kB · 2α

µ0
= 1.38 × 10−23 · 2 · 0.007297 · 4π × 10−7

≈ 1.602 × 10−19 (47)

Recall that, theoretically, it comes naturally to
construct the quantum of charge eq as the product
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of the structural voltage µ0 and the structural ca-
pacitance ε0 ·1 m, to get that eq = 1 m

c2 (23). Note

that then we have that µ0 ·eq = µ0·1 m
c2 = kB ·1 K.

Accounting for relativistic corrections using γ =
1

2α , one has (46), and also that

e = 1 m

c2 · γ
= 2α · 1 m

c2 (48)

This relations provide a profound synthesis be-
tween thermal, quantum, electromagnetic, and ge-
ometric domains. The fundamental equation en-
capsulates, in a single concise expression, this Pa-
per’s overarching claim that multiple “fundamen-
tal constants” can be viewed as interrelated man-
ifestations of an underlying quantum-oscillatory
vacuum.

F. The gravitational constant G as some
structural electromotive force E of the unified

field

As by definition Ke = µ0·c2

4π , one has that

Ke · 4π · e = e

ε0
= ΦE =

∮
S

E⃗ · dA⃗

As we have established that e = 2α·1 m
c2 , we can

substitute to obtain that

ΦE = µ0 · c2

4π
· 4π · 2α · 1 m

c2

= µ0 · 2α · 1 m = µ0 · 1 m

γ
(49)

We recall that the electric flux is defined as

ΦE =
∮

S

E⃗ · dA⃗,

while the electromotive force (emf) is given by

Eelec =
∮

∂S

E⃗ · dℓ⃗.

In the case of a spherically symmetric or radially
uniform field over a region of characteristic radius
r = 1 m, we can establish the effective structural
electromotive force as:

Eelec = ΦE

1 m = µ0 · 2α

Now, the symmetry between gravitational and
electromagnetic interactions in our framework im-
poses the equivalence

[G] = [Ke],

As it makes sense both numerically and theoreti-
cally, we postulate that

G · γ = 1
4Eelec →

G = 1
4µ0 · 2α · 2α = µ0 · α2 (50)

Numerically, we have that

G = µ0α2 ≈ 6.69 × 10−11 (51)

showing that the gravitational constant naturally
arises as an effective structural electromotive re-
sponse, quadratically scaled by the fine-structure
damping ratio ζ = 2α.

The structural damping tensor ζµν and the emergence
of gravitational stiffness

Theoretically, note that the gravitational con-
stant G takes the form:

G = µ0 · 1
4ζ2 (52)

where ζ = 2α. Note how this mirrors the structure
of the electromagnetic Lagrangian,

LEM = −1
4FµνF µν ,

suggesting the idea that gravity itself is a
quadratic manifestation of the unified field’s
intrinsic resistance to deformation or energy stor-
age. In this picture, G represents the gravitational
“stiffness” of the field—the extent to which the
vacuum resists coherent longitudinal deformation
due to massive excitations, just as the magnetic
permeability µ0 governs transverse oscillations
under charge.

This naturally motivates a tensorial general-
ization, where we promote ζ = 2α to the norm of
a rank-2 symmetric tensor ζµν , which we define
as the structural damping tensor of the vacuum.
This tensor encodes the internal dissipation
response of the quantum vacuum to perturbations
in spacetime, such that its contraction yields the
effective damping strength:

ζ2 = ζµνζµν (53)

In this formulation, gravitational coupling is no
longer introduced as an independent constant but
instead emerges from the structural dissipation of
the vacuum. This structural damping tensor ζµν

acts as the unifying link between electromagnetic,
gravitational, and thermo-entropic responses of
the vacuum medium, and provides a natural ge-
ometric origin for Newton’s constant.

Relationship between the structural damping tensor
ζµν and the fundamental symmetric tensor Gµν

As introduced in Part IV X, the symmetric ten-
sor Gµν encodes the fundamental strain modes of
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the unified vacuum field, from which all classical
fields derive as projections. We can relate it to
the structural damping tensor ζµν , responsible for
gravitational coupling, by invoking the classical
analogy with stress–strain relations in continuum
mechanics [34, 35], where the potential energy is
given by Epot = 1

2 σµνϵµν , with σµν the stress ten-
sor and ϵµν the strain tensor. In our framework,
the fundamental symmetric tensor Gµν plays the
role of the strain, while the structural damping
tensor ζµν naturally corresponds to the induced
internal stress. We thus interpret gravity as the
manifestation of a quadratic response of the vac-
uum field:

ζµν ∝ GµαGα
ν ,

so that the gravitational constant G encodes the
vacuum’s effective elastic stiffness to coherent de-
formation. This identification completes the me-
chanical analogy and anchors Newton’s constant
within the internal modal dynamics of the unified
field.

Interpretation of G = µ0 · 1
4 ζ2 as a Constitutive Law

of the Vacuum

As a result, G = µ0 · 1
4 ζ2 admits a natural

interpretation within our unified field framework:
it is the constitutive law that relates the vac-
uum’s transverse rigidity µ0 to its longitudinal
stiffness G through the internal damping response
ζ2 = ζµνζµν . In direct analogy with classical
elasticity theory, where the stored elastic energy
takes the form Epot = 1

2 σµνϵµν , we may view
ζµν as the internal stress tensor of the vacuum,
induced by the strain field Gµν . In this picture,
gravity emerges as the quadratic response of the
vacuum’s elastic-dissipative lattice to coherent
longitudinal deformations induced by mass-energy
excitations.

Thus, the gravitational constant G is not
fundamental, but derived: it encodes the effective
elastic modulus of the vacuum along longitudinal
modes, just as µ0 encodes transverse response.
The relation G = µ0 · 1

4 ζ2 then completes the
analogy with continuum mechanics, anchoring
the gravitational interaction in the internal modal
geometry and dissipative structure of the vacuum
field.

1. The fine-structure constant as a quotient of
gravitational constant and magnetic permeability

As a final note, the above allows us to relate
the fine-structure constant α to the ratio of grav-

itational constant G and the vacuum permittivity
µ0:

α =

√
G

µ0
(54)

This relation has several noteworthy implications:

• Dimensional consistency and field
symmetry: Within our framework, both
G and µ0 share the same structural dimen-
sionality, being expressed as effective field
stiffnesses or “structural electromotive con-
stants” of the vacuum. Their ratio is thus
dimensionless, and α appears as a normal-
ized measure of the coupling between longi-
tudinal (gravitational) and transverse (elec-
tromagnetic) responses of the vacuum field.

• Geometric attenuation coefficient:
From the structural damping interpretation,
we have ζ = 2α, and since G = µ0 · 1

4 ζ2,

the identity α =
√

G/µ0 simply inverts that
structure. This confirms that α is not a fun-
damental constant per se, but the geometric
attenuation coefficient resulting from the
interplay between elastic (magnetic) and
dissipative (gravitational) responses of the
vacuum.

• Coupling of fields through the vacuum
lattice: This formula can also be interpreted
as stating that the strength of electromag-
netic coupling (α) is not an independent in-
put, but a direct consequence of how grav-
itational and magnetic degrees of freedom
couple within the same medium. The fine-
structure constant is thereby elevated from
a fixed parameter to a derived measure of
vacuum coupling topology.

• Emergent gauge unification: Finally,
this identity hints at a deeper symmetry: one
in which the gauge interactions of electro-
magnetism (through µ0) and the geometric
deformation field of gravity (through G) are
dual aspects of the same resonant vacuum
structure. In this light, the fine-structure
constant emerges as the universal damping
ratio that governs all interaction strengths,
mediating how local excitations propagate
through this unified background.

In conclusion, this corollary supports the overar-
ching thesis of this work: that all physical con-
stants—gravitational, electromagnetic, and quan-
tum—are not separate inputs but instead arise
from the intrinsic structure, resonant modes, and
dissipation characteristics of the quantum-elastic
vacuum field.
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G. Derivation of the Gravitational Constant
G in terms of ε0

As a complementary derivation to the dynam-
ical framework previously introduced—where
G emerges from the structural electromotive
response of the vacuum—we now turn to a
static-field perspective based on classical electro-
statics. This alternative approach leads to the
same result, reinforcing the idea that gravity and
electromagnetism are orthogonal projections of a
common vacuum elasticity.

Consider the energy U required to assemble
a sphere of charge with a uniform charge density,
also known as the self-energy of some sphere [36],
with elementary charge e and radius r, which can
be expressed [36] as

Usphere = 3
5 · e2

4πε0r
(55)

The total energy U in the system is related to its
capacitance C and the potential V by:

U = CV 2

The potential (voltage) V at the surface of the
sphere [15] is:

V = 1
4πε0

e

r

We can express C in terms of the self-energy U
and the potential V as:

C = U

V 2

Substituting the expressions for U and V , and op-
erating, we have:

C = U

V 2 =
3
5 · e2

4πε0r(
1

4πε0
e
r

)2

= 3
54πε0r → C

r
= 3

54πε0 (56)

Within our framework, [C] = [L] = [T ] and ε0 be-
comes dimensionless, so both sides of the equation
become dimensionless (and thus, dimensionally
consistent).

Note that, numerically, with the current ac-
cepted value for ε0 [37], we have that

3
5 · 4πε0 ≈ 6.6759 × 10−11

Which is indeed pretty close to the established
value of the gravitational constant G [38].

Structural Interpretation of G ∝ ε0: Reciprocity
between gravitational stiffness and electromagnetic

tension

The previous derivation of the gravitational
constant G from the electrostatic self-energy
of a charged sphere arises naturally from the
structural link between the gravitational coupling
and the electric permittivity of the vacuum,
once we have established that mass M and
charge Q are structurally equivalent quantities
within the unified oscillator model, i.e., [M ] ≡ [Q].

Note the precise structural similarity between the
gravitational and electric field equations:

Field Law Electrostatics Gravitation

Gauss’ law (diff.) ∇E⃗ = ρe

ε0
∇g⃗ = −4πGρm

Radial field E = 1
4πε0

Q
r2 g = G M

r2

Potential field ϕE = Q
4πε0r ϕG = − GM

r

Self-energy (sph.) UE = 3
5

Q2

4πε0r UG = − 3
5

GM2

r

These expressions differ only in sign (attractive
vs. repulsive) and in their coupling constants:
ε−1

0 and G, respectively. If mass and charge are
interpreted as equivalent structural sources of
field deformation, then the vacuum constants ε0
and G must also be manifestations of the same
underlying property of space: its stiffness in
response to static source configurations.

Under this view, ε0 measures the electric de-
formability of the vacuum (i.e., how easily it
allows displacement fields due to charge), while
G measures its gravitational deformability (how
easily it allows curvature or acceleration fields due
to mass). The gravitational constant G and the
permittivity ε0 are not independent quantities,
but different expressions of the same underlying
elastic-dissipative geometry of the vacuum. The
equivalence becomes inevitable when the laws
governing the fields are functionally identical and
the sources (mass and charge) are structurally
interchangeable.

In this context, our postulate

G = 3
54πε0 = 3

5
1

Ke

proposes a natural reciprocity: the vacuum’s
longitudinal compliance (gravitational softness) is
inversely proportional to its transverse stiffness
(electromagnetic tension). Put differently, the
vacuum’s ability to resist gravitational deforma-
tion is weakest precisely because it is most rigid
electromagnetically. The stronger the electric
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field that the vacuum can sustain, the weaker the
gravitational interaction that can emerge from
the same medium.

This duality highlights a profound symme-
try: gravity and electromagnetism are orthogonal
projections of the same underlying field elasticity.
The vacuum’s ability to deform under longitudinal
(gravitational) excitation is far more limited than
under transverse (electromagnetic) excitation.
In other words, the vacuum is extremely stiff in
response to mass-like perturbations (as encoded
in the smallness of G), and relatively compliant to
charge-like perturbations (as seen in the largeness
of Ke).

This not only reinforces the modal equiva-
lence described previously but gives it a new
dimension: the vacuum acts as a geometric
impedance surface, whose tension and compliance
balance across regimes to define the apparent
strengths of fundamental forces. The interpreta-
tion G ∝ ε0 ∼ 1/Ke thus follows naturally as a
structural necessity within this framework.

In conclusion, the result G ∝ ε0 is not an
isolated numerical coincidence but the most
natural consequence of structural equivalence
between mass and charge. It validates the idea
that all coupling constants emerge from a single
elastic-dissipative fabric of space, whose geometric
and energetic responses define the laws of physics
as we experience them.

H. Corollaries: re-expressing Newton’s Law
and Coulombs Law in terms of momentum

transfer in different modes

From the previously derived equivalences, such
as G = µ0 · α2 and kB = µ0/c2, it follows that:

G = kB · α2 · c2

This allows us to re-express Newton’s gravitational
law as a thermo-entropic interaction:

Fg

4 = kB ·

(
Mc
γ

)
·
(

mc
γ

)
r2 ,

where γ = 1
2α .

The prefactor 1
4 reflects the same quadratic

damping structure appearing both in the elec-
tromagnetic Lagrangian LEM = − 1

4 FµνF µν and
our expression for the gravitational stiffness
G = µ0 · 1

4 ζ2. It encodes the modal character
of the gravitational field as a second-order elas-
tic response to projected momentum densities

through the vacuum lattice, via the symmetric
tensor ζµν ∝ GµαGα

ν . Thus, the factors Mc
γ and

mc
γ correspond to effective, damped relativistic
momenta —not because particles move at light
speed, but because their gravitational field prop-
agates through the vacuum’s elastic-dissipative
structure. These momenta are longitudinal
projections of the energy-momentum current Ig,
whose propagation is modulated by the damping
structure encoded in ζµν . Thus, gravity emerges
as the effective resistance to the coherent align-
ment of projected momenta through the vacuum’s
dissipative tensorial geometry.

By symmetry, the Coulomb force can be re-
formulated analogously as a transverse-mode
momentum interaction:

Fe = Ke· Q1Q2

r2 = µ0 · c2

4π
· Q1Q2

r2 = µ0· (Q1c)(Q2c)
4πr2

This structure mirrors the gravitational expres-
sion, with Qc playing the role of transverse modal
momentum and the vacuum magnetic permeabil-
ity µ0 acting as the transverse field stiffness. Thus,
both Newton’s and Coulomb’s laws appear as com-
plementary modal projections of the same unified
vacuum tensorial response, mediated by Gµν and
its derived damping structure ζµν .

Momentum Transfer and Entropic Gradient
Interpretation

In this formulation, both gravitational and
electromagnetic interactions arise as manifesta-
tions of momentum exchange through a medium
with intrinsic damping. For gravity, the damping
factor γ = 1/(2α) emerges from the vacuum’s
resistance to longitudinal deformation, requiring
greater energy or mass to transmit equivalent
field influence. The Boltzmann constant kB , here,
quantifies the entropy cost per unit of squared
momentum transfer, embedding gravitational
force within a statistical mechanics framework.

This aligns with the heuristic view that grav-
ity arises from the statistical organization of
vacuum degrees of freedom. The product
pM pm ∼ (Mc)(mc) defines a correlation between
the relativistic momenta of two masses. Dividing
by r2 reflects the dilution of momentum correla-
tion due to spatial dispersion in an entropic field,
whose effective stiffness is modulated by ζ = 2α.

Electromagnetism, analogously, corresponds
to a transverse mode where the vacuum responds
to current-like excitations. Charges Q and q,
moving at light speed, define maximal transverse
stress contributions, and the vacuum responds
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with a resistance determined by µ0. Thus, Ke,
µ0, and G all measure the vacuum’s ability
to redistribute momentum between sources —
filtered by geometry, damping, and scale.

In summary, both interactions reflect mo-
mentum exchange across a structured medium.
What differs is the symmetry (transverse vs.
longitudinal), the effective damping, and the
entropy associated with deformation. The grav-
itational force emerges as a highly suppressed,
entropy-weighted momentum flow — not because
the vacuum is weakly coupled, but because it is
rigid against longitudinal oscillations, whereas
the electromagnetic force reflects a more efficient,
transversely mediated momentum exchange,
amplified by the vacuum’s comparatively soft
resistance to shear-like charge deformations.

Relationship between the gravitational constant G and
c

As a final -and crucial- note on the gravitational
constant G, substituting G = µ0 ·α2 one can check
that

G · c = µ0 · c · α2 = Z0 · α2 ≈ 1
50

where Z0 = µ0c ≈ 377 Ω is the vacuum impedance.
Numerically, this yields:

G · c ≈ 1
50

This dimensionless combination suggests that the
product G · c defines a fundamental ’resistive-
like’ constant of the vacuum, which we denote
as the natural resistance XN . Motivated both
by numerical proximity and by its appearance in
the Einstein-Hilbert action pre-factor, we propose
that:

XN := G · c = 1
16π

from which one can formally write:

c = 1
16πG

(57)

This postulate is not arbitrary: the factor 1
16πG

appears in the Einstein-Hilbert action

S = c4

16πG

∫
R

√
−g d4x,

suggesting that G and c are not entirely indepen-
dent constants, but rather encode dual aspects of
the vacuum’s elastic and dissipative structure. In
our framework, where both µ0 and α characterize
the internal stiffness and attenuation of the

vacuum, the combination G · c ∼ Z0 · α2 reflects
the effective coupling between the responses of
the gravitational and electromagnetic field.

We will exploit this equivalence later to de-
rive an expression of the gravitational Lagrangian
and to connect the Einstein-Hilbert action with
thermodynamic and modal principles in the
unified field IXB1.

I. Derivation of the Casimir Constant Cc

The magnitude of the Casimir force per unit
area A between two perfectly conducting plates
separated by a distance d is classically given by:

FC

A
= − π2ℏc

240d4 ≈ 1.3 × 10−27 N · m−2

d4 ,

where ℏ is the reduced Planck constant and c is
the speed of light in a vacuum. The calculation
of this expression involves handling a divergent
sum using a regularization technique involving
the Riemann zeta function. Using our model, we
can avoid the divergence handling and directly
relate the Casimir effect to vacuum energy density.

Let us define the Casimir constant Cc as the
quantum of ”Casimir effect” force por unit
of area. The zero-point energy per quantum
oscillator, E0 = ℏc

2·λ , produces an elementary

electromotive-like force E0 = ℏc
2·λ2 , which, divided

by the surface area of a sphere 4πr2 and choosing
the characteristic length scale λ = r = 1 m, we
obtain the Casimir constant::

Cc = Fqho

A
=

ℏc
2

4π · 1 m4 ≈ 1.26 × 10−27 N · m−2

This value agrees with both theoretical estimates
and experimental measurements [39, 40], and illus-
trates the vacuum’s intrinsic capacity to sustain
baseline oscillatory stress, constrained by space-
time geometry. Thus, we may write:

FC

A
= Cc

d4 =
ℏc
2

4π · (1 m)4 · d4 , (58)

which offers a more direct and physically intu-
itive way to compute the Casimir force, bypassing
the need for divergent series summation or zeta-
function regularization.

J. The elementary charge as the quotient of
mass at rest and total relativistic energy

Recall the equation

ΦE =
∮

S

E⃗ · dA⃗ = µ0 · 1 m · 2α = e

ε0
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Note that, solving for the elementary charge e, and
as ε0µ0 = 1

c2 , we get our already derived expres-
sion

e = µ0ε0 · 1 m · 2α = 2α · 1 m

c2

As we have established that µ0 has dimension of
voltage V , and that ε0 · 1 m is a capacitance C,
then we have that

[e] =
[

C · V

γ

]
Which is dimensionally consistent, and provides
a new interpretation of the elementary charge
as a product of the vacuum’s electromagnetic
properties, encapsulated by its capacitance ε0
and voltage µ0, and modulated by α as some
Lorentz factor γ. This formulation aligns with the
notion that the elementary charge is an emergent
property of the vacuum, induced by its interaction
with relativistic effects.

Moreover, note that for any mass at rest m0
we have

e = m0

m0 · c2 · γ
(59)

As a result, e can be interpreted as the quotient of
some mass at rest, and the total relativistic energy
of that mass. This connects charge directly to
relativistic energy–momentum structure, framing
it as a transverse projection of mass–energy
coupling, in contrast to gravity’s longitudinal
projection.

The above points toward a deeper unity be-
tween electromagnetism and geometry. In this
framework, electric charge can be reinterpreted as
a gauge–geometric defect—a localized deformation
arising from how mass–energy interacts with the
vacuum’s transverse modes. While mass induces
longitudinal curvature associated with gravita-
tion, charge emerges as the transverse projection
of this same mass–energy content, modulated by
the vacuum’s elastic and dissipative structure.
In particular, the elementary charge e reflects
the vacuum’s ability to support shear-like defor-
mations sourced by relativistic–non-relativistic
coupling. Rather than a primitive electromag-
netic label, it becomes a geometric signature
of transverse curvature in the spacetime lat-
tice—an imprint of how mass–energy interacts
with internal vacuum symmetries through the
damping tensor ζµν . This reinforces the central
idea that charge, mass, energy, and spacetime
curvature are not independent attributes, but
modal expressions of a single elastic-dissipative
field. Their apparent distinctions arise from

how energy–momentum flows project onto
different tensorial modes—longitudinal or trans-
verse—within the unified geometric fabric of the
vacuum.

Final remark:

The formula links the elementary charge to
the motion of the particles that are ”suitable” to
have charge. This suggests that the elementary
charge is not simply a static property but one that
depends on the fundamental particle’s interaction
with spacetime itself, particularly through its rela-
tivistic spin and magnetic dipole moment, both of
which are transverse in nature. In this light, the
elementary charge appears as a topological quan-
tization of transverse curvature modes around
localized energy densities. Charge could arise
from internal rotational or topological proper-
ties, becoming a geometrical descriptor of vacuum
deformation in the presence of matter and motion.

Part III: the basis of the
fundamental entropic field

V. MASS AS AN EMERGENT
PROPERTY OF SPACETIME ELASTICITY

In this section, we formalize the reinterpretation
of mass as an emergent property of spacetime. By
considering Hooke’s law and Newton’s law as the
most fundamental force laws, we derive a new per-
spective on mass linked to the elasticity of space-
time.

A. Derivation of mass from Hooke’s Law and
Newton’s Law

Hooke’s law states that the force exerted by an
elastic system is proportional to the displacement:

F⃗ = −kx⃗, (60)

where k is the elasticity constant and x⃗ is the dis-
placement from the equilibrium position. On the
other hand, Newton’s second law expresses force
as:

F⃗ = m · a⃗, (61)

where a⃗ is the acceleration. Equating both expres-
sions:

m · a = −k · x. (62)

Since acceleration can be rewritten as a⃗ = d2x/dt2,
solving for m, we obtain:

m = −k · x

a
→ [m] = −[k][T 2]. (63)
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B. Action as the Fundamental Elastic
Response of Spacetime

We now interpret the term x/a within the con-
text of spacetime elasticity. Since action S is de-
fined as the integral of the Lagrangian over time:

S =
∫

L dt, (64)

and given that the Lagrangian L is the difference
between kinetic and potential energy,

L = T − V, (65)

we observe that displacement x modifies the re-
lationship between kinetic and potential energy,
while acceleration a governs the rate of change
in this transformation. Noting that, applying the
equivalence M ≡ L ≡ T , action has the same di-
mensional form as x/a:[x

a

]
= [T 2] ≡ [E · T ], (66)

we propose that the fundamental relationship
defining mass can be rewritten as:

m = −kS, (67)

where action S encapsulates the elastic response of
spacetime to force, k represents the effective elas-
tic modulus of the vacuum along the relevant de-
formation mode , and the negative sign reflects
the restoring nature of the elastic response. It
expresses that mass reflects the temporal accu-
mulation of resistance to deformation in the vac-
uum’s elastic-dissipative lattice. This formulation
coheres with the earlier identification of gravita-
tional stiffness via ζµν and can be generalized as a
contraction between the stress and strain tensors:

m ∼ ζµνGµν

VI. DERIVATION OF FUNDAMENTAL
PARAMETERS OF ELECTROMAGNETIC

FIELD

A. Fundamental parameters of the
electromagnetic field

Building on the interpretation of mass as an
elastic response of spacetime, we now explore how
this formulation naturally leads to the derivation
of electromagnetic field parameters. Since within
our framework mass has dimensions of spacetime,
and is given by m = −k ·S, we deduce that k must
have dimensions of frequency. By substituting k
with the quantum of angular frequency c

λ , and us-
ing Planck’s constant h for the quantum of action,
we obtain an expression of mass:

m = hc

λ
(68)

This equation directly links the energy of photons
(or other quantum excitations) to mass, reinforc-
ing Einstein’s mass-energy equivalence from a
fundamentally new perspective.

Now, note that:

• Substituting λ = 1 m, corresponding to
the characteristic scale of the unit quantum
oscillator in our framework, we obtain the
quantum of mass-energy for the electromag-
netic field m = hc

1 m .

• Dividing this quantum mass-energy by a vol-
ume V = 1 m3, and considering the lin-
ear frequency c

2π·1 m and linear momentum

ℏ = h
2π we obtain a quantum of mass density

ρvac = ℏc
2π·1 m4 ≈ 5.03×10−27 kg m−3 which

is in excellent agreement with cosmological
measurements from the Planck satellite mis-
sion [17].

• Finally, identifying the vacuum energy den-
sity as the Lagrangian density L, and inte-
grating over a unit four-volume d4x = 1 m4,
we recover the fundamental quantum of ac-
tion S =

∫
L d4x = ℏc

2π

VII. CONNECTION BETWEEN THE
STEFAN-BOLTZMANN CONSTANT AND

LONDON DISPERSION FORCES

In the framework developed here, we can con-
nect the Stefan-Boltzmann constant σ to the fun-
damental constants describing vacuum fluctua-
tions and intermolecular interactions, specifically
the London dispersion (van der Waals) forces.
This connection shows how blackbody radiation
and quantum dispersion forces originate from a
common underlying structure of vacuum fluctua-
tions.

A. Stefan-Boltzmann Radiation and Its
Dimensional Structure

The Stefan-Boltzmann law expresses the radia-
tive energy flux density as:

R = σT 4, (69)

where R represents an energy flux per unit area,
with dimensions of L−2 within our theoretical
framework. The classical expression for Stefan-
Boltzmann constant is:

σ = π2k4
B

60ℏ3c2W m−2K−4 (70)
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This result shows that the Stefan-Boltzmann con-
stant inherently carries a dependence on the struc-
ture of vacuum fluctuations. Within our frame-
work, we have that [σ] = [W m−2K−4] ≡ [L−6],
and this 1

r6 dimensionality points strongly to the
equations of quantum dispersion interactions.

B. London Dispersion Forces and Their
Emergence from Vacuum Fluctuations

London dispersion forces arise from transient
dipole-induced dipole interactions mediated by
vacuum fluctuations of the electromagnetic field.
The energy potential governing these interactions
between two neutral molecules or atoms is given
by:

ULondon(r) = −C6

r6 , (71)

where C6 is a coefficient that depends on the
polarizability of the interacting species and is
ultimately linked to the structure of vacuum
fluctuations.

At the microscopic level, London dispersion
interactions decay as 1

r6 due to the localized
nature of transient dipoles. However, in con-
densed matter systems, the cumulative effect
of many such interactions modifies the overall
scaling. When considering bulk materials, the
total interaction energy per unit area between
two solids exhibits a slower decay:

Ubulk(r) ∼ −C6

r3 , (72)

which reflects the summation of contributions
over a macroscopic volume rather than individual
dipole-dipole interactions.

C. Connecting Thermal Radiation to
Dispersion Forces

We postulate, based on the scaling behavior and
dimensional correspondence, that

U(r) = −σ · C6 (73)

R = σT 4 = σC6

r3 . (74)

This equations propose that the radiative energy
flux density arises as the macroscopic London
dispersion interactions in bulk matter. In this
analogy, thermal radiation arises as the coherent
superposition of vacuum-induced dipole interac-
tions across a macroscopic surface, with T 4 ∝ C6

r3

encoding an effective dipole-density scaling.

Thus, the Stefan-Boltzmann constant does
not merely reflect an empirical radiation law, but
encodes the bulk thermodynamic response of an
elastic quantum vacuum. Its microscopic origin
in dispersion forces shows that both radiation
and intermolecular interactions emerge from a
common substrate: the fluctuation-dissipative
structure of spacetime

D. Implications for the Unified Description
of Vacuum Energy and Thermodynamics

The connection between Stefan-Boltzmann radi-
ation and London dispersion forces highlights the
profound relationship between thermal radiation,
vacuum fluctuations, and the fundamental nature
of space-time interactions. The Stefan-Boltzmann
constant encapsulates the large-scale thermody-
namic consequences of microscopic vacuum fluctu-
ations, acting as an effective coupling constant be-
tween radiation and space-time structure. This re-
sult further supports the idea that the fundamen-
tal forces governing blackbody radiation, vacuum
energy, and intermolecular interactions are unified
under a common theoretical framework, wherein
space-time itself exhibits elasticity-like properties
encoded through its interaction with vacuum fluc-
tuations.

E. Boltzmann Constant as a Relativistic
Thermodynamic Force: A Unruh-Inspired

Equality

Building on the reinterpretation of kB as
a thermo-entropic force (see Sec. IVC3) and
the fundamental equivalence introduced earlier
(Eq. 46), we now propose a novel formulation of
the Boltzmann constant as an emergent relativis-
tic force.

Assuming the dimensional equivalence
1K ≡ 1m ≡ 1 s within our elastic vacuum
framework, we express kB as:

kB = hc

2 · 1 m · 1
2α · 1 s = E

a
(75)

In this expression, kB acquires the form of a
Newtonian-like force F = ma, with the following
components:

• hc
1 m → m: The characteristic energy scale of
the vacuum, associated with a fundamental
quantum of mass or photon energy.

• 1
2α·1 s = γ

1 s → a: An effective proper acceler-
ation, where the Lorentz-like factor γ = 1

2α
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encodes the vacuum’s resistance to excita-
tion.

Thus, the Boltzmann constant kB emerges as a
quantized force scale, representing the vacuum’s
intrinsic responsiveness to acceleration. In this
interpretation, entropy and temperature arise
from the inertial resistance of spacetime to de-
formation, with kB capturing the proportionality
between energetic input and induced entropic
curvature.

This Unruh-inspired formulation reinforces
the view that thermodynamic quantities—such
as temperature, and heat—are fundamentally
geometric in nature. Here, kB bridges the gap
between thermal response and relativistic motion,
playing a role analogous to that of G or µ0
in mediating the vacuum’s reaction to mass or
charge, respectively. In this sense, kB can be
viewed as the thermo-entropic stiffness constant
of spacetime: a universal coupling between accel-
eration, information flow, and thermal excitation.
This perspective helps unify quantum field theory,
thermodynamics, and general relativity within a
common elastic-dynamical substrate.

VIII. PROPOSAL OF A NEW FIELD
MODE: THE GRAVITO-ENTROPIC FIELD

The plausibility of a structured field theory unit-
ing gravitational and entropic dynamics is sup-
ported by a range of independent theoretical and
empirical findings:

• Gravitational wave observations, no-
tably those by LIGO and Virgo, confirm that
the gravitational field g⃗ can vary with time
[41]. This supports the existence of dynami-

cal couplings with an auxiliary field T⃗ , where
temporal variations in the entropic sector
may induce circulation-like components in g⃗.

• Black hole thermodynamics reveals deep
links between gravitational phenomena and
thermodynamic quantities such as entropy
and temperature [42, 43], supporting the

idea that the entropic field T⃗ is not a deriva-
tive phenomenon, but rather a fundamental
component of spacetime structure.

• Experimental confirmations of gravito-
magnetic effects, such as those from Grav-
ity Probe B [44], show that rotating masses
generate a field component dependent on
mass currents. This behavior is consistent
with the idea that a circulating mass flow J⃗m

contributes to the generation of a comple-
mentary field T⃗ , in analogy with magnetism.

• Thermodynamic derivations of gravi-
tational dynamics, such as Jacobson’s ap-
proach to Einstein’s equations [? ] and Ver-
linde’s emergent gravity framework [? ], sug-
gest that gravity may arise from underlying
entropic principles.

• Thermoelectric relationships further
strengthen the proposal. In condensed mat-
ter physics, temperature gradients gener-
ate electric potentials (Seebeck effect), while
electric currents produce or absorb heat
(Peltier effect) [45]. These two-way cou-
plings between energy and entropy mirror
the kind of mutual interactions expected in
a gravito-entropic field theory. Addition-
ally, the Unruh effect shows how tempera-
ture can emerge from acceleration, reinforc-
ing the connection between thermodynamics
and spacetime structure.

As we will see, a natural way to formalize the
interplay between gravity and entropy in the
fabric of spacetime is through the introduction
of a gravito-entropic field pair {g⃗, T⃗}, where g⃗

represents the gravitational field and T⃗ denotes
a thermo-entropic field, which does not denote
temperature per se, but a circulating thermo-
entropic field analogous to the magnetic field,
generated by mass currents rather than charge.
We coin the name gravito-entropic to reflect the
intrinsic duality between radial mass-induced
effects (gravity) and azimuthal thermo-entropy-
induced circulation (thermo-entropic fields), both
encoded in the elastic response of spacetime.
In the following sections, we will construct a
concrete theoretical framework supporting the
emergence of this gravito-entropic pair, and
detailing its precise mathematical relationship
with the electromagnetic pair {E⃗, B⃗}.

Importantly, we will demonstrate that these
two field pairs are not independent structures,
but are instead related via a modal scaling
symmetry or projective geometric correspondence.
This scalar correspondence will show that g⃗
and T⃗ are alternative excitations—radial and
azimuthal respectively, just as E⃗ and B⃗ do in
the electromagnetic sector—of the same elastic
substrate of spacetime from which electromag-
netism also arises. Their geometric structure,
scaling behavior, and source terms mirror those
of E⃗ and B⃗, thus reinforcing the central thesis
of this theory: all fundamental fields are modal
projections of a single symmetric deformation
tensor Gµν , with observed differences arising from
symmetry, geometry, and coupling hierarchy.
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IX. A DEEP DIVE ON THE
GRAVITO-ENTROPIC FIELD

FUNDAMENTALS

Based on the similarities between the elec-
tromagnetic pair {E⃗, B⃗} and the proposed

gravito-entropic pair {g⃗, T⃗}, we propose a system
of field equations mirroring Maxwell’s equations.

The gravitational field plays the role of the electric
field, while the entropic field assumes the role of
the magnetic field.

Below can be found a table summarizing the
main derivations and relationships:

Quantity Electromagnetism Gravito–entropic
Source Electric charge (q) Mass (m)

Main field
(circulatory) B⃗ = µ0 I⃗

2π r
θ̂ T⃗ = kB I⃗m

2π r
θ̂

Derived field
(radial) E⃗ = KeQ

r2 r̂ g⃗ = G M

r2 r̂

Coupling constant µ0 kB = µ0/c2

Gauss’s law ∇ · E = 4πKeρq ∇ · g = − 4π G ρm

No-monopole law ∇ · B = 0 ∇ · T = 0

Faraday’s law ∇ × E = − ∂B
∂t

∇ × g = − ∂T
∂t

Ampère–Maxwell
law ∇ × B = µ0 J + µ0 ε0

∂E
∂t

∇ × T = kB Jm + kB αg
∂g
∂t

TABLE II. Comparison of Maxwell-like laws for electromagnetism and the proposed gravito–entropic sector.

Here, I⃗m and ρm respectively represent mass
current and mass density. The factor αg = ε0

4πc2

plays the role of a displacement-like coupling con-
stant in the gravito-entropic sector—an effective
permittivity that governs the temporal response
of the gravitational field. It encodes the vacuum’s
inertia to longitudinal (thermo-entropic) deforma-
tions, ensuring that the dynamic evolution of g⃗
mirrors the structure of Maxwell’s equations while
accounting for the damping and stiffness proper-
ties of spacetime. Note that kBαg = µ0ε0

c4 = 1
4πc6 ,

as we will use this result later.

A. Fundamental parameters of the
gravito-entropic field

From our proposal, we can derive the fundamen-
tal parameters of the gravito-entropic field just di-
viding the parameters obtained for the electromag-
netic field by c2:

• We obtain the quantum of mass-energy for
the gravito-entropic field mentr = ℏ

2πc·1 m ≈
5.6 × 10−44 kg.

• We obtain a quantum of mass density
ρentr = ℏ

2πc·1 m4 kg m−3.

• Setting the action S =
∫

L d4x and substi-
tuting L with the quantum of mass density

ρentr, and dx with 1 m, one gets the quan-
tum of action S = ℏ

2πc .

B. Further justification of the parameters
derived: Einstein-Hilbert action and Unruh

effect

There are several checks that we can perform to
further justify the validity of the fundamental pa-
rameters derived for the gravito-entropic field. In
this subsection, we will focus on showing that the
action obtained for the gravito-entropic field aligns
with Einstein-Hilbert action, and that the Unruh
effect can be directly derived from the application
of the fundamental expression of mass-energy for
the gravito-entropic field and Newton’s Law.

1. Derivation of the gravito-entropic action as the
Einstein-Hilbert Action

In a non-relativistic setting, an action S can be
viewed as the time integral of the total energy (or,
more precisely, the Lagrangian). In special rela-
tivity or general relativity, this idea generalizes to
integrating a Lagrangian density L over the entire
spacetime volume. Formally,

S =
∫

L
√

−g d4x, (76)
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where g = det(gµν) is the determinant of the
metric tensor gµν . The factor

√
−g ensures general

covariance of the volume element, making the
action a scalar under coordinate transformations.

The Einstein-Hilbert action [46] [47] [4] in
General Relativity with a cosmological constant
is typically expressed as:

SEH = c4

16πG

∫
(R − 2Λ)

√
−g d4x (77)

We can equate the Einstein-Hilbert action with
cosmological constant to the general equation of
action we have defined as:

SEH =
∫

L
√

−g d4x = c4

16πG

∫
(R−2Λ)

√
−g d4x

(78)
We can substitute the cosmological constant Λ via

Λ = 8πG
ρvac

c2 , (79)

Assuming a De Sitter universe [48] [49], one can
substitute R = 4Λ and 79 to obtain that

SEH = c4

16πG

∫ (
R − 2 Λ

) √
−g d4x

= c4

16πG

∫
2 Λ

√
−g d4x

= c4

16πG

∫
16πG

c2 · ρvac

√
−g d4x

=
∫

ρvac · c2 √
−g d4x (80)

Therefore, we identify the Lagrangian density L
with the energy equivalent to vacuum energy den-
sity

L ≡ ρvacc
2 (81)

Substituting ρvac with the expression obtained for
the vacuum energy density VIA, we have that

ρvacc
2 = ℏc

2π 1 m4 c2 = ℏc3

2π 1 m4 (82)

In an almost flat universe, spacetime is only
slightly curved, and the metric tensor gµν devi-
ates minimally from the flat Minkowski metric ηµν .
Therefore, the determinant of the metric tensor g
can be expressed as:

√
−g ≈ 1 + 1

2δg. (83)

For practical purposes in an almost flat universe,
δg is so small that

√
−g ≈ 1 is a valid approxima-

tion.

Recall that we have established that the

fundamental measure of the system in the
electromagnetic mode is τ = 1 s

c ≡ 1 m
c . As a

result, substituting, one gets that

SEH = ℏc3

2π 1 m4 · 1 m4

c4 = ℏ
2πc

(84)

Our derivation of the Einstein-Hilbert action
demonstrates the potential of our common field
model (and the postulated gravito-entropic field)
to unify gravity, general relativity, and quantum
mechanics. Evaluated over a nearly flat, vacuum-
dominated universe, the action naturally yields
our theoretical value ℏ

2πc IXA.

2. Deriving Unruh effect from the gravito-entropic
field parameters and Newton’s law

The Unruh effect [50] states that an observer
with constant proper acceleration a in vacuum per-
ceives a thermal bath at a temperature

TUnruh = ℏ a

2π c kB
. (85)

Rearranging gives

kB = ℏ a

2π c TUnruh
. (86)

We have already shown how kB can be treated di-
mensionally as a force IVC3. Also, we have pos-
tulated that the expression of mass-energy for the
gravito-entropic field is mentr = ℏ

2πc·λ . Using the
equivalence [L] ≡ [Temp], we can easily see that
the equation of the Unruh effect can be rewritten
as

kB = mentr · a (87)

Showing how Unruh’s effect can be derived from
the application of Newton’s law to the derived pa-
rameters of the gravito-entropic field.

C. Conclusion

The above derivations provide strong evidence
that justify the existence of the gravito-entropic
field. The Einstein-Hilbert action, traditionally
rooted in curvature, emerges naturally as the ac-
tion of the gravito-entropic field, and Unruh effect
is just the manifestation of Newton’s Law. This
framework provides new insight into the gravito-
entropic origins of gravity and suggests avenues
for further exploration into quantum gravity and
spacetime thermodynamics.
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Part IV: Unified Field Theory from
a Symmetric Deformation Tensor

X. THE SYMMETRIC FUNDAMENTAL
TENSOR Gµν(x)

Building on the elastic interpretation of the
quantum vacuum proposed in Parts I–III, and the
dimensional unification [M ] = [L] = [T ], the most
reasonable theoretical framework that we can pro-
pose given our results is that all classical fields are
emergent modes of a single, symmetric rank-2 field
tensor:

Gµν(x)

This tensor encodes the local deformation of a
Lorentz-invariant, elastic spacetime substrate.
It generalizes the role of both the metric tensor
in relativity and the electromagnetic potential
in gauge theory. Rather than treating electric,
magnetic, gravitational, and thermo-entropic
fields as distinct fundamental entities, we inter-
pret them as geometrically distinct projections
or excitation modes of Gµν . Thus, each physi-
cal interaction would correspond to a different
symmetry-breaking or geometric configuration
within this unified field.

Interestingly, this projection-based interpre-
tation of field emergence aligns conceptually with
recent work by Partanen and Tulkki [51], who
propose a unification framework where gravity
arises from four coupled U(1) gauge symmetries.
In their approach, the spacetime metric is not
taken as a fundamental structure but rather
emerges from the modal structure of gauge fields
defined on a flat background. Analogously, in
our model, the symmetric deformation tensor
Gµν encodes the elastic response of the quantum
vacuum, whose radial and azimuthal modal
projections manifest as the electromagnetic and
gravito-entropic fields, respectively. This supports
the idea that observable interactions are not
independent fields but manifestations of deeper
symmetry modes of the vacuum.

XI. PROPOSAL OF FIELD MODES AND
ITS INTERPRETATION

Within the proposed unified framework, fun-
damental fields derived from distinct physical in-
teractions exhibit a similar structure modulated
by dimensionless factors derived from the the-
ory. Specifically, the electric field (E⃗), magnetic

field (B⃗), gravitational field (g⃗), and the thermo-

entropic field (T⃗ ) VIII arise based on the deriva-

tions within this framework, and take the form:

(i) E⃗ = e

4πε0r2 r̂ ≡ 2α · µ0c2

c2 · 4π · r
r̂ = 2α · µ0

4πr
r̂

(ii) B⃗ = µ0I

4πr
θ̂ = µ0 · c

4π · r
θ̂ = c · µ0

4πr
θ̂ ≡ E⃗ · c

2α

(iii) g⃗ = Gm

r2 r̂ ≡ µ0α2 · ℏc

r2 · 2 m
r̂ ≡ α2 · hc

1 m2 · µ0

4πr
r̂

(iv) T⃗ = kB · 2α · I

4πr
θ̂ = 2α

c2 · µ0

4πr
θ̂ ≡ g⃗ · c

2α
(88)

where we have used e = 2α·1 C
c2 , m = ℏc

2·1 m VIA,
I = c (electromagnetic mode) and I = 1

c (gravito-
entropic mode), together with the equivalences of
(7).

Note that all the static fields adopt the generic
form

Φ⃗X(r) = µ0

4πr
· CX · êX ,

where X ∈ {E, B, g, T} and CX is a dimensionless
coefficient. The direction êX indicates the field’s
spatial orientation — either radial or azimuthal.

In this formulation, the characteristic expressions
for the fundamental fields are constructed from
the elementary contribution of discrete quantum
oscillators. The magnetic field, for instance, is
not derived from the standard expression for an
infinite wire (B⃗ = µ0I/2πr), but rather from the
Biot–Savart law applied to a localized oscillatory
mode, yielding the expression B⃗ = µ0I/4πr, which
better reflects the point-like, modular nature of
the vacuum excitations in this framework. The
mass m has been taken from the zero-point energy
associated with a confined quantum harmonic
oscillator mode of the vacuum, becoming an
emergent quantity from the fundamental vacuum
oscillation modes. This aligns with the conception
of mass as a localized deformation in some elastic
medium, and the unification of field modes under
a shared geometric and dynamical substrate.

The patterns of the fields can be observed
in the following summarizing table:

Field Expression Constant Scaling Direction

E⃗ 2α
4π

· µ0
r

r̂ 2α
4π

c0 Radial r̂

B⃗ c
4π

· µ0
r

θ̂ 1
4π

c1 Acimutal θ̂

g⃗ α2·hc
4π 1 m2 · µ0

r
r̂ α2

4π
c−3 Radial r̂

T⃗ 2α
4πc2 · µ0

r
θ̂ 2α

4π
c−2 Acimutal θ̂

TABLE III. Proposed hierarchy of unified field modes.

where we have used ℏ
1 m2 ∝ 1

c4 (??) to derive the
scaling of g⃗.
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This refined formulation reveals that all four
field expressions share a universal structural
factor:

µ0

4πr

which can be interpreted as the universal elastic
modulus of the vacuum. This quantity encapsu-
lates the intrinsic coupling between elastic excita-
tions and physical sources such as charge, mass,
and temperature. Notably, this coupling is not ar-
bitrary: using our fundamental identity 46

µ0 · e ≡ h · c

1 m
,

one can easily derive

µ0

4π
= ℏc

2 · 1 m · e
,

demonstrating that this common prefactor arises
naturally from the interplay of vacuum elastic-
ity, charge quantization, and action. Its ubiquity
strongly suggests that it encodes a fundamental
vacuum deformation, intrinsic to all field excita-
tions and independent of the specific interaction.
Formally, observe that this quantity can be rewrit-
ten as:

µ0

4π
= ℏc

2 · 1 m · e
= E0

e
,

where E0 = ℏc/(2 · 1 m) is identified as the zero-
point energy of a fundamental oscillator mode
of the vacuum, and simultaneously interpreted
as the rest mass energy associated with a unit
deformation cell. This expression gives µ0/4π
the interpretation of a deformation current : the
amount of vacuum energy deformation (in the
form of rest mass) per unit of charge. In this
sense, it quantifies the vacuum’s elastic response
rate to localized sources—be they of electric or
gravitational nature.

Furthermore, the modal hierarchy exhibits a
remarkable internal symmetry. Each azimuthal
field mode (B⃗, T⃗ ) is obtained from its corre-

sponding radial field (E⃗, g⃗) by a universal scaling
factor:

B⃗ ≡ E⃗
c

2α
≡ E⃗ · γ · c, T⃗ ≡ g⃗

c

2α
≡ g⃗ · γ · c.

This reveals a deep phenomenological coherence:
both electromagnetic and gravito-entropic sectors
obey a consistent internal structure, where radial
and azimuthal components are dynamically linked
via a simple rescaling by c/2α, or inversely by
2α/c depending on direction.

Moreover, beyond the radial–azimuthal clas-
sification, the identified field modes reveal deeper

symmetries through their cross-relations. Specif-
ically, the gravitational and entropic fields are
shown to be scaled versions of the electric and
magnetic fields, respectively, via a universal
attenuation factor:

g⃗ = α

c3 E⃗, T⃗ = α

c3 B⃗.

These relations suggest that the gravito-entropic
sector represents the low-energy, coarse deforma-
tion modes of the elastic vacuum, while the electro-
magnetic sector corresponds to quantum-enhanced
projections. Conversely, the electromagnetic fields
may be interpreted as excited versions of the
gravito-entropic ones:

E⃗ = c2 · T⃗ , B⃗ = α2 h

1 m2 · g⃗,

highlighting how temperature and mass can
give rise to electric and magnetic fields -or the
other way around- under relativistic or quantum
amplification / contraction. This reinforces the
interpretation of all four fields as modal projec-
tions of a common elastic structure, structured
by both geometric directionality and energy scale
hierarchy.

Within these patterns, the µ0
4πr dependence

represents the stiffness or elastic modulus of the
spacetime fabric itself (note that it has the ex-
pected dimensionality for the elasticity constant in
the previously derived expression m = −kS VB).

The distinct fields (E⃗, B⃗, g⃗, T⃗ ) are interpreted as
different modes of deformation of this underlying
spacetime structure. These modes correspond
to distinct types of geometric distortions—such
as radial compression/expansion, torsion, shear,
or potentially more complex patterns—each
triggered by a specific type of physical source
(mass, charge, thermal gradients associated with
kB , etc.), and the remaining physics captured by
dimensionless coupling constants, the scaling on
the current, and the vectorial nature (r̂, θ̂).

Consequently, we propose that the expres-
sions for all fundamental fields are not isolated
laws, but rather modal projections of a single,
Lorentz-invariant and scale-covariant field tensor
Gµν , governed by unified deformation currents.
The omnipresence of µ0/4π confirms the existence
of an intrinsic flow of elastic information in the
vacuum, conserved under a deeper symmetry that
links mass, charge, and temperature as emergent
facets of a common substrate. This solidifies the
central claim: all interactions arise from modal
excitations of a single elastic and informational
geometry of spacetime.
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Conceptual hierarchy of the unified field formulation

Having established the modal decomposition
of the unified tensor and its associated field ex-
pressions, it is instructive to examine the simplest
possible dynamical realization of these modes.
This will also serve as a bridge between the static
formulations and a fully covariant field-theoretic
description. To provide a dynamical description
of these modal excitations, we now introduce
a minimal scalar field model that captures the
essential propagation features of vacuum defor-
mations. Each modal field—such as E⃗, B⃗, g⃗, or
T⃗—can be represented by an effective scalar field
Φ whose dynamics encode the energy balance
between time and space variations. This model
serves as a bridge between the oscillatory behavior
of the vacuum and the field equations derived
from action principles.

Below we show the conceptual hierarchy of
the unified field formulation that we will detail
briefly throughout the next sections:

Unified Field Tensor
Gµν(x)

Modal Projections
G(X) ∈ {E⃗, B⃗, g⃗, T⃗ }

Minimal Scalar Field Model
L(Φ) = 1

2 κ1(∂tΦ)2 − 1
2 κ2(∇Φ)2

Wave Equation and Lorentz Invariance
□Φ = 0 if κ1 = κ2

Klein–Gordon Dynamics
□G(X) + m2

XG(X) = 0

Coupling to Sources

L(X)
int = G(X) · J(X)

FIG. 1. Conceptual hierarchy of the unified field for-
mulation: from geometric tensor structure to modal
dynamics.

XII. MINIMAL SCALAR FIELD MODEL
FOR MODAL EXCITATIONS

Let Φ(x) denote a field -in general, it can be
a multi-component scalar, vector, or tensor, but
for simplicity and illustrative purposes, we treat
it here as a single real scalar field-. Include just
the two couplings (or rigidities”) usual for har-
monic oscillatory systems, κ1 and κ2, which can
be reinterpreted as combinations of physical con-
stants (e.g., ε0, µ0, G, kB , etc.) under differ-
ent substitutions depending on the mode of the
elastic-oscillatory manifestation of the common
field. Then, one can posit the following minimal
Lagrangian density:

L(Φ) = 1
2 κ1

(
∂tΦ

)2 − 1
2 κ2

(
∇Φ

)2
(89)

Here,

• κ1 controls the inertial” or kinetic response
of the field mode,

• κ2 represents the elastic/spatial rigidity of
the field mode.

The corresponding action S is given by the integral

S[Φ] =
∫

d4x L
(
Φ, ∂Φ; κ1, κ2

)
(90)

Applying the principle of least action, δS = 0,
yields the Euler–Lagrange equation:

κ1
∂2Φ
∂t2 − κ2 ∇2Φ = 0. (91)

This single partial differential equation governs
the field Φ. Depending on how we identify κi with
physical constants and Φ with different spacetime
deformations (e.g., mass, charge, temperature), we
recover the different field modes.

A. Relativistic Compatibility and Spacetime
Formalism

To ensure compatibility with special relativity,
we introduce a four-dimensional spacetime coordi-
nate:

Xµ =


t
x
y
z

 , with metric ηµν = diag(−1, 1, 1, 1).

(92)
We define the spacetime derivatives:

∂µ = ∂

∂Xµ
=


∂
∂t

∂
∂x

∂
∂y

∂
∂z

 (93)
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The standard Lorentz-invariant kinetic structure
is encoded in the d’Alembertian operator:

□Φ ≡ ηµν∂µ∂νΦ = −∂2Φ
∂t2 + ∇2Φ. (94)

The equation of motion from our minimal field La-
grangian reads:

κ1
∂2Φ
∂t2 − κ2∇2Φ = 0. (95)

To write this in a Lorentz-invariant form propor-
tional to □Φ = 0, we compare:

κ1
∂2Φ
∂t2 = κ2∇2Φ =⇒ ∂2Φ

∂t2 = κ2

κ1
∇2Φ. (96)

Rewriting the d’Alembertian as:

□Φ = −∂2Φ
∂t2 + ∇2Φ = 0,

we see that Lorentz invariance requires:

κ2

κ1
= 1 ⇒ κ1 = κ2. (97)

Therefore, the field theory is manifestly Lorentz-
invariant if and only if the rigidity constants
match: κ1 = κ2. This ensures the action trans-
forms as a scalar and the field equation becomes
the standard wave equation:

□Φ = 0. (98)

Alternatively, one may directly enforce Lorentz in-
variance in the Lagrangian density by writing:

LLorentz(Φ) = 1
2κ, ηµν∂µΦ, ∂νΦ, (99)

where κ encodes the rigidity of the mode and can
later be matched to physical constants depending
on the interpretation. In this more general
framework, if one allows κ1 ̸= κ2, the resulting
dynamics describe propagation in a medium
with anisotropic or symmetry-breaking features.
These deviations from perfect Lorentz invariance
may be interpreted as emergent properties or
effective behaviors in specific physical regimes
(e.g., entropy-driven diffusion or gravitational
strain). This flexibility could allow the unified
field to encompass richer phenomena under the
same fundamental structure.

This scalar field model, though minimal, captures
the essential dynamics of vacuum excitations. It
shows how each modal projection of the unified
field tensor Gµν can be described in terms of a
wave-like field obeying Lorentz-invariant dynam-
ics. This prepares the ground for a more detailed
relativistic formulation in terms of Klein–Gordon

dynamics and projection structures consistent
with general relativity. In the following section,
we generalize this framework to include mass
terms, explicit coupling to sources, and consistent
tensorial projections compatible with general
relativity.

XIII. THEORETICAL FOUNDATIONS:
KLEIN-GORDON DYNAMICS AND

GENERAL RELATIVITY CONSISTENCY

A. Lagrangian framework for modal
excitations

Building on the minimal scalar field formulation
developed in the previous section —where each
field mode Φ is governed by a Lorentz-invariant
wave equation with equal coupling constants
κ1 = κ2— we next extend this minimal setup to
include mass terms and explicit source couplings,
thus arriving at a Klein–Gordon-type framework
that preserves Lorentz symmetry and aligns with
general relativistic structure. This formulation ex-
tends the scalar model to allow modal excitations
of the unified tensor Gµν to be described in terms
of scalar, scalar-like, or contracted tensorial fields
G(X), each corresponding to a specific physical
interaction (electric, magnetic, gravitational, or
thermo-entropic).

For each such mode, we define the following
canonical Lagrangian:

LX = 1
2∂µG(X)∂µG(X) − 1

2m2
X

(
G(X)

)2
, (100)

where G(X) represents a projection of the full
tensor Gµν along mode X ∈ {E, B, g, T}, and
mX is an effective mass scale associated with
the deformation mode. This Klein–Gordon-type
Lagrangian provides a Lorentz-invariant basis for
describing both massless and massive field modes
within the unified elastic framework.

The Euler–Lagrange equation yields:

□G(X) + m2
XG(X) = 0, (101)

which reduces to the Klein–Gordon equation for
free scalar propagation in Minkowski space.

Although the Lagrangian LX describes free
fields, coupling to physical sources can be in-
corporated via minimal interaction terms of the
form:

L(X)
int = G(X)(x) · J (X)(x), (102)

where J (X) is an effective source density cor-
responding to charge, mass, entropy flux, etc.
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These terms play an analogous role to the coupling
AµJµ in electrodynamics. Since G(X) represents
a modal projection of the unified tensor Gµν , the
coupling is assumed to act only on the relevant
scalarized or vectorial component associated with
the physical mode.

A more general coupling scheme could link
the full tensor to the energy–momentum content
of matter via:

Lint = Gµν(x) T µν(x), (103)

from which each modal interaction G(X)J (X)

would arise as a projection or contraction. This
formulation ensures full compatibility with general
relativistic coupling schemes.

B. Static solutions

In the static limit and for massless modes
(mX = 0), the equation 102 reduces to:

∇2G(X)(r⃗) = −J (X)(r⃗), (104)

with J (X) being an effective source term. For
a point-like unit source located at the origin,
J (X)(r⃗) = δ(3)(r⃗), the Green’s function solution
is:

G(X)(r) = 1
4πr

. (105)

Multiplying this fundamental response by a di-
mensionless coupling CX and by the universal de-
formation factor µ0 yields the physical field expres-
sion:

Φ⃗X(r) = µ0 · CX

4πr
· êX (106)

as postulated in the unified field table of the
previous section.

Each mode G(X) can be formally extracted
from the full tensor using projection operators
P µν

(X) acting on Gµν :

G(X)(x) := P µν
(X) Gµν(x), (107)

ensuring that the decomposition is orthogonal,
complete, and compatible with spacetime symme-
tries.

Projected Field Modes and Geometric Interpretation
of Gµν

We propose that the field Gµν is symmetric and
real, with ten independent components:

• G00 encodes scalar deformations (electro-
static, gravitational).

• G0i encodes torsional modes (magnetic field
analog).

• Gij represents spatial-shear or volume modes
(gravitational and thermo-entropic analogs).

Their geometric meaning is determined by sym-
metry (e.g., spherical) and energy scale. Together,
these components describe the elastic response of
the vacuum to localized excitation. Each scalar
field G(X) is identified as a projection of a spe-
cific component or contraction of the unified tensor
Gµν , depending on symmetry and field geometry.
Examples include:

G(E) := G00,

G(B) :=
√

G0iG0i,

G(g) := Tr(Gij),

G(T ) :=
√

GijGij .

These choices reflect radial vs. azimuthal struc-
ture and are consistent with the interpretation
of the fields as spatially oriented deformation
modes. Although G(B) and G(T ) are scalar in
dynamics, the physical fields B⃗ and T⃗ acquire
their azimuthal direction θ̂ through the geometric
structure of the excitation mode (e.g., torsional
boundary condition). This is analogous to stand-
ing wave patterns in elastic continua where mode
functions are scalar but correspond to vectorial
deformations.

A rigorous modal decomposition would require
defining a complete set of orthogonal projection
operators P µν

(X) that extract each physical mode

from Gµν . In this initial formulation, we adopt
symmetry-guided identifications consistent with
the observed field patterns, while leaving the
development of a full operatorial decomposition
to future refinement.

Emergence of Antisymmetric Excitations

Although the unified field Gµν is symmetric, an-
tisymmetric field excitations—such as those en-
coded in the electromagnetic field tensor Fµν—can
emerge as derived objects from its spacetime
derivatives. Specifically, we define generalized field
strengths:

F (X)
µν := ∂µG(X)

νρ − ∂νG(X)
µρ , (108)

where ρ is a fixed index associated with the
geometric direction of deformation—typically
radial (ρ = 0) for electric or gravitational modes,
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and azimuthal (ρ = i) for magnetic or entropic
torsional analogs.

This construction reflects the idea that local
antisymmetric excitations, such as rotational or
torsional responses, arise as gradients or curls of
symmetric deformations in an elastic continuum.
In particular:

• For X = E, choosing ρ = 0 yields a general-
ized electric-type field strength.

• For X = B, choosing ρ = i (azimuthal direc-
tion) produces magnetic-like curls.

• For X = T and X = g, similar constructions
could yield thermo-entropic and gravitody-
namic vorticities, respectively.

This formalism embeds antisymmetric field
behavior directly into the derivative structure
of the symmetric tensor Gµν . It suggests that
classical field strengths Fµν , typically postulated
as fundamental, may instead arise as secondary
geometric quantities, traces of deeper symmetric
modes of the quantum-elastic vacuum.

Furthermore, this opens a natural path to
defining the field dynamics from an action
principle involving scalar invariants of the form:

LX ∼ F (X)
µν F (X)µν ,

which parallels the standard electromagnetic
Lagrangian, but grounds it in the unified tensorial
origin of Gµν .

A rigorous generalization would involve in-
troducing projection operators P µνρ

(X) that select

the appropriate contraction and symmetry struc-
ture for each field type, an avenue left open for
future formal development.

C. Interpretation and consistency with
General Relativity

The field components G(X) can be seen as
mode projections of a symmetric deformation ten-
sor Gµν , whose full dynamics, in the relativistic
regime, would be governed by a generally covari-
ant action:

S =
∫

LX

√
−g d4x, (109)

with LX defined for each scalar excitation or com-
posite tensorial contraction. For instance, the Ein-
stein–Hilbert action

SEH = c4

16πG

∫
R

√
−g d4x, (110)

can be seen as a special realization where the La-
grangian is given by the Ricci scalar R derived
from the underlying metric gµν . To recover Ein-
stein’s equations from the unified field dynam-
ics, we could identify the macroscopic metric as
a coarse-grained average:

gµν(x) = ⟨Gµν(x)⟩. (111)

This averaging would define an emergent Rieman-
nian geometry whose curvature satisfies Gµν =
8πG Tµν in the classical limit, and where ⟨·⟩ de-
notes a coarse-grained or averaged value of the
tensor field over microscopic vacuum excitations.
It does not necessarily imply a full quantum ex-
pectation value, but rather a macroscopic effective
field akin to a thermodynamic mean, acting as the
geometric background in which the dynamics of
the elastic field unfold. The Einstein–Hilbert ac-
tion would then describe the large-scale behavior
of this emergent average, not the full tensor field
Gµν itself.

D. Field Modes as Standing Waves of the
Elastic Vacuum

Each excitation G(X) corresponds to a distinct
deformation mode—radial or azimuthal—of the
elastic vacuum. These modes behave as standing
wave solutions of a field equation with spherical
symmetry, and their spatial profiles naturally re-
flect this structure. Notably:

• The observed 1/r dependence of physical

fields (such as E⃗, B⃗, g⃗, T⃗ ) arises directly from
the Green’s function of the Laplacian in
three spatial dimensions [15], consistent with
oscillatory responses in elastic and electro-
magnetic media.

• In the dimensional framework adopted
here—where mass, charge, and tempera-
ture share the same fundamental dimension,
[M ] ≡ [Q] ≡ [Temp] ≡ [L]—source terms
such as mass or charge have dimension [L],
and thus expressions of the form source/r2

acquire the overall dimension [1/r]. This im-
plies that the radial decay of fields such as
E⃗, g⃗, or T⃗ is dimensionally equivalent to 1/r,
even when expressed in terms of a traditional
source-over-distance-squared structure.

• Moreover, by identifying the physical fields
directly with the scalar field response G(X)

(rather than with its spatial derivatives), the
model preserves the 1/r behavior of the fields
without invoking an explicit divergence or
gradient operation. This stands in contrast
to conventional formulations, where vector
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fields decay as 1/r2 due to their derivative
origin.

Despite the internal deformations encoded in
Gµν , Lorentz invariance is preserved at the level
of the field equations. The field transforms
covariantly, and the elastic vacuum is treated as a
Lorentz-invariant medium whose excitations carry
well-defined transformation properties under
boosts and rotations.

A minimal covariant Lagrangian compatible
with this framework—and reflecting the standard
structure of a harmonic oscillator— could be:

LX = 1
2∂µG(X)∂µG(X) − 1

2ω2
X(G(X))2, (112)

where ωX is a mode-specific frequency scale deter-
mined by the underlying vacuum impedance for
each deformation type X. This form encapsulates
both the elastic (restoring) behavior and the
propagation of each field mode, consistent with
wave equations and classical oscillator dynamics.
It also lays the foundation for quantization and
mode decomposition in future developments.

Thus, the elastic field paradigm maintains
both internal geometric coherence and external
compatibility with the fundamental symmetries
of relativistic field theory, while offering a unified
geometric origin for all classical fields and their
characteristic falloffs.

E. Outlook and Future Developments:
Quantization and Gauge Extensions

Quantization of the unified field Gµν can natu-
rally proceed via a covariant path-integral formal-
ism:

Z =
∫

DGµν eiS[Gµν ], (113)

where the action S is built from Lorentz-invariant
scalars involving Gµν and its derivatives. In this
framework, each classical deformation mode G(X)

corresponds to a quantized normal mode of the
elastic vacuum, analogous to phonons in con-
densed matter or gauge bosons in standard field
theory. The vacuum behaves as a lattice of cou-
pled quantum oscillators whose eigenmodes give
rise to the familiar field excitations. This path-
integral formulation provides a consistent platform
for computing quantum amplitudes and propaga-
tors, and suggests that classical fields emerge as
expectation values or coherent states of quantized
elastic modes.

Modal Symmetries and Gauge Generalizations.

While the present work focuses on classical
modes corresponding to electromagnetic, gravita-
tional, and thermo-entropic phenomena, further
developments may incorporate internal symme-
tries and non-Abelian structures. In particular,
gauge fields—such as those of the weak and
strong interactions—could emerge as internal
connections or curvature forms associated with
symmetry groups acting on internal indices of
Gµν , or through matrix-valued generalizations of
the field (e.g., Ga

µν with gauge index a).

Likewise, fermionic matter fields might arise
via supersymmetric extensions of the framework,
in which Gµν is embedded in a superfield whose
components include spinorial partners. This
opens the possibility of viewing matter as a
localized defect or topological excitation in the
elastic substrate, governed by the same underlying
dynamics.

Path Forward.

These generalizations, while beyond the scope
of the present paper, are structurally compatible
with the elastic field paradigm and its modal de-
composition. A fully developed theory would en-
tail:

• Construction of the complete action func-
tional S[Gµν ] including source couplings, cur-
vature terms, and possibly non-linearities;

• Identification of symmetry groups associated
with different field sectors (Abelian, non-
Abelian, supersymmetric);

• Quantization via canonical or path-integral
methods, and the study of resulting propa-
gators and interactions;

• Exploration of topological solutions and
their identification with particle-like excita-
tions.

Thus, while the present work lays the geometric
and dynamic foundations, a richer landscape of
quantum and gauge-theoretic structures awaits de-
velopment within the same unified elastic frame-
work.
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Part VI: Cosmological im-
plications of the established
framework

XIV. THE COSMOLOGICAL CONSTANT
Λ AND ITS RELATIONSHIP WITH THE

GRAVITO-ENTROPIC FIELD

The Einstein field equation in its most general
form, including the cosmological constant Λ, is:

Rµν − 1
2gµνR + Λgµν = 8πG

c4 Tµν (114)

When there is no matter or conventional energy
present, i.e., Tµν = 0, the Einstein field equation
reduces to:

Rµν − 1
2gµνR + Λgµν = 0 (115)

In this case, Λ can be interpreted as a form of
intrinsic energy of the vacuum, which acts as
a source of spacetime curvature. This vacuum
energy is present even in the absence of matter or
radiation.

To describe the vacuum energy as a form of
energy affecting the curvature of spacetime, we
can reinterpret the term Λgµν as contributing
to an effective energy-momentum tensor for the
vacuum energy. This gives us the following form
for the vacuum energy-momentum tensor:

T vac
µν = − Λc4

8πG
gµν (116)

This term behaves like a perfect fluid with a
constant energy density ρvac and an associated
pressure pvac related to the vacuum energy. The
vacuum energy behaves like a fluid with negative
pressure, meaning the pressure pvac is equal to
−ρvacc

2.

Then, the relationship between ρvac and Λ
can be obtained by identifying the term de-
scribing vacuum energy in the Einstein field
equation with the standard form of a perfect
fluid in cosmology. In a universe dominated by
vacuum energy, the effective energy density can
be expressed as:

ρvacc
2 = Λc4

8πG
(117)

Operating, one has that

4πGρvac = 1
2Λc2 (118)

which shows how the cosmological constant Λ is
fundamentally tied to the gravitational flux as

an expression of Gauss Law, with vacuum energy
density ρvac, and a structure reminiscent of ki-
netic energy or Einstein’s mass-energy equivalence
formula. The right-hand side of the equation
implies that Λ can be viewed as a scaling factor
for the intrinsic gravitational flux associated with
the vacuum.

From a thermodynamic perspective, this for-
mulation resonates with the idea that gravity
emerges from microscopic degrees of freedom, as
suggested by holographic and entropic gravity
approaches. The cosmological constant in this
context can be interpreted as a measure of the
equilibrium state of the vacuum, analogous to the
way that temperature regulates thermodynamic
systems. This perspective aligns with Jacobson’s
derivation of Einstein’s equations from thermo-
dynamic principles [? ], where fluctuations in
vacuum energy sustain an equilibrium that mani-
fests macroscopically as gravitational dynamics.

Solving for Λ, we have that:

Λ = 8πGρvac

c2 (119)

Recall that, within our framework, vacuum energy
density ρvac can be expressed VIA as:

ρvac = ℏc

2π · 1m4 . (120)

Substituting (120) into (119), we obtain:

Λ = 8πG

c2 · ℏc

2π · 1m4 = 4Gℏ
c · 1m4 . (121)

Dividing both sides by 4, we arrive at:

Λ
4 = G · ℏ

c · 1m4 . (122)

A. Interpretation as an Equipartition
Theorem

The right-hand side of (122) can be interpreted
as an expression akin to the equipartition theorem.
Recall that the equipartition theorem states that
the average total energy of a harmonic oscillatory
system is kBT . Here, G = kB · c2 · α2 plays the
role of a scaled Boltzmann constant kB , and ℏ

c·1m4

represents the energy density associated with the
gravito-entropic field IXA. Thus, we can interpret
that Λ

4 encodes the average energy density of the
gravito-entropic field, distributed over the degrees
of freedom of the spacetime lattice. This interpre-
tation aligns with the idea that the cosmological
constant arises from the quantum fluctuations of
the vacuum, as predicted by quantum field theory.
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B. Link Between kBαg and the Cosmological
Constant Λ

From equation 119, substituting with the ob-
tained relationships among universal constants, we
can derive several expressions for Λ. For instance,
substituting ρvac = ℏc

2π·1 m4 = 1
2πc3·1m2 (using ??)

and G = 1
16πc (IVH), we obtain:

Λ = 8π · 1
16πc

· 1
2πc3 · 1 m2 · 1

c2 = 1
4πc6 · 1 m2

(123)
Recall that, in the gravito-entropic sector, the
Ampère-Maxwell law is proposed to be (IX):

∇ × T = kBJm + kBαg
∂g
∂t

, (124)

where we had that kBαg = 1
4πc6 . As a result,

note that kBαg = Λ · 1 m2. This identification
is physically meaningful and consistent with
the framework developed in this paper. The
term kBαg encodes the force arising from the
quantum fluctuations of the gravito-entropic
field. By identifying kBαg with Λ · 1 m2, we
interpret the cosmological constant as a measure
of the vacuum’s response to gravito-entropic
perturbations, mediated by the gravito-entropic
field. It reveals that the gravito-entropic coupling
constant encapsulates a surface-like contribution
of vacuum energy. This interpretation supports
the hypothesis that entropy, gravity, and the
cosmological constant share a common geometric
origin, where the elementary unit of expansion
corresponds to a surface tension Λ projected over
a fundamental area.

Interpretation of the expressions de-
rived and the nature of Λ

The expression Λ = 1
4πc6 1m2 reveals a mul-

tifaceted view of the cosmological constant that
integrates both global and local aspects of cosmic
expansion. Setting r = c3 · 1 m situates Λ as an
effective curvature density, with 4πr2 = 4πc6 ·1 m2

representing the ”surface” of an expanding spher-
ical volume. That is, the cosmological constant
acquires a direct geometrical interpretation as
an inverse-square term, analogous to curvature
or density of a spherical boundary in expanding
space. This form provides a physical interpre-
tation in which the large-scale expansion of the
universe is driven by a steady energy flow that
distributes itself over the expanding boundary,
dynamically adjusting the effective curvature
density as the volume of the universe grows. This
interpretation not only aligns with the curvature
requirements of an accelerating universe but also
positions Λ as a fundamental to the structure and
expansion of spacetime itself.

Modal Structure of Λ: Field Strength Interpretation
and Action Principle

The appearance of the factor 1
4 in the expression

for Λ [Eq. (122)] is not accidental—it matches the
canonical structure of kinetic terms in gauge field
Lagrangians, where the field strength is contracted
to form a scalar:

LEM = −1
4FµνF µν . (125)

Motivated by this analogy, we propose an effective

gravito-entropic field strength tensor F (GE)
µν , de-

rived from the projected modes of the symmetric
deformation field Gµν (108):

F (GE)
µν := ∂µG(T )

ν − ∂νG(T )
µ , (126)

where G(T )
µ represents an effective vector field asso-

ciated with thermo-entropic modal projections of
the vacuum (e.g., torsional or volumetric oscilla-
tions). The corresponding Lagrangian density for
the gravito-entropic sector takes the form:

LGE = −1
4F (GE)

µν F (GE)µν , (127)

which naturally integrates into the total vacuum
action. In this picture, the cosmological constant
Λ arises as the average contraction:

Λ = ⟨LGE⟩, (128)

interpreted as the modal energy density of the vac-
uum associated with gravito-entropic fluctuations.
Given the earlier identification:

kBαg = Λ · 1m2, (129)

we conclude that the coupling constant kBαg

represents the surface-projected contribution of
this field, consistent with the hypothesis that Λ
measures an elastic surface tension across the
spacetime lattice.

This unifies three perspectives:

• A geometric view of Λ as spacetime curva-
ture,

• A gravito-entropic interpretation via kBαg,

• A field-theoretic formulation based on tensor
contractions.

Hence, the cosmological constant becomes not an
”ad hoc” parameter, but a derived scalar emerging
from the contraction of oscillatory field dynamics
in the vacuum.
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XV. A SCALE-DEPENDENT EFFECTIVE
GRAVITATIONAL CONSTANT

HYPOTHESIS FOR THE HUBBLE
TENSION

A. Basis for Our Hypothesis

We have previously shown (see Section IVG)
that the gravitational constant can be derived
from the self-energy of a uniformly dense sphere,
resulting in:

G = 3
54πε0

On the other hand, consider the electrostatic en-
ergy stored in a charged spherical conductor of ca-
pacitance C and charge Q ([36]), given by:

Ucapacitor = 1
2

Q2

C
(130)

For a sphere of radius r, the capacitance is
Csphere = 4πε0r, so the stored energy becomes:

UGlob = 1
2

e2

4π ε0 r

This expression lacks the geometric self-energy
term present in the self-energy case. If we derive
the capacitance from the stored energy UGlob and
potential V = 1

4πε0
e
r we find:

C = UGlob

V 2 = 2πε0r ⇒ C

r
= 2πε0

This leads to a dual effective gravitational coupling
framework:

• Local Scales: Characterized by significant
inhomogeneity (e.g., galaxies and clusters),
gravitational dynamics are modeled with an
effective coupling

GLoc = 3
54πε0

This value corresponds to the full self-
interaction contribution and is identified
with the standard Newtonian constant GN .

• Global Scales: At cosmological scales,
where the Universe is approximately homo-
geneous and isotropic, gravitational dynam-
ics are governed by a reduced effective cou-
pling

GGlob = 2πε0

Physical Motivation: This hypothesis inter-
prets the non-linearities of gravity—prominent in
clumpy, small-scale environments—as contribut-
ing an additional self-energy component to the ef-
fective gravitational coupling, resulting in GLoc.

On very large scales, where the matter distribu-
tion is smooth, these nonlinear effects average out
or become negligible, yielding an effective coupling
closer to GGlob. This scale dependence of the grav-
itational constant Geff(z) is proposed as the under-
lying physical mechanism unifying the explanation
of the Hubble tension and dark sector phenomena.

B. Self-Interaction Terms as the Source of
Hubble Tension

As a result, our hypothesis posits that gravi-
tational self-interactions manifest significantly at
local scales (e.g., Cepheid-based distance ladders,
Type Ia supernovae) where the inhomogeneous
matter distribution leads to nonlinear gravita-
tional effects. This corresponds to using GLoc,
which includes self-energy.

By contrast, global scale determinations (e.g.,
Planck measurements of the CMB, BAO analyses)
probe the Universe on large, smoothed-out scales.
Here, gravitational self-interactions become negli-
gible, justifying the use of GGlob.

This dichotomy explains the persistent dis-
crepancy in H0 values, known as the Hubble
tension. The plausibility of the hypothesis can be
checked using Friedmann equations [52] [53] [54].
The first Friedmann equation is given by:

(
ȧ

a

)2

= 8πG

3 ρvac − kc2

a2 + Λc2

3 , (131)

This equation relates the rate of expansion (the
Hubble parameter, H = ȧ/a) to the energy density
of the universe. Assuming a nearly flat universe
(k ≈ 0), the Hubble parameter can be calculated
as

H2 = 8π G

3 ρvac + Λc2

3 ,

Substituting with our previous expression for Λ
119, we have that

H2 = 8π G

3 ρvac + Λc2

3 =

8π G

3 ρvac +
8π G ρvac

c2 c2

3 =

2
(

8π G

3 ρvac

)
= 16π G

3 ρvac

Now, two regimes emerge naturally. Using ρvac =
ℏc

2π·1 m4 as we have derived for the electromagnetic
field, we have that:
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1. Global Regime (no self-interactions):

HGlob =
√

16πGGlob

3 ρvac

=
√

16π · 2πε0

3
ℏc

2π · 1 m4

≈ 2.165 × 10−18 s−1 = 66.81 km/s/Mpc
(132)

This matches the CMB-based Planck 2018
measurement: H0 = 67.4 ± 0.5 km/s/Mpc
[55].

2. Local Regime (includes self-
interactions):

HLoc =
√

16πGLoc

3 ρvac

=

√
16π · 3

5 4πε0

3
ℏc

2π · 1 m4

≈ 2.3714 × 10−18 s−1 = 73.17 km/s/Mpc
(133)

This matches the SH0ES result: H0 = 73 ±
1.0 km/s/Mpc [56].

C. Discussion and Observational Tests

Our framework predicts a mild but physically
meaningful scale–dependence of the effective gravi-
tational constant, reflecting the gradual transition
between regimes with and without gravitational
self-interactions. We predict that the Hubble pa-
rameter H(z) evolves between two fixed values due
to a scale-dependent gravitational constant:

lim
z→0

H(z) → HLoc ≈ 73 km/s/Mpc

lim
z→∞

H(z) → HGlob ≈ 67 km/s/Mpc (134)

This transition reflects a shift from nonlinear grav-
itational dynamics to homogeneous large-scale be-
havior. This interpretation leads to several con-
crete, testable consequences:

• Redshift evolution: As self-interaction ef-
fects dominate locally, we expect Geff ≈
GLoc at low redshifts, yielding a higher
inferred Hubble constant H(z ≈ 0) ≈
73 km/s/Mpc. At higher redshifts—probing
smoother, linear regimes—Geff → GGlob,
driving H(z) down toward ∼ 67 km/s/Mpc.
A continuous transition in H(z) would
strongly support our hypothesis.

• Structure formation diagnostics: A dis-
crepancy between local and early-universe
structure growth would corroborate scale-
dependent gravitational dynamics.

D. Final Note: Theoretical Context and
Consistency

Reconciling a scale-dependent G with General
Relativity—which assumes a universal, constant
gravitational coupling—requires careful consider-
ation. The presented model serves as an ef-
fective field theory : standard General Relativ-
ity with Newton’s constant GN describes grav-
ity accurately in the local, nonlinear regime (i.e.,
GLoc ≡ GN ), while on cosmological scales, aver-
aging over large volumes under homogeneity and
isotropy leads to effective dynamics that resem-
ble General Relativity but with a renormalized,
scale-dependent coupling GGlob. In this perspec-
tive, the Friedmann equations remain applicable
because they emerge from the Einstein field equa-
tions under symmetry assumptions, and the modi-
fication resides not in the geometry, but in the cou-
pling between geometry and energy-momentum.

XVI. SCALE-DEPENDENT VACUUM
ENERGY AND IMPLICATIONS FOR THE

DARK SECTOR

As derived in previous sections 123, we obtain
a geometric expression for the cosmological con-
stant:

Λ = 1
4πc6 · 1m2

Using the standard expression that relates the vac-
uum energy density to the cosmological constant:

ρvac = Λc2

8πG

we see that ρvac is inversely proportional to the
gravitational coupling G. Since our framework
posits that G is scale-dependent—shifting be-
tween GLoc and GGlob depending on the cosmic
regime—then, if c is constant, we have that ρvac

is necessarily scale-dependent as well.

A. Implications for Dark Energy

Traditionally, dark energy is interpreted as a
constant vacuum energy density that drives the ac-
celerated expansion of the Universe. In our frame-
work, however, ρvac(z) decreases at low redshifts
as the effective gravitational coupling increases:

G(z) ↑ ⇒ ρvac(z) ↓

This inverse relationship offers a reinterpretation
of cosmic acceleration: it is not that vacuum en-
ergy increases over time, but rather that the weak-
ening of gravitational interactions on cosmologi-
cal scales (due to reduced self-interaction) makes
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the vacuum energy appear larger when interpreted
through a globally averaged G. Hence, the dark
energy component of the ΛCDM model may be an
artifact of applying a scale-invariant coupling in a
scale-dependent Universe.

B. Implications for Dark Matter

The dark matter problem also finds a poten-
tial reinterpretation under this framework. Grav-
itational analyses of galaxies and clusters typ-
ically assume a uniform ρvac based on global
(CMB-scale) fits. However, these local sys-
tems operate under a different gravitational
regime—characterized by GLoc, and hence a
smaller vacuum energy density:

ρloc
vac = Λc2

8πGLoc
< ρglob

vac

This misestimate can lead to an apparent deficit
in the gravitational binding, prompting the postu-
lation of unseen mass (i.e., dark matter). When
the correct local value of ρvac is applied, the grav-
itational field is stronger than previously inferred
from global fits, reducing or possibly eliminating
the need for dark matter in certain contexts.

C. Summary of the Unified Picture

In this unified view, both dark energy and dark
matter effects are linked to the same underlying
principle: the scale-dependence of gravitational
coupling G, and thus the vacuum energy density
ρvac(z). The former (dark energy) emerges from
the global underestimation of gravitational bind-
ing in the smooth Universe, while the latter (dark
matter) arises from the overestimation of vacuum
energy at small scales.

Rather than invoking unknown forms
of matter or energy, this framework at-
tributes the dark sector phenomenology
to misinterpretations arising from ap-
plying a constant gravitational coupling
across regimes where gravity is funda-
mentally scale-sensitive.

The observational consequences of this reinterpre-
tation remain testable through precision cosmol-
ogy, particularly via redshift evolution of H(z),
structure growth, and gravitational lensing sig-
natures—offering a compelling alternative to the
standard ΛCDM paradigm.

XVII. FINAL CONCLUSIONS AND
REMARKS

A. Currents as Velocities and the Geometry
of Transport

A central consequence of our foundational pos-
tulate in Part I—where the ampere is redefined
dimensionally as a velocity—is the geometric
identification of currents as propagation speeds of
underlying deformations in the structure of space-
time. Specifically, by adopting the dimensional
unification [Q] = [L], the ampere [I] = [Q]/[T ]
acquires the natural units of a velocity. This
redefinition is not just a formal choice: it encodes
a shift in physical interpretation, where transport
phenomena are inherently linked to geometric
evolution.

In the unified elastic vacuum model devel-
oped in this work, all classical fields emerge
as excitations or modal projections of a single
symmetric deformation tensor Gµν . In such a
medium, a current—be it electrical, entropic, or
gravitational—is understood as the rate of change
of a geometric displacement field:

I ∼ dQ

dt
∼ dx

dt
∼ v.

Thus, currents are not fundamental quantities
imposed by external conditions, but rather ex-
pressions of intrinsic velocities associated with
space-time deformations.

This interpretation finds support in continuum
mechanics, where velocity fields describe the time
evolution of deformations and mediate the flow
of energy and stress across the medium. In our
model, the elastic vacuum behaves analogously:
energy and information propagate through it not
as point particles, but as collective field modes
whose currents encode velocities of deformation
fronts.

Moreover, this perspective aligns naturally
with our modal projection scheme: in all cases,
the current associated with each interaction is the
physical manifestation of a propagating geomet-
rical distortion. The dimensional identification
of the ampere with velocity thus becomes not a
reinterpretation, but a consequence of the field
ontology itself.

This closing synthesis strengthens the view
that spacetime, when endowed with elastic
structure, gives rise to all known interactions as
geometric excitations—and that currents, in their
many physical guises, are simply the velocities of
such excitations.
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B. Consistency of the Theoretical Framework

The strength of our model lies in the fact that all
relationships are derived from simple, well-known,
and non-advanced physical concepts, such as the
mechanics of harmonic oscillators, RLC circuits,
fundamental laws of physics, and their fundamen-
tal elements —resistance, inductance, capacitance,
and oscillatory behavior, among others-. By di-
rectly plugging the accepted values of universal
constants into these basic formulas, we obtain re-
sults that are not only dimensionally consistent
with but also remarkably close to experimentally
measured values. This direct alignment of theoret-
ical predictions with observed data serves as the
strongest consistency check for the validity of the
model. The fact that such complex phenomena as
zero-point energy, vacuum fluctuations, and space-
time curvature emerge from these simple physical
foundations underscores the robustness and inter-
nal coherence of the framework, further validating
its potential to become a baseline for a unified the-
ory of physics.

C. Dimensional Collapse and Physical
Interpretations

The second foundational postulate of this
model, introduced in Part I, is the dimensional
equivalence between the gravitational constant G
and the Coulomb constant Ke = 1/(4πε0):

[G] ≡ [Ke].

This identification, though purely dimensional at
first glance, has profound physical consequences.
It implies that the fields associated with gravity
and electromagnetism —traditionally considered
fundamentally distinct— do in fact arise from the
same underlying geometric structure, differing
only in their modal projections. In particular, the
forces mediated by mass and charge become two
expressions of the same dimensional entity when
embedded in an elastic, oscillatory spacetime
fabric.

This dimensional equivalence triggers what
we refer to -throughout the Paper- as dimensional
collapse: a systematic reduction of the number
of fundamental dimensions required to describe
physical interactions. Within this framework,
quantities such as mass, charge, temperature,
and energy no longer require distinct dimensional
bases; instead, they are all encoded in the oscilla-
tory dynamics of spacetime. As a result, we arrive
at a unifying dimensional relation:

[M ] ≡ [Q] ≡ [Temp] ≡ [L] ≡ [Time],

which collapses the traditional five-dimensional
base of physical quantities into a single geometric
substrate. This collapse is not a loss of descrip-
tive power, but rather a revelation of redundancy
in classical dimensional taxonomies. It reflects the
idea that physical observables—such as force, field
strength, or current—are emergent from a deeper
layer of geometric deformation modes, governed
by the symmetric tensor Gµν . Thus, this dimen-
sional collapse is not merely a formal convenience:
it reflects a shift in worldview. Rather than seeing
physical laws as relations between distinct types
of quantities, we view them as manifestations of a
single, oscillating, elastic medium whose geometric
structure encodes all fields, constants, and inter-
actions.

D. Mass-Energy as Spacetime Deformation:
A Unified Interpretation

Einstein’s general theory of relativity revolu-
tionized our understanding of the universe by
showing that mass-energy deforms spacetime, and
that this deformation governs the gravitational
interaction. In his framework, the presence
of mass-energy curves spacetime, creating the
phenomena we perceive as gravity. This ground-
breaking insight unified the geometry of spacetime
with the physical properties of mass-energy, laying
the foundation for modern cosmology.

This work builds upon and extends Einstein’s
theory by taking a crucial step further: mass-
energy does not merely deform spacetime; it is
itself a manifestation of deformed spacetime. The
entities we recognize as mass, energy, charge and
temperature are the result of quantized excita-
tions of the spacetime field. These excitations
are super-complex accumulations of distinct
oscillatory modes in the vacuum, which, when
aggregated, give rise to deformations that we
perceive as mass, charge, energy, temperature,
and the pleiad of secondary physical phenomena.

In summary, this model provides a unified
view where mass-energy and spacetime are
inseparable. What Einstein described as the
deformation of spacetime by mass-energy is here
reinterpreted as mass-energy being deformed
spacetime itself—a continuous interplay of prob-
ability, geometry and localized excitations. This
view unites quantum mechanics and general
relativity within a single conceptual framework,
offering a deeper understanding of the universe’s
fundamental nature.
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E. Final Thoughts

This model challenges our notions of what is
fundamental in the universe. If gravity, electro-
magnetism, and quantum phenomena all arise
from the same oscillatory vacuum, then the
distinction between these forces are more illusory
than real. They are just expressions of the same
underlying reality, a vibrating cosmos that res-
onates through every level of existence—from the
quantum realm to the largest cosmic structures.

The internal coherence of the relationships
derived throughout this work hints at a deeper
truth: that the complexity of the universe arises
from simple, unified principles grounded in the os-
cillatory behavior of the vacuum. This realization
suggests that the universe is not a fragmented
collection of forces and constants, but a deeply
interconnected whole, where every phenomenon is
an expression of the same underlying dynamics.

The fact that all physical phenomena—whether
gravitational, electromagnetic, or termody-
namic—are emergent from the same oscillatory
vacuum structure implies that the universe op-
erates on a principle of unity and coherence at
its deepest levels. This aligns with metaphysical
notions of the cosmos as a singular, interconnected
whole, where apparent divisions between forces
and fields are merely artifacts of our limited un-
derstanding, and where every aspect of reality is a
manifestation of the same fundamental processes.

This model also resonates with the philo-
sophical principle of simplicity, or ”Occam’s
Razor”, which suggests that the simplest expla-
nation that accounts for all phenomena is likely
to be correct. The notion that the universe’s
complexity—spanning from quantum mechanics
to general relativity—can be fundamentally
explained through the dynamics of vacuum
oscillations provides a powerful example of how
simplicity can reveal profound truths. It points
to a universe where complexity arises not from
an arbitrary collection of forces and constants
but from a harmonious interplay of fundamental
oscillations that underlie all of reality.

Finally, the implications of this model ex-
tend into questions about the nature of time
and space themselves as emergent properties of a
deeper oscillatory dynamic. This challenges our
everyday intuitions about the linearity of time
and the rigidity of space, hinting at a universe
where the passage of time and the expansion of
space are fluid.

In summary, the metaphysical vision offered
as a byproduct by this model invites us to
reconsider the nature of the universe as a whole.
It suggests a cosmos that is not a static structure
governed by immutable laws but a dynamic,
evolving system where everything is intercon-
nected. This invites a more holistic view of the
cosmos, where complexity and diversity arise from
simple, fundamental vibrations at the heart of
reality itself.
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