Astrophysical Evidence for Cantor Dust: An Introduction

Ervin Goldfain

Global Institute for Research, Education and Scholarship (GIRES), USA

E-mail ervingoldfain@gmail.com

Abstract

The *Cantor Dust* (CD) interpretation of Dark Matter (DM) arises from the nondifferentiable and nonlocal fluctuations of spacetime in the high energy limit of field theory and primordial cosmology. Mirroring the fragmented and ever-changing configuration of multifractal structures, CD offers a novel explanation for the distribution and behavior of Dark Matter and bridges concepts from complex dynamics, fractal geometry, and statistical physics to cosmology. Here we argue that CD offers a *unified Dark Matter model* with predictions confirmed by a wealth of astrophysical observations.

Key words: Dark Matter, Cantor Dust, continuous spacetime dimensions, multifractals and chaos, complex dynamics.

Caution:

This version of the paper represents "work in progress", as it includes minimal content - except few representative diagrams, a summary of Self-interacting Dark Matter (SIDM) models and a partial list of references.

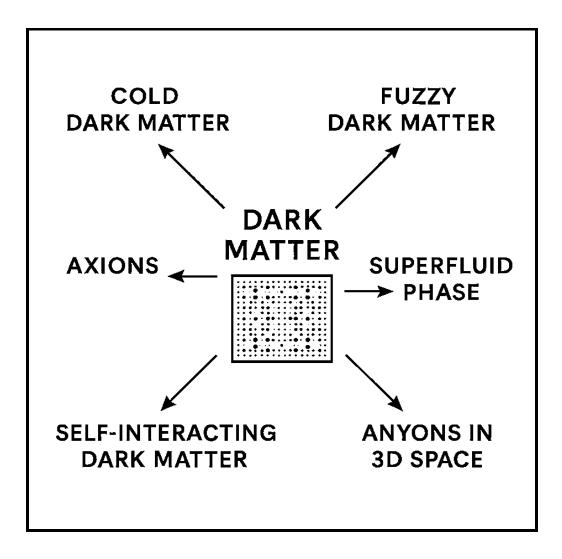


Fig. 1: The multifaceted manifestation of Dark Matter

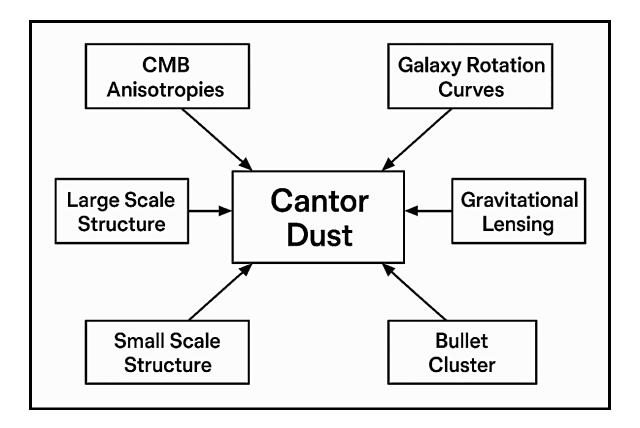


Fig. 2: Cosmological implications of Dark Matter as Cantor Dust

Feature	GPE-Based SIDM (BEC/Fuzzy DM)	Kinetic-Theory SIDM (Classical Particles)
Particle Type	Ultralight bosons (e.g., axions, ~10 ⁻²² eV)	Heavy particles (e.g., WIMPs, GeV–TeV scale)
Quantum Nature	Wave-like, coherent condensate (BEC)	Classical particles
Self-Interaction	Contact interaction (nonlinear term in GPE)	Scattering cross section (σ/m, e.g., 1 cm²/g)
Dynamics Governed By	Schrödinger–Poisson or Gross–Pitaevskii– Poisson equation	Boltzmann equation or fluid equations with collisions

Tab. 1: Conceptual Overview of SIDM Models

GPE = Gross-Pitaevskii equation

BEC = Bose-Einstein condensate

SIDM = Self-interacting Dark Matter

WIMP = Weakly Interacting Dark Particles

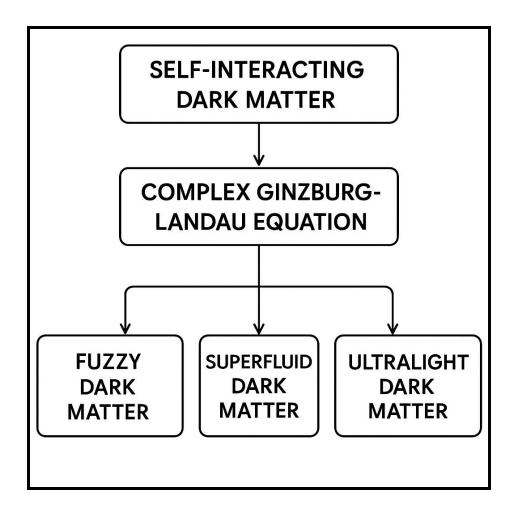


Fig. 3a: First path from SIDM to alternative Dark Matter models

Several SIDM models are based upon the Boltzmann or Boltzmann-Vlasov transport equations. These equations cannot be derived from the Reaction-Diffusion (RD) equation in any strict, general sense. However, RD equations can emerge as simplified macroscopic limits of these kinetic equations, particularly under assumptions like local equilibrium or diffusive approximation. Some nonlinear generalizations or extensions of RD equations may exhibit similar structures to kinetic or Vlasov equations under specific conditions.

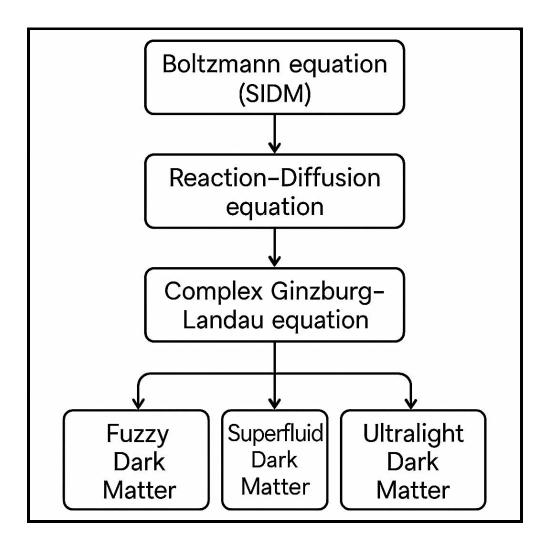


Fig. 3b: Second path from SIDM to alternative Dark Matter models

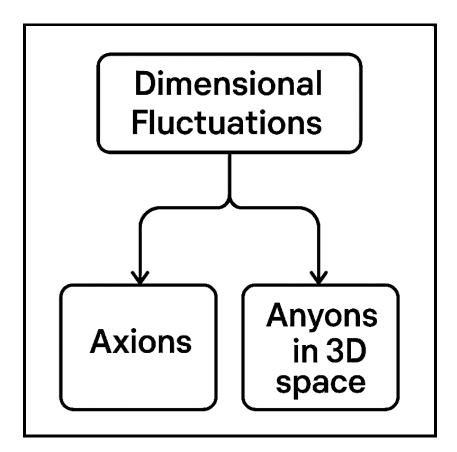


Fig. 4: From Cantor Dust to Axions and 3D Anyons

References

1. Hu, W., Barkana, R., & Gruzinov, A., (2000), Fuzzy Cold Dark Matter: The wave properties of ultralight particles, Phys. Rev. Lett., 85(6), 1158, <u>https://doi.org/10.1103/PhysRevLett.85.1158</u> 2. Guzmán, F. S., & Ureña-López, L. A., (2006), Gravitational cooling of selfgravitating Bose-Condensates., Astrophys. J., 645(2), 814–819., <u>https://arxiv.org/pdf/astro-ph/0603613</u>

3. Pethick, C. J., & Smith, H., (2008), Bose–Einstein Condensation in Dilute Gases (2nd ed.). Cambridge University Press.

4. Chavanis, P.-H., (2011), Mass-radius relation of Newtonian selfgravitating Bose–Einstein condensates with short-range interactions, Phys. Rev. D, 84, <u>043531.https://doi.org/10.1103/PhysRevD.84.043531</u>

5. Schive, H.-Y., Chiueh, T., & Broadhurst, T., (2014), Cosmic structure as the quantum interference of a coherent dark wave. Nature Physics, 10, 496–499, <u>https://doi.org/10.1038/nphys2996</u>

 Schive, H.-Y., *et al.*, (2014). Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Phys. Rev. Lett., 113, 261302, <u>https://doi.org/10.1103/PhysRevLett.113.261302</u> 7. Veltmaat, J., Niemeyer, J. C., & Schwabe, B., (2018), Formation and structure of ultralight bosonic dark matter halos, Phys. Rev. D, 98(4), 043509. https://doi.org/10.1103/PhysRevD.98.043509

8. Arbey, A., Lesgourgues, J., & Salati, P., (2001), Cosmological constraints on Bose–Einstein condensate dark matter. Phys. Rev. D, 64, 123528. <u>https://doi.org/10.1103/PhysRevD.64.123528</u>

9. Mocz, P., Vogelsberger, M., *et al.*, (2017), Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes. MNRAS, 471, 4559–4570, <u>https://doi.org/10.1093/mnras/stx1887</u>

10. Matos, T., Ureña-López, L. A., & Guzmán, F. S., (2000), Scalar field as dark matter in the universe. Class. Quantum Grav., 17(1), 55. <u>https://doi.org/10.1088/0264-9381/17/1/306</u>

11. Goldfain, E., (2023), Cantor Dust and the Gravitational Wave Background, preprint <u>http://dx.doi.org/10.13140/RG.2.2.19323.49447</u>

12. Goldfain, E., (2022), From Cantor Dust to Fuzzy Dark Matter, preprint http://dx.doi.org/10.13140/RG.2.2.27469.61920

13. Goldfain E., (2019), Cantor Dust as Underlying Texture of Fuzzy Dark

Matter, preprint <u>http://dx.doi.org/10.13140/RG.2.2.24775.65442</u>