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Abstract

We develop the commutative algebra NL = R ⊕ їR, where the formal
division 1/0 is legal. Separating the true additive zero ϑ = (0, 0) from
the special element 0 and preserving the single identity 0ї = 1 allows the
structure to satisfy all field axioms (with zero divisors). We extend limits,
differentiation, integration, derive explicit Taylor expansion.
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1 Introduction

1.1 Relevance:
1.1.1 The problem of division by zero: history, relevance and solu-

tions.

Division by zero has been a fundamental challenge in mathematics from an-
cient times to the present day. While it is an undefined operation in classical
arithmetic, its theoretical exploration has profoundly influenced the develop-
ment of mathematics and physics. Modern research reveals that this problem
extends beyond pure mathematics, with significant applications in fields such
as relativity theory and quantum mechanics.

1.1.2 History of the problem

Historically, mathematics faced two major unsolved problems: extracting the
square root of negative numbers and division by zero. The first was addressed
in the 18th century through the works of Leonhard Euler, Augustin Cauchy,
and Carl Gauss, who introduced the concept of the imaginary unit. This led
to the creation of the complex plane of numbers, which today is indispensable
for describing physical phenomena such as electromagnetic oscillations. In con-
trast, the problem of division by zero remains unresolved. Even in antiquity,
mathematicians recognized the paradoxical consequences of dividing by zero. It
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was not until the 17th century that Isaac Newton and Wilhelm Leibniz, through
their foundational work in mathematical analysis, introduced the concept of a
limit to address the behavior of functions near points of indeterminacy. While
this marked a significant advance, it did not resolve the problem: division by
zero remains undefined in classical mathematics.

1.1.3 Application in physics and modern sciences

Division by zero frequently arises in physics. For example, in Einstein’s the-
ory of relativity, the equations imply division by zero when an object reaches
the speed of light, reflecting the physical impossibility of such a scenario. Sim-
ilarly, in quantum mechanics, division by zero appears in the mathematical
description of Coulomb potentials and particle interactions at infinitesimally
small distances. To address these challenges, scientists employ regularization
and renormalization techniques, which mitigate infinities and yield meaningful
results.

1.1.4 Results and Prospects

The division by zero problem is more than a mathematical abstraction; it un-
derpins numerous physical and mathematical processes and continues to drive
scientific innovation. Although no comprehensive solution exists, the analytical
tools developed to address this issue have significantly advanced both math-
ematics and physics. Building on this legacy, the present study introduces a
novel approach: the inclusion of division by zero within a hypothetical numeri-
cal framework, analogous to the historical development of imaginary numbers.

1.2 Problems
1.2.1 Contradiction of the Properties of Zero

In mathematics, zero serves as the neutral element for addition and the zero
element for multiplication. According to the fundamental properties of multi-
plication, the product of any number and zero is always zero:

a · 0 = 0

If division by zero were defined, and the result were a number other than
zero, this would violate this basic property. For example, if we assume:

b = 0 · a,

then multiplying b by zero yields:

b · 0 ̸= 0,

which contradicts the definition of zero as the zero element for multiplication.
This highlights the inconsistency that arises when attempting to define division
by zero within the standard rules of arithmetic.
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1.2.2 The Problem of Infinity

To examine the behavior of functions involving division by zero, let us consider
the function f(x) = 1

x . When x→ 0+ (approaching zero from the positive side),
the value of the function tends to +∞:

lim
x→0+

1

x
= +∞ (1)

Similarly, when x→ 0− (approaching zero from the negative side), the value
of the function tends to −∞:

lim
x→0−

1

x
= −∞ (2)

This shows that the limit of f(x) = 1
x at x = 0 does not exist. If there were

a number representing division by zero, it would need to simultaneously equal
+∞ and −∞, which is logically inconsistent.

Alternative mathematical frameworks, such as wheel theory, extend num-
ber systems to include division by zero. In such systems, division by zero is
defined without contradiction, but these approaches are not part of classical
mathematics and have limited applicability.

1.2.3 Concluding Remarks on Problems

The contradictions outlined above highlight the challenges of extending classical
mathematical definitions to include operations such as division by zero. While
alternative theories provide interesting approaches, their adoption often comes
at the cost of losing certain foundational properties and assumptions that un-
derpin classical arithmetic. Further exploration into these theories may yield
insights into specific mathematical or physical contexts where they could be
applied effectively.

2 Subject of the study:
The goal of this study is to propose a hypothetical extension of the numerical
system that defines the result of division by zero. In this framework, a new
number, denoted as ї, is introduced with specific properties.

2.1 Main statements:
2.1.1 Definition:

Let ї = 1
0 . This new number is introduced hypothetically as the result of

dividing one by zero. Then the numbers associated with this number will be
called nonliquent numbers.
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2.1.2 Construction property 0 · ї:

0 · ї = 1

This property is introduced as an axiom to prevent contradictions with the
definition of ї. This statement follows directly from the definition of ї as 1

0 . In
this case, a 0

0 paradox is formed, but only for the case of 0 · 1
0 this is equal to

1. We take only two statements on faith. 1
0 is a permissible action and 0 · ї is

equal to 1.

2.1.3 Reverse number for ї:

The entered number ї has the following property:
1
ї = 0

This statement follows directly from the definition of ї as 1
0 .

2.1.4 Powers of the number ї:

For any natural n:

їn = ї,∀n ∈ N

This statement can be justified mathematically:

їn =
1

0
· 1
0
... =

1 · 1 · ...
0 · 0 · ...

=
1

0
= ї

Raising to the zero power is not different from the standard number. ϑ is another
spelling of zero, which has the form a-a, including 0-0.

ϑ = (
1

ї
− ї

0

ї
) ⇐⇒ (a− a)

їϑ = 1 ⇐⇒ їϑ = ї1−1 = ї · 1
ї
= 1

Nonliquent Numbers and Their Properties
If we perform operations with nonliquent numbers, we naturally arrive at the
general form of a nonliquent number:

z = x+ їy,

where (x, y) ∈ R. In this notation, x is called the real part of the nonliquent
number z and is denoted by x = Re z, while y is the nonliquent part, denoted
by y = Nl z.

If x = 0, the nonliquent number z is called purely nonliquent, and if y = 0,
z is called real. Zero is the only nonliquent number where both the real and
nonliquent parts are zero. The equality of two nonliquent numbers implies the
simultaneous equality of their real and nonliquent parts.
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The arithmetic operations of addition and multiplication remain within the
set of nonliquent numbers, assuming the same arithmetic laws as real numbers
are satisfied. For these rules, the following holds:

(a+ bї) + (c+ dї) = (a+ c) + ї(b+ d),

(a+ bї) · (c+ dї) = a · c+ ї(a · d+ b · c+ b · d)

Division of Nonliquent Numbers

Division is also defined for nonliquent numbers, although it differs from that in
complex analysis. Let a+ bї ̸= 0. Then:

a+ bї
c+ dї

= x+ їy

Multiplying through by the denominator and expanding the terms:

a+ bї = c · x+ ї(c · y + d · x+ d · y)

Using the method of undetermined coefficients, we find:

x =
a

c
,

y =
b− da

c

c+ d

In cases where b+cї = 0, the numerator becomes a purely nonliquent number.
In this structure it is impossible to divide into tree elements ϑ and into an
element 1− ї/ї − 1. Because of the general problem of not being able to divide
by true zero.

2.1.5 Conjugate of a nonliquent number

The conjugate of a nonliquent number exhibits a markedly different form than
its analogue in complex analysis:

a+ bї = a+ b− b ї,

where a and b are real coefficients in the decomposition a+ b ї. This definition
ensures that the product of a nonliquent number with its conjugate is real.

Let
z = a+ b ї, z = a+ b− b ї,
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with a, b ∈ R and the idempotent property ї2 = ї. We verify:

z z = (a+ b ї)(a+ b− b ї)

= a(a+ b− b ї) + b ї(a+ b− b ї)

= a2 + ab− ab ї + ab ї + b2 ї − b2 ї2

= a2 + ab+ b2
(
ї − ї2

)
= a2 + ab+ b2

(
ї − ї

)
= a2 + ab ∈ R.

Hence, zz = a2 + ab, which is a real number.

Roots of Nonliquent Numbers

It is possible to extract roots of nonliquent numbers. The principle is similar to
that for complex numbers:

√
a+ їb = x+ їy

Squaring both sides and expanding:

a+ їb = x2 + ї(2xy + y2)

From this, we derive the real and nonliquent parts:

x = ±
√
a,

y2 + 2xy − b = 0,

y = ∓
√
a±

√
a+ b

The coefficients b and x are related and have opposite signs. Thus, the root
is more accurately expressed as:

√
a+ їb = ±

√
a(1− ї)± ї

√
a+ b

Note that this yields four roots.
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Binomial Expansion for Nonliquent Numbers

Newton’s binomial theorem for nonliquent numbers is expressed as:

(a+ bї)n = an(1− ї) + ї(a+ b)n

Proof:

(a+ bї)n =

n∑
k=0

(
n

k

)
an−k(bї)k

= an + an−1bї + an−2b2ї + . . .

To form a complete binomial with ї, we add and subtract an:

an − їan + ї(a+ b)n

Factoring out an, we derive the formula above.

2.1.6 Neutral elements and the two zeros

Following the usual field axioms, exactly one element must act as the additive
neutral. We denote this true zero by

ϑ := (0, 0) ∈ NL, ϑ+ x = x, ϑ · x = ϑ for all x ∈ NL.

The special element Besides ϑ we keep a second distinguished element

0 := 0 ̸= ϑ,

while all other products and sums that involve 0 are evaluated by the usual
component rules (u, v) · (u′, v′) = (uu′, uv′ + u′v + vv′).

Uniqueness of the additive zero. Since ϑ+ x = x for every x ∈ NL and 0
fails to satisfy this identity (0 + x ̸= x whenever x ̸= ϑ), the field axiom “there
is exactly one additive neutral” is preserved. Hence

the only additive zero is ϑ, while 0 is a regular (non-neutral) element.

Remark. The conventional real numbers embed via ι : t 7→ (t, 0). Under this
embedding the two distinguished elements become ι(0) = ϑ and an 0, so they
are indistinguishable inside R. Only in the extended algebra NL the two roles
separate.
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2.1.7 Distributivity.

For all a, b, c ∈ NL one has (a+ b) c = a c+ b c.
Proof:
a = (u, v), b = (u′, v′), c = (u′′, v′′). Using the product rule we expand:

(a+b)c = (u+u′, v+v′)·(u′′, v′′) =
(
(u+u′)u′′, (u+u′)v′′+u′′(v+v′)+(v+v′)v′′

)
.

Grouping terms gives:
(uu′′, uv′′ + u′′v + vv′′) + (u′u′′, u′v′′ + u′′v′ + v′v′′) = a c+ b c.

To summarize
The set of nonliquent numbers constitutes a field as it satisfies all nine axioms
of a field. Specifically:

• It is commutative under both addition and multiplication.

• It is associative under both addition and multiplication.

• It contains an additive identity and additive inverses for all elements.

• It contains a multiplicative identity and multiplicative inverses for all non-
zero elements, except ϑ and 1− ї/ї − 1.

• It satisfies distributivity of multiplication over addition.

The pseudo-field has the following special elements:

• Multiplicative identity (one): 1 = 2− 0ї

• Additive identity (zero): ϑ = 1
ї −

0
ї · ї

By definition, this set satisfies the properties of a pseudo-field construct,
including the presence of a zero and a one.

2.2 Theories of Functions of Nonliquent Variables
2.2.1 Before Analysis

Before proceeding to the analysis, we establish the following rules:∫
ϑ = ϑ, a−a = ϑ, a′ = ϑ, ї−ї = ϑ, f(x)−f(x) = ϑ, sin(ϑ) = ϑ, cos(ϑ) = 1

These conclusions are derived from practical calculations. Adherence to these
rules is necessary to ensure correct results.
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Figure 1: Nonliquent space

2.2.2 Limits and Differentiability

Limits: Let f(z) be a function defined in a neighborhood of a point a. We
say that f(z) has a limit A as z → a, and write:

lim
z→a

f(z) = A,

if for every ε > 0, there exists a δ > 0 such that:

|f(z)−A| < ε for all z satisfying 0 < |z − a| < δ

Continuity: A function f(z) is continuous at a point a if:

lim
z→a

f(z) = f(a)

A function is called continuous if it is continuous at every point in its do-
main. From the properties of limits: - The sum, product, and composition of
continuous functions are continuous. - The quotient f(z)

g(z) is continuous in a
neighborhood of a if g(z) ̸= 0 in that neighborhood.

Differentiability: The derivative of a function f(z) at a point a is defined as:

f ′(a) = lim
z→a

f(z)− f(a)

z − a
,

provided the limit exists. This definition is analogous to that of the derivative
in real analysis but extends to nonliquent variables.

9



For a function f(z) = u(x, y)+ їv(x, y), where z = x+ їy, we compute partial
derivatives to establish differentiability:

f ′(z) = lim
∆x→ϑ,∆y=ϑ

u(x0 +∆x, y0)− u(x0, y0) + ї
(
v(x0 +∆x, y0)− v(x0, y0)

)
∆x

Alternatively, by varying y:

f ′(z) = lim
∆y→ϑ,∆x=ϑ

u(x0, y0 +∆y)− u(x0, y0) + ї
(
v(x0, y0 +∆y)− v(x0, y0)

)
ї∆y

The derivative becomes:

f ′(z) =
∂u

∂x
+ ї

∂v

∂x
,

or equivalently:

f ′(z) =
1

ї
· ∂u
∂y

+
∂v

∂y

Differentiability of Complex-Nonliquent Functions: It is also possible
to derive the conditions for differentiating a complex-nonliquent function. Let
f(z) be represented as:

f(z) = iu(x, y) + їv(x, y),

where z = ix+ їy, and u(x, y) and v(x, y) are real-valued functions.
The derivative of f(z) can be computed by considering limits as follows:

f ′(z) = lim
∆x→ϑ,∆y=ϑ

i
(
u(x0 +∆x, y0)− u(x0, y0)

)
+ ї

(
v(x0 +∆x, y0)− v(x0, y0)

)
i∆x

Similarly, when varying y, the derivative is:

f ′(z) = lim
∆y→ϑ,∆x=ϑ

i
(
u(x0, y0 +∆y)− u(x0, y0)

)
+ ї

(
v(x0, y0 +∆y)− v(x0, y0)

)
ї∆y

In both cases, we observe that the conditions for differentiability are pre-
served. This ensures consistency in the treatment of complex-nonliquent func-
tions, confirming that the derivative is well-defined under the established rules.

Conditions for Differentiability: For f(z) = u(x, y) + їv(x, y)/iu(x, y) +
їv(x, y) to be differentiable at z = x+ їy/ix+ їy, it must satisfy the following:

∂u

∂x
=
∂v

∂y
,

and:
v(x, y) = v(y)
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2.2.3 Taylor Series and Expansion of Basic Functions

In nonliquent analysis, Taylor series expansions differ from complex analysis due
to the properties of ї. Expansions are performed around (0− 0).

Exponential Function: For eїx, we begin with the standard Taylor series for
ex:

ex =

∞∑
n=ϑ

xn

n!

Substituting їx:

eїx =

∞∑
n=ϑ

(їx)n

n!
= 1 + їx+

(їx)2

2!
+ . . .

Simplifying:
eїx = 1 + ї(ex − 1)

Sine and Cosine Functions: For sin(їx):

sin(x) =

∞∑
n=ϑ

(−1)n
x2n+1

(2n+ 1)!
,

sin(їx) = їx− ї
x3

3!
+ ї

x5

5!
= ї sin(x)

For cos(їx):

cos(x) =

∞∑
n=ϑ

(−1)n
x2n

(2n)!
,

cos(їx) = 1 + ї(cos(x)− 1)

Logarithmic Function: For ln(1 + xї):

ln(1 + xї) = xї − x2ї
2

+
x3ї
3

− · · · = ї ln(1 + x)

Other Functions: Additional expansions:

sinh(їx) = ї sinh(x), cosh(їx) = 1 + ї(cosh(x)− 1),

tan(їx) = ї tan(x), cot(їx) =
1

їx
+ ї(cot(x)− 1

x
)
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Figure 2: sin (f(z)) The visualization was made using the free website Desmos

Parametrization Definition

Let γ be a smooth curve in the nonliquent plane, defined parametrically as:

z(t) = x(t) + їy(t), t ∈ [a, b],

where x(t) and y(t) are smooth real-valued functions of t. The curve γ represents
the trajectory of a point in the nonliquent plane, with x(t) as the real part and
y(t) as the nonliquent part.

For clarity, consider the parameterization of a specific function, such as
sin(f(z)). A visual representation of this function’s graph is shown below:

Derivation of the Parameterization We start with the definition:

sin(f(z)) = sin(x+ їy),

and apply the formula for the sine of a sum:

sin(x+ їy) = sinx cos(їy) + cosx sin(їy).

Using the previously derived series expansions for cos(їy) and sin(їy):

cos(їy) = 1 + ї(cos y − 1), sin(їy) = ї sin y,

we substitute these into the equation:

sin(x+ їy) = sinx
(
1 + ї(cos y − 1)

)
+ cosx(ї sin y).

Simplify the expression:

sin(x+ їy) = sinx+ ї sinx cos y − ї sinx+ ї cosx sin y.

Group terms involving ї:

sin(x+ їy) = sinx+ ї(sinx cos y − sinx+ cosx sin y).

Recognizing a trigonometric relationship, rewrite:

sin(x+ їy) = sinx+ ї(sinx+ sin(x+ y)).
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Parametrization Setup Let t represent the parameter. The real and nonliquent
components of the function are parameterized as:

u(t) = sin t,

v(t) = sin t+ sin(t+ f(t)),

where f(t) is a linear or other user-defined function.
By setting f(t) to be a family of linear functions, the resulting graph cor-

responds to the visualization in Figure 2. This approach demonstrates how
parameterization simplifies the representation and analysis of nonliquent func-
tions in practical applications.

2.2.4 Integral Over a Closed Contour

Let us evaluate the integral of a smooth function over a closed contour:
Let f be a continuous function in the domain D. Then the following state-

ments hold:

• If f(z) dz is an exact differential in the domain D, then for any closed
piecewise-smooth curve γ ⊂ D, the following equality is satisfied:∮

γ

f(z) dz =

∮
γ

u dx

Proof: Let us expand and group the components of f(z) to utilize Green’s
theorem:∮

γ

f(z) dz =

∮
γ

(u+ їv) d(x+ їy) =
∮
γ

u dx+ ї
∮
γ

v dx+ ї
∮
γ

u dy + ї
∮
γ

v dy

Applying Green’s theorem to the second and third terms, we obtain:∮
γ

u dx+ ї
∫∫

Ω

(
∂u

∂x
− ∂v

∂y

)
dxdy + ї

∫∫
Ω

∂v

∂x
dxdy

Now, recalling the conditions for differentiability:
∂u

∂x
=
∂v

∂y
, v(x, y) = v(y),

we see that both the second and third terms vanish because:
∂u

∂x
− ∂v

∂y
= ϑ,

∂v

∂x
= 0 (as v depends only on y)

Thus, the expression simplifies to:∮
γ

u dx+ ї
∫∫

Ω

ϑ dxdy + ї
∫∫

Ω

ϑ dxdy

Since the additional terms are zero, we are left with:∮
γ

f(z) dz =

∮
γ

u dx
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Extension: Now consider a function of the form f(z) = iu + їv with dz =
d(ix+ їy). The integral over the closed contour becomes:∮
γ

f(z) dz =

∮
γ

(iu+ їv) d(ix+ їy) = −
∮
γ

u dx+ iї
∮
γ

v dx+ iї
∮
γ

u dy+ iї
∮
γ

v dy

Grouping the terms and applying Green’s theorem, we obtain:

−
∮
γ

u dx+ iї
∫∫

Ω

(
∂u

∂x
− ∂v

∂y

)
dxdy + iї

∫∫
Ω

∂v

∂x
dxdy

Using the same conditions for differentiability:

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= 0,

we find that the additional terms vanish, leaving:∮
γ

f(z) dz = −
∮
γ

u dx

This result demonstrates that for a complex-nonliquent function, the integral
over a closed contour differs only by a sign in this case.

2.3 Orthonormal Systems in the NL–Hilbert Space
2.3.1 Inner Product and Nonliquent Norm

Let
f(x) = uf (x) + ї vf (x), g(x) = ug(x) + ї vg(x),

where uf , ug, vf , vg : [−π, π] → R are real–valued and square–integrable. Define

⟨f, g⟩NL =
1

π

∫ π

−π

uf (x)ug(x) dx.
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The nonliquent norm of f is

∥f∥NL =
√

⟨f, f⟩NL .

The mapping ∥ · ∥NL satisfies:

1. ∥f∥NL ≥ 0, and ∥f∥NL = 0 if and only if f ≡ 0.

2. Homogeneity: for any real scalar α, ∥α f∥NL = |α| ∥f∥NL.

3. Triangle inequality: ∥f + g∥NL ≤ ∥f∥NL + ∥g∥NL.

2.3.2 The NL–Hilbert Space

The set
HNL =

{
f(x) = u(x) + ї v(x)

∣∣ ∥f∥NL <∞
}

with the operations ⟨·, ·⟩NL and ∥ · ∥NL is called the NL–Hilbert space. It is
complete with respect to the metric induced by ∥ · ∥NL.

2.3.3 Orthogonality and Orthonormality

Functions f, g ∈ HNL are orthogonal if

⟨f, g⟩NL = 0.

A family {φn}∞n=1 ⊂ HNL is orthonormal if

⟨φm, φn⟩NL = δmn, m, n ∈ N,

where δmn is the Kronecker delta.

2.4 Proof of Orthogonality for ψm and ψn

We employ the NL–inner product in its conjugate form:

⟨ψm, ψn⟩NL =
1

π

∫ π

−π

ψm(x)ψn(x) dx,

with the NL–conjugation rule

a+ b ї = a+ b− b ї.

Hence
ψn(x) = sin(nx) + e−n|x| − ї e−n|x|.

Multiply:

ψm(x)ψn(x) =
(
sin(mx) + їe−m|x|)(sin(nx) + e−n|x| − їe−n|x|).
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Expanding yields

sin(mx) sin(nx) + sin(mx) e−n|x| − ї sin(mx) e−n|x|

+ ї e−m|x| sin(nx) + (ї − ї2)e−(m+n)|x|.

Since ї2 = ї, the last term vanishes exactly. Each mixed term of the form
e−k|x| sin(ℓx) is an odd function on [−π, π] and integrates to zero. Thus only
the product sin(mx) sin(nx) remains, which for m ̸= n integrates to zero by
standard sine orthogonality:∫ π

−π

sin(mx) sin(nx) dx = 0.

Therefore
⟨ψm, ψn⟩NL = 0 (m ̸= n).

2.5 Differential equation
2.5.1 Universal substitution for obtaining a nonliquent root

To obtain a nonliquent root, let us suppose that the function y depends on two
functions u(x) and v(x):

y′ + by = p(x)

y = u+ vї

Then we get one function that is purely real, and the other purely nonliquent:

u′ + v′ї + bu+ bvї = p(x)

From this, we extract two equations using the method of undetermined coeffi-
cients: {

u′ + bu = p(x)

v′ + bv = ϑ

From this, we obtain two equalities, the first one corresponds to the original
equation. And the second guarantees that the nonliquent part will be zeroed.

2.6 Application to Fluid Dynamics and the Divergence
Equation

Having developed the foundational algebraic structure for nonliquent numbers,
the next objective was to explore a possible physical application. A natural can-
didate for such an application is the Navier–Stokes equation, which governs the
motion of viscous fluids. If we can successfully reinterpret this equation within
the framework of nonliquent differentiation, it would imply that nonliquent func-
tions are capable of describing fluid flows.

To simplify the problem, we begin by considering a static flow field with no
external forces. This assumption eliminates time dependence and body forces,
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thereby reducing the number of variables and focusing our attention on the
structural properties of the flow.

We begin with the continuity equation, which expresses the conservation of
mass. We assume that the velocity field V can be decomposed into real and
nonliquent components, and we impose the condition of incompressibility, which
requires that the divergence of the velocity field be zero. As a starting point,
we consider the continuity equation from fluid dynamics, which expresses the
conservation of mass:

∇ · (ρV) = ϑ.

We assume a two-dimensional velocity field V = (u, v), and that the density
ρ = ρ(y) is a function only of the vertical coordinate. This assumption is
necessary, as more general forms do not yield a solvable structure under the
constraints of nonliquent differentiation.

We now impose the nonliquent conditions of differentiability, namely: - If
f = u+ їv, then differentiability is defined under the conditions:

∂u

∂x
=
∂v

∂y
, v = v(y).

These conditions are necessary to ensure compatibility with the nonliquent
derivative structure.

Applying the divergence operator in Cartesian coordinates, we expand the
continuity equation as:

∂(ρu)

∂x
+
∂(ρv)

∂y
= ϑ.

Since ρ = ρ(y), the partial derivative with respect to x vanishes:

ρ
∂u

∂x
+
dρ

dy
· v + ρ

∂v

∂y
= ϑ.

Using the nonliquent conditions:

∂u

∂x
= f ′(y),

∂v

∂y
= f ′(y), v = f(y),

we substitute into the equation:

ρf ′(y) +
dρ

dy
· f(y) + ρf ′(y) = ϑ.

This simplifies to:

2ρf ′(y) +
dρ

dy
· f(y) = ϑ.

Solving for dρ
dy , we obtain:

dρ

dy
= −2ρ

f ′(y)

f(y)
,
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which leads to the general solution:

ρ(y) =
1

f2(y)
+ C,

where C ∈ R is an integration constant.
This result shows how the fluid density ρ(y) is directly determined by the

structure of the nonliquent velocity component f(y) under the imposed differ-
ential constraints.

2.6.1 Derivation from the Navier–Stokes Equation in Two Dimen-
sions

We now consider the Navier–Stokes equations for incompressible, viscous, and
stationary flow in two dimensions. The general form of the Navier–Stokes equa-
tions for incompressible, Newtonian fluid flow in Cartesian coordinates is given
by:

∂V

∂t
+ (V · ∇)V = −1

ρ
∇p+ ν∇2V,

where:

• V = (Vx, Vy) is the velocity field,

• p is the pressure,

• ρ is the fluid density,

• ν is the kinematic viscosity,

• ∇ =
(

∂
∂x ,

∂
∂y

)
,

• ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian.

Substituting the real and nonliquent V into the equation, we obtain the following
system: 

∂Vx

∂x · Vx + ∂Vx

∂y · Vy = ∂p
∂x

(
− 1

ρ

)
+ ν

(
∂2Vx

∂x2 + ∂2Vx

∂y2

)
,

∂Vy

∂x · Vx +
∂Vy

∂y · Vy = − 1
ρ
∂p
∂y + ν

(
∂2Vy

∂x2 +
∂2Vy

∂y2

)
.

We now introduce the nonliquent differentiability conditions, where the ve-
locity field is expressed through a single scalar nonliquent function f(y). We
define:

Vx = xf ′(y), Vy = f(y).
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2.6.2 Combining the Two Equations under a Single Differential

Starting from the reduced two equations obtained after substituting Vx =
x f ′(y), Vy = f(y) into the stationary Navier–Stokes system, we have:

E1(y) : (f ′(y))2 + f(y) f ′′(y)− ν f (3)(y) = − 1

ρ x

∂p

∂x
,

E2(y) : f(y) f ′(y)− ν f ′′(y) = −1

ρ

∂p

∂y
.

Multiply by rho and substitute:

E1(y) : x
(f ′(y))2 + f(y) f ′′(y)− ν f (3)(y)

f2
= −∂p

∂x
,

E2(y) :
(f(y) f ′(y)− ν f ′′(y))

f2
= −∂p

∂y
.

Since ∂xp depends only on x, multiplying by x and differentiating with respect
to y must give zero:

E2(y) :
∂

∂x

[
f f ′ − ν f ′′

f2

]
= − ∂p

∂y∂x
. = ϑ

x
d

dy

[
−

(
(f ′)2 + f f ′′ − ν f (3)

)
f2

]
= ϑ.

Hence, the unified differential equation is:

f ′(ff ′′ − (f ′)2 + 2νf ′′′) + f(ff ′′′ − νf ′′′′) = ϑ.

2.7 Analytical Intractability and Particular Solutions
The nonlinear differential equation

f ′(ff ′′ − (f ′)2 + 2νf ′′′) + f(ff ′′′ − νf ′′′′) = ϑ

arises as a one-dimensional reduction of the two-dimensional Navier–Stokes sys-
tem under nonliquent differentiability conditions. Due to its nonlinearity and
the presence of higher-order derivatives, this equation does not admit a general
closed-form solution using classical analytical techniques.

However, by employing symbolic computation and systematic trial methods,
two particular solutions were identified:

Solution 1: Inviscid case (ν = ϑ) When the viscosity parameter is set to
zero, the equation simplifies to:

f ′(ff ′′ − (f ′)2) + fff ′′′ = ϑ.
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Figure 3: Field that follows the rules of derivative The visualization was made
using the free website Desmos

Figure 4: Field that follows the rules of derivative The visualization was made
using the free website Desmos

In this case, the following function satisfies the equation:

f(x) = Cx2±
√
2,

where C ∈ R is an arbitrary constant. This solution corresponds to a quadratic
flow profile with a constant shift, representing a simple parabolic structure.

Solution 2: Viscous case with ν ̸= 0

For a particular nonzero value of viscosity, the equation admits another exact
solution of rational form:

f(x) = − 12ν

7(x− C)
,

where C ∈ R is an integration constant. This function features a singularity at
x = 0, indicating a concentrated flow behavior akin to a point source or sink.

These solutions demonstrate that, while the general solution remains inacces-
sible analytically, specific structured profiles consistent with physical intuition
can be extracted from the equation under simplifying assumptions. These re-
sults also validate the internal consistency of the nonliquent framework when
applied to classical models of fluid dynamics.
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Conclusions and Final Remarks

Key Achievements:
1. Introduction of Nonliquent Numbers: - A new number, ї, is defined
as ї = 1

0 , with associated properties such as їn = ї,∀n ∈ N. - The construct
0 · ї = 1 was introduced axiomatically, resolving contradictions in the arithmetic
involving ї.

2. Field Properties: - The set of nonliquent numbers forms a field satis-
fying all nine axioms, including commutativity, associativity, distributivity, and
the existence of additive and multiplicative inverses. - Special elements like the
multiplicative identity 1 = 2− 0 · ї and additive identity ϑ = 0− 0 were defined.

3. Extension of Calculus: - Theories of limits, continuity, and differen-
tiability were extended to nonliquent variables, preserving core mathematical
principles. - Differentiability conditions, such as ∂u

∂x = ∂v
∂y and v(x, y) = v(y),

were established for functions f(z) = u(x, y) + їv(x, y).
4. Taylor Series Expansions: - Taylor series expansions for functions such

as eїx, sin(їx), and ln(1 + xї) demonstrated consistency with the new system,
highlighting the interplay between real and nonliquent parts.

5. Integration in Nonliquent Analysis: - Integration over closed con-
tours was analyzed, showing that

∮
γ
f(z) dz =

∮
γ
u dx for exact differentials. -

For complex-nonliquent functions, the integral differs by a sign:
∮
γ
f(z) dz =

−
∮
γ
u dx.

6. Zero Field: - A unique "zero field" was identified, arising from rein-
terpretations of zero as an ordinary number with additive and multiplicative
inverses. - This field has unique properties, such as its existence at an infinite
distance from 1 and its closure to interactions involving zero or ї.

7. Solutions to Differential Equations in the Nonliquent Frame-
work: - Nonliquent differentiability was successfully embedded into the conti-
nuity equation. - A modified form of the Navier–Stokes equation was derived:

f ′(ff ′′ − (f ′)2 + 2νf ′′′) + f(ff ′′′ − νf ′′′′) = 0,

representing a two-dimensional fluid flow under nonliquent differentiation. -
Two exact solutions were discovered:

• For ν = 0: f(x) = Cx2±
√
2,

• For ν ̸= 0: f(x) = − 12ν
7x+C ,

demonstrating the solvability of certain nonlinear fluid models in the nonliquent
domain.

Implications and Future Work:
1. Mathematical Implications: - The framework offers a novel perspective
on division by zero, potentially resolving paradoxes in specific contexts. - It
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introduces a rigorous extension of calculus and algebra to include nonliquent
variables.

2. Applications in Physics and Engineering: - The field of nonliquent
numbers may have applications in areas requiring new models for singularities,
undefined operations, or extended numerical systems.

3. Future Research Directions: - Investigating applications of nonliquent
numbers in differential equations, dynamical systems, and quantum mechanics.
- Exploring connections between nonliquent numbers and complex or hypercom-
plex systems. - Developing computational methods and visualization tools for
nonliquent variables.

Final Remarks:
The study lays a foundational framework for the theory of nonliquent numbers,
demonstrating its consistency and mathematical elegance. While primarily the-
oretical, the potential applications in advanced mathematical and physical mod-
els merit further exploration. The introduction of ї represents a bold step in
extending our understanding of numerical systems and the nature of mathemat-
ical abstraction.
Currently, work is underway to achieve full synchronization between the com-
plex plane, the nonliquent plane, and the real plane. This effort aims to unify
these mathematical constructs into a cohesive framework, allowing for seamless
transitions and interactions between them. As a result, the full potential of
three-dimensional parameterization and three-dimensional integration remains
an area of active exploration. These advancements promise to extend the ap-
plicability of the theoretical framework, opening new pathways for analysis and
computation in multidimensional spaces.
The nonliquent system offers direct advantages over the wheel system because,
in it, nullity and infinity function more as states rather than as numbers. They
are neither countable nor operable, and thus are not subject to any mathemati-
cal operations. Conversely, the wheel system destroys the axiomatic foundations
of a field, unlike the nonliquent system. At the same time, the nonliquent sys-
tem retains a fundamental drawback: division by 0–0 is still not feasible. I am
actively working on resolving this issue.
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