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Abstract — This paper demonstrates that gravitational potential energy (E = –GmM / d) accounts for the 
phenomenon commonly attributed to dark matter, by applying the mass-energy equivalence relation (E = mc2). No 
additional assumptions are made beyond the principle of volume conservation, ensuring that the gravitational field 
remains conservative and uninfluenced by forces other than gravity. We develop a straightforward equation and 
algorithm to accurately compute the potential energy of a stellar system. The theoretical implications of this model 
are explored with respect to energy production by various types of stars and black holes in galaxies. The model is 
empirically tested against the SPARC database comprising 175 galaxies to assess its validity. We conclude by deriving 
the logical and mathematical consequences of the hypothesis that dark mass is stored as potential energy in the 
gravitational field, a claim further validated using the SPARC data. The final consequence being the production of 
dark energy and the reproduction of ΛCDM cosmology. 

Introduction 
Since Vera Rubin postulated the existence of galactic dark mass to explain the flatness of galactic rotation curves (1; 
2; 3), no convincing explanation for the nature of this mass has been provided. Attempts to attribute the missing 
mass to undetectable baryonic matter were largely refuted by the AGAPE (4), MACHO (5), and EROS (6) programs. 
Similar explanations involving non-baryonic or exotic particles have also failed to account for the discrepancy. 
Numerous detection efforts, including those by the LUX (7), PICASSO (8), PICO (9), and SuperCDMS (10) 
collaborations, have thus far been unsuccessful. Likewise, results from CERN’s latest accelerator suggest that physics 
remains consistent with the Standard Model, making the existence of exotic particles increasingly unlikely. It also 
remains extremely difficult to explain this phenomenon using current gravitational theory, whether Newtonian 
gravitation or general relativity. 

In cosmology, the prevailing framework is the ΛCDM model, which postulates the existence of cold dark matter. For 
most physicists, the concept of mass remains inseparable from that of matter. Moreover, the term “dark matter” is 
often used categorically, although it more accurately refers to “dark mass.” One alternative to the existence of real 
dark mass is to modify gravitation at galactic scales. However, such efforts are challenged by the remarkable empirical 
adequacy of general relativity in describing observed phenomena and the inferred presence of dark mass (11; 12; 
13).  

The explanation proposed in this article takes a fundamentally different approach. Dark mass is neither a form of real 
matter nor the result of modified gravitation. Rather, it is a secondary effect inherent to the current formulation of 
gravitational theory—specifically, the gravitational potential energy stored in the gravitational field. The only axioms 
employed are E = –GmM / d and E = mc2. Thus, the explanation relies solely on the judicious application of classical 
physics. 

Useful Gravitational Potential Energy 
If we consider the Newtonian gravitational force equation, F = GmM / d2, we obtain—by integrating from d to 
infinity—the potential energy formula Ep = – GmM / d. While this formulation yields negative potential energy which 
can be used for calculating the motion of celestial bodies, it is unsuitable for evaluating the total physical potential 
energy of a system. 

To determine the physically meaningful potential energy, we must compute the energy difference between two states 

of the system—analogous to lifting a mass m from position d by a height h. In such a case: Ep = Ep(d + h) – Ep(d) = 
GmMh / (d2

  + dh). This expression represents the usable form of gravitational potential energy. The concept of 
absolute negative energy Ep is not directly interpretable in physical terms. 
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However, this formulation becomes impractical for systems involving two celestial bodies (e.g., planets, stars, or 
galaxies), because the initial reference distance d is undefined or ambiguous. To resolve this, we compute the energy 
difference between a compact state—a single solid spherical mass Mt = m + M and a configuration of two distinct 
spherical bodies, m and M, separated by a distance d. 

Let the two bodies have radii r and R, and volumes v = 4r3/3 and V = 4R3/3, with corresponding densities m/v and 

M/V. The total volume of the single solid sphere is Vt = V + v = 4/3 (R3 + r3), and its radius Rt = (R3 + r3)1/3. Assuming 
equal volumetric densities, m/v = M/V, that of the single compact ball will be identical m/v = M/V = Mt/Vt; if not, it 
assumes an average density weighted by the contributions of m and M. 

The gravitational potential energy of a homogeneous solid sphere is given by Ep = – 3GM2 / 5R. The gravitational 
potential energy of the system can be evaluated by comparing the initial state (a single compact mass), the final state 
(two separated masses), and the difference between them: 
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This expression quantifies the energy change from a compact configuration to a system of two separated masses. It 
represents a redistribution of matter that preserves the original component densities, thereby ensuring that the 
transformation involves only gravitational forces. 

Gravitational Potential Energy is Massive 
Gravitational potential energy can be expressed as Ep = mp c2, indicating that it must be stored as mass within the 
system. This statement is readily illustrated through a simple thought experiment. Consider a nuclear reactor that 
converts a mass mn into electrical energy, which is then used to raise a mass m to a height h. 

There should be no debate regarding whether the Earth's mass remains unchanged before and after the 
transformation. Given the conservation of mass-energy mn within the Earth system, general relativity ensures that 
its gravitational field remains unchanged. The question of whether this constitutes “real” mass is meaningless, since 
mass is defined by its measurable gravitational or inertial effects. 

Moreover, since the equivalence of inertial and gravitational mass has never been empirically violated (14), we may, 
for now, treat gravitational potential energy as fully equivalent to its mass representation. 

Calculation of the Potential Energy of Celestial Bodies 

 m (kg) M (kg) r (m) R (m) d (m) Rt (m) 

Moon + Earth 7.348E+22 5.972E+24 1.738E+06 6.378E+06 3.844E+08 6.421E+06 

Earth + Sun 5.972E+24 1.989E+30 6.378E+06 6.963E+08 1.496E+11 6.963E+08 

Jupiter + Sun 1.898E+27 1.989E+30 6.991E+07 6.963E+08 7.780E+11 6.966E+08 

Sun + M80 1.989E+30 9.985E+35 6.963E+08 5.534217E+10 4.541E+17 5.534221E+10 

Sun + Galaxy 1.989E+30 5.000E+40 6.963E+08 2.040E+12 5.000E+20 2.040E+12 

This table contains the standard values for the celestial bodies under consideration, except for the radii for the 
globular cluster M80 and a representative galaxy (indicated by gray boxes). We modeled the initial state as a solid 
sphere of mass M + m, assuming solar density. The final state is the sun at distance d of a mass M of solar density. 

For the Sun–galaxy pair, the values used are, R = 2.03985712710655  1012 and Rt = 2.03985712713359  1012. The 
rationale behind this construction will be addressed in a subsequent section. In either case, the radius is calculated 
using the relation: Rt = (R3 + r3)1/3.  
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 Ei (j) Ef (j) Ep (j) Ep (kg) m /Ep  

Moon + Earth -2.2795E+32 -2.2413E+32 3.8176E+30 4.2477E+13 0.000000001 

Earth + Sun -2.2751E+41 -2.2751E+41 1.3024E+36 1.4491E+19 0.000002427 

Jupiter + Sun -2.2787E+41 -2.2751E+41 3.5519E+38 3.9520E+21 0.000002082 

Sun + M80 -7.2141E+50 -7.2141E+50 2.3949E+45 2.6647E+28 0.013396966 

Sun + Galaxy -4.9079E+58 -4.9079E+58 3.2540E+48 3.6206E+31 18.20 

The table presents the gravitational potential energy differences between current physical configurations and their 
hypothetical fusion into a single mass. For context, the complete annihilation of one kilogram of matter yields an 
energy output approximately equivalent to that of a hydrogen bomb. For example, 2 kg of deuterium fused with 3 kg 
of tritium results in a mass loss of roughly 1 kg—comparable to the energy released by the Tsar Bomba. 

Based on this equivalence, the merger of the Moon with the Earth would release energy equivalent to approximately 
40 trillion hydrogen bombs. This potential energy corresponds to a mass of about 40 billion metric tons—a value that 
is far from negligible. 

If we consider the energy released by merging the Earth into the Sun, the resulting energy would correspond to over 
14 million billion metric tons. However, this value is still less than the mass the Sun loses each hour due to nuclear 
fusion. Depending on its spatial distribution, this energy-equivalent mass could, in principle, be measurable. 

If we examine the ratio m/Ep, representing the mass of the smaller body relative to the potential energy of the 
system, we find that it is negligible in most cases—except at the galactic scale, where it approaches the order of 
magnitude of the observed dark mass ratio. For clusters and superclusters, this ratio is on the order of 1,000 and 
10,000, respectively. However, as seen in the galactic case, the calculation reaches the precision limit of double-
precision floating-point arithmetic (approximately 15 significant digits). 

The Potential Energy of Celestial Systems 
The first observation is that the term –GmM / d of Ep is negligible at all relevant scales, where d ≫ R ≫ r. This result 
is intuitive from a physical standpoint: altering the distance between two celestial bodies, such as the Earth and the 
Moon, leads to minimal changes in gravitational energy compared to the energy released by their hypothetical 
fusion. This approximation holds across all celestial systems. 

The energy expression thus simplifies to: 
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This implies that the spatial arrangement of bodies relative to one another is irrelevant for calculating total 
gravitational potential energy. If we consider a system of n masses mi with radii ri, merged sequentially, we obtain 

the following expressions: 𝑀𝑖 = ∑ 𝑚𝑗𝑗≤𝑖  ,  𝑅𝑖 = (𝑅𝑖−1
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It is important to note that the order of mergers is irrelevant, as the gravitational field is conservative. 

Simplified Calculation with Identical Mass and Radius 
By assuming identical mass m and radius r for each of the n bodies, the calculation simplifies considerably. In this 
case, the cumulative mass at the i th merger step is Mi = im, and the corresponding radius is: 

𝑅𝑖 = (
𝑀𝑖𝑟

3

𝑚
)
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since Mi retains the same density as the original body of mass m. 
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The change in gravitational potential energy at each step is given by: 

Δ𝐸𝑖 =
3𝐺

5
(

𝑀𝑖
2

𝑅𝑖

−
𝑀𝑖−1

2

𝑅𝑖−1

−
𝑚2

𝑟
) , ΔEp = ∑ Δ𝐸𝑖

𝑖≤𝑛

 

Due to cancellation of intermediate terms, the telescoping sum simplifies to: 
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Substituting into the equation: 
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This final expression shows that the total gravitational potential energy of the system depends solely on the mass, 
radius, and number of individual bodies. Consequently, a small radius and large mass—i.e., high density—of the 
component solid spheres significantly increases the total potential energy of the system. 

Practical Estimation from a Stellar Population Histogram 
In practice, the stellar population of a galaxy is typically known through a mass distribution histogram. The total 
stellar mass M can be partitioned into k discrete mass intervals, each denoted by a triplet (Mi, mi, ri), Mi = nimi 
representing the cumulative mass, individual stellar mass and stellar radius respectively. 

The first step involves calculating the contribution from each interval as: 
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where Ri is the radius associated with mass Mi, and ni is the number of stars of mass mi in interval i.  

Next, we compute the residual potential energy Epb by merging all k compact balls (Mi, 𝑅𝑖). The total gravitational 
potential energy of the system is then: 

  Δ𝐸𝑝 = Δ𝐸pa + Δ𝐸pb 

Alternatively, this process can be formalized via a function f(m, r, M, Mi, Ri)  (Ep, Mt, Rt) which takes as input the 
mass m, radius r, and total mass M of the stellar units, along with an optional compact configuration (Mi, Ri) that may 

be initialized to zero. The function returns the total potential energy E, along with the updated total mass Mt and 
radius Rt. The algorithm is simply: 

 

f(m, r, M, Mi, Ri)  (Ep, Mt, Rt) : 
    n = M / m 
    Mt = M + Mi 
    R = n1/3r 
    Rt = (R3 + Ri

3)1/3 

    Ep = (3G/5) [Mt
2/ Rt – n m2/ r] 
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Hierarchical Computation of Gravitational Potential Energy 
To calculate the gravitational potential energy Ep of larger-scale structures—such as galaxy clusters or 
superclusters—each constituent galaxy must first be reduced to a compact configuration using the previously 

described method. This process yields three key quantities for each galaxy: the potential energy Ep, the total mass 

Mt, and the radius Rt. The total mass of the resulting compact object is then given by M = Mt + Ep / c2 where Ep / c2 
accounts for the mass-equivalent of the stored gravitational potential energy. The radius R of this composite object 
is now that of the galaxy with the dark mass distributed in the gravitational field. 

This fusion procedure can then be reapplied at the next hierarchical scale, treating each galaxy as a single unit in a 
larger gravitational system—whether a cluster or supercluster. By repeating the process iteratively from smaller to 
larger scales, one constructs a consistent model of gravitational energy accumulation across cosmic structures. 

This hierarchical approach is conceptually analogous to a system of nested dolls, with each level of structure 
encapsulating the gravitational characteristics of its constituent components. 

Treatment of Galactic Gas in Gravitational Potential Energy Calculations 
Galactic gas presents a modeling challenge, as it does not form distinct compact objects suitable for direct merger 
calculations. However, it is known to possess at least as much gravitational potential energy as the stellar component, 
since it is responsible for star formation through gravitational collapse. 

This process can be conceptually divided into two phases: first, the collapse of gas into stellar cores; and second, the 
merger of these stellar objects into an initial compact configuration. The young stellar population of a galaxy reflects 
the outcome of this evolutionary pathway and therefore serves as a practical proxy for the gas component. As such, 
the simplest and most consistent approach is to treat the gas as contributing directly to this population. 

Alternatively, if one models the gas as collapsing entirely into the final stellar configuration, its relative sparsity 
justifies approximating each molecule as nearly isolated. In this scenario, the conservative displacement of individual 
gas molecules within the compact configuration increases the system's radius while preserving its overall density. 

Consequently, the gas should be treated as contributing indistinguishably to the stellar mass distribution. This 
modeling assumption is supported by our numerical tests and is necessary to minimize errors in the interpretation 
of observational data. 

The Initial Compact Ball Problem 
We define the initial compact configuration as a solid sphere that conserves the total volume of the bodies it replaces. 
This strict conservation of volume ensures physical consistency in the state of matter before and after compaction. 

In reality, gravitational forces would compress this configuration even further. However, doing so would introduce 
additional repulsive forces—such as degeneracy pressure or radiation pressure—that are not included in the current 
gravitational model. Enforcing volume conservation is therefore the only way to preserve the conservative nature of 
the gravitational transformation without invoking new interactions. 

Any deviation from the volume-conserving radius in an attempt to improve the estimate of potential energy would 
require a physically justified rationale. Otherwise, it would introduce arbitrariness into the model and compromise 
its internal consistency. 

Empirical consistency is observed when applying the volume-conserving model to systems composed of dense 
astrophysical bodies. Less dense configurations would underestimate the potential energy, which must be at least 
equal to the gravitational energy associated with the current structure. Conversely, using a denser configuration leads 
to exaggerated potential energy values, as confirmed by theoretical models. This is problematic, as the observed 
quantity of dark mass is not currently underrepresented in our models. 
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Why the Volume-Conserving Compact Ball Is Preferred over a Black Hole 
The exclusion of non-gravitational forces from the model is a foundational assumption. Under this constraint, one 
might ask whether a black hole could serve as the initial compact configuration for evaluating gravitational potential 
energy. 

To assess this, consider a comparison between the volume-conserving compact ball—denoted Eb—which 
aggregates the potential energy of all stellar components, and a non-rotating black hole of equivalent mass. The 
black hole is assumed to have no angular momentum, since the random distribution of stellar rotation vectors leads 
to approximate cancellation, resulting in a non-rotating configuration. 

The gravitational collapse of the compact ball into a black hole—effectively a time-reversed scenario—releases an 

energy difference given by: Ebh = Eb – Ebh 

Because the black hole’s rest mass accounts for its total energy, and we define this state as the zero-potential-energy 

reference, we set Ebh = 0. Hence: Ebh = Eb. 

Accordingly, the gravitational potential energy of the system is given by Eb, corresponding to the volume-conserving 
compact configuration. This approach ensures that no additional forces are introduced, because in the static 
configurations before and after compaction, any internal forces—such as pressure or other repulsive interactions—
are exactly balanced by gravity, in accordance with the principle of action and reaction. Their net contribution is 
therefore zero. By enforcing volume conservation, we remain within a purely gravitational framework, avoiding the 
need to model forces that, while present internally, cancel out in the static equilibrium of the system. 

Theoretical Model 
We apply our gravitational potential energy theory to generate theoretical models in the form of curves, representing 
the dark mass ratio produced by galaxies with varying numbers of stars. Each curve corresponds to a different galaxy 
size (Figures 1 and 2). 

The x-axis represents the average stellar mass MS, expressed in solar masses. Stellar radii are determined using the 
standard mass–radius relationship for main-sequence stars. The y-axis shows the ratio of total gravitationally induced 
dark mass MG to the total baryonic stellar mass MB, that is, MG / MB. 

For example, a galaxy with 100 billion stars (thin dotted line) yields a dark mass ratio of approximately 28 when the 

average star has 1 M☉ and 1 R☉. A population of 200 billion stars yields a ratio of 45, and 300 billion stars results in a 
ratio of 60. These values exceed the commonly accepted ratio of around 20 for the Milky Way. 

Nevertheless, the order of magnitude is consistent, despite the exclusion of gas and black hole components in this 
simplified analysis. This result reinforces the central hypothesis that dark mass is not a distinct form of matter, but 
rather emerges from the gravitational potential energy of the system. 

Impact of Stellar Density Variations on Dark Mass Production 
The inclusion of less dense stars, such as red giants, significantly reduces the modeled production of gravitationally 
induced dark mass (Figures 3 and 4). This scenario is based on the same stellar population used in previous cases, 

composed primarily of stars with 1 M☉ and 1 R☉, to which a variable fraction of red giants is added, each with 4 M☉ 

and 100 R☉. The resulting decrease in average stellar density lowers the total gravitational potential energy of the 
system and, consequently, the dark mass ratio. 

Conversely, the addition of dense stellar remnants, such as white dwarfs (0.6 M☉, 0.0085 R☉) and neutron stars (1.35 

M☉, 10.8 km), leads to a dramatic increase in dark mass production (Figures 5 and 6). The extremely high densities 
of these objects substantially elevate the system’s total potential energy. In realistic stellar populations, however, this 
increase is moderated by the presence of low-density stars (e.g., red giants) and black holes. 
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Black Holes 
While the potential energy of stellar systems can now be calculated using the methods previously described, 
extending the analysis to black holes introduces additional complexity. However, the underlying principle remains 
the same: the gravitational potential energy is defined as the difference between two configurations—the initial, 
merged black hole and the final state consisting of two separate black holes. 

As in the stellar case, the relevant quantity is the energy released during merger. According to general relativity (see 
references (15; 16)), the final mass Mf of the remnant black hole is given by: 

𝑀𝑓 = (𝑀 + 𝑚)(1 − η εrad(𝑞, χ)) 

where: 

η =
𝑀𝑚

(𝑀 + 𝑚)2
,  𝑞 =

𝑚

𝑀
≤ 1,  χ = spin parameter 

and εrad(𝑞, χ) is an empirical function representing the efficiency of gravitational wave emission. For non-spinning 
black holes, a widely used approximation is: 

𝜀rad(𝑞) = 0.048 ⋅
(1 − 𝑞)2

(1 + 𝑞)4
 

The effective spin of the remnant is given by: 

𝜒eff =
𝑀𝜒𝑀 + 𝑚𝜒𝑚

𝑀 + 𝑚
 

If the component black holes have randomly oriented spins, the net spin of the merged object will, on average, tend 
toward zero, i.e. 𝜒𝑒𝑓𝑓 ≈ 0. 

Let f(m, M)  Mf be a function representing the final mass of a black hole formed by merging two black holes of 
masses m and M, according to the relativistic formula described earlier. 

To extend this to the merger of n black holes, we reduce the problem to the case of n identical black holes, each of 
mass m, so that the total initial mass is M = nm. Define a recursive function g(n, m)  Mf where g(n, m) returns the 
final mass after all n black holes of mass m are merged. The function proceeds as follows: 

 g(n, m)  Mf : 
 

 IF n = 2 THEN Mf = f(m, m) 
IF n = 3 THEN Mf = f(m, m), Mf = f(m, Mf), 

 ELSE  
  isOdd = false 

IF Odd(n) THEN n = n – 1, isOdd = true 
Mf = g(n/2, m)   
Mf = f(Mf, Mf) 
IF isOdd THEN Mf = f(m, Mf)     

 

This recursive structure is well-suited for dynamic programming. By storing intermediate results of g(a,b) in a 
memoization table, the overall number of distinct computations is reduced significantly, achieving logarithmic 
efficiency in the number of mergers, i.e. 𝑂(log2 𝑛). 
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Negligible Potential Energy Contribution from Black Hole Mergers 

The gravitational potential energy produced by black hole mergers is extremely limited, as it is drawn directly from 
the initial mass of the black holes. By definition, the radiated energy—primarily in the form of gravitational waves—
can never exceed the total mass-energy of the system. 

Even under ideal conditions, such as an aligned prograde spin configuration (which maximizes radiative efficiency), 
the fraction of mass converted into gravitational wave energy remains low. Using a semi-analytical approximation 
derived from numerical simulations (17; 18), the radiated energy fraction is given by: 

𝐸gw

𝑀
≈ η(1 − 4η)[1 − 0.0686(1 − χeff)

2] 

where η =
𝑀𝑚

(𝑀+𝑚)2 is the symmetric mass ratio, and eff is the effective dimensionless spin. 

In the most favorable scenario—mergers involving black holes exceeding 500 solar masses and spins near unity—the 
maximum energy fraction remains below 16%. 

Given both this upper bound and the relatively low abundance of black holes in most galactic environments, their 
contribution by fusion to the total gravitational potential energy of celestial systems is negligible. 

Black Holes and the Problem of Volume Conservation 

Despite their relatively small contribution to gravitational wave energy, it is impossible to exclude black holes from 
the calculation of gravitational potential energy. According to Newtonian gravity, any massive object—including black 
holes—contributes to the total potential energy via the standard expression Ep = – GmM / d. 

Consider the construction of the initial compact configuration, which conserves the total volume of gas and stars and 
results in a body of mass M and volume V. If the system also contains n black holes of mass m and individual volume 
v, then—by analogy—they should be included in the compact configuration as well, leading to a revised mass and 
volume: M’= M + nm, V’= V + nv. 

However, this treatment presents a paradox. If black holes are introduced into the compact configuration, they 
would, under gravitational attraction, eventually coalesce. But unlike normal matter, the merger of black holes 
reduces their total volume—a property not shared by stars or gas. Thus, treating them analogously within a volume-
conserving framework breaks the model's fundamental assumption of conservation. 

This highlights a unique property of black holes: they violate volume conservation through merger. Their inclusion in 
gravitational potential energy calculations is necessary, but their geometric behavior introduces a conceptual 
inconsistency that challenges the volume-conserving assumption used to construct the compact configuration. 

Black Holes and the Limiting Case of Gravitational Potential Energy 

This analysis suggests that black holes must be treated analogously to ordinary matter within the volume-conserving 
compact configuration—but with the important caveat that their unique volume behavior under merger must be 
respected. In this framework, we merge all black holes present in the system into a single equivalent black hole. 

The resulting object may be highly dense (e.g., density ≈ 1000 for a mass of 4.3  106 M⊙) or extremely diffuse on a 

geometric scale (e.g., density ≈ 0.001 for a mass of 4.3  109 M⊙) due to the non-linear scaling of Schwarzschild 
radius with mass. Paradoxically, the presence of a larger number of black holes—when merged into a single object—
can decrease the total gravitational potential energy of the system. 

This outcome is unavoidable. As the number and total mass of black holes increase, the system approaches the 
physical limit of forming a single, final black hole. According to the no-hair theorem, such a black hole has no internal 
structure—no mass distribution, no gravitational self-interaction, and thus no gravitational potential energy in the 
classical sense. It is entirely defined by its mass, spin, and charge. Consequently, black holes represent the endpoint 
of gravitational compaction, beyond which no further gravitational binding energy can be extracted. As their 
dominance in a system grows, the accessible gravitational potential energy inevitably declines. 
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Model Results with Varying Black Hole Fractions 
Figures 7 through 10 present the results of our theoretical model for galaxies containing the same number of stars 

as previously considered, now fixed to solar mass and radius: 1 M☉, 1 R☉. The x-axis shows the fraction of the total 
stellar mass that is assigned to black holes, expressed as a percentage. 

At a black hole mass fraction of approximately 1.3%, the dark mass ratios for galaxies with 100, 200, and 300 billion 
stars converge to values of 19.7, 22, and 23, respectively. These results align well with observational constraints—
particularly the commonly cited 95% dark matter proportion for the Milky Way, which corresponds to a dark mass 
ratio of ~20, and estimates placing the stellar mass fraction in black holes at around 1% (19).  

The trend of decreasing dark mass production with increasing black hole proportion persists up to galaxy sizes of 
approximately one billion stars, beyond which the effect begins to reverse slightly. Remarkably, with only a 5% black 
hole mass fraction, most galaxies become indistinguishable from one another in terms of their dark mass ratio. At 
this point, only the smallest galaxies remain distinct, while larger systems converge toward a universal behavior in 
dark mass production. 

 
Figure 7 

 
Figure 8 

 
Figure 9 

 
Figure 10 
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Galactic Models 
To evaluate whether gravitational potential energy alone can account for the observed dark mass in galaxies, we 
tested our theoretical model against the SPARC sample (20), which includes rotation curve data for 175 galaxies along 
with their mass models.  

For each data point, the dataset provides the observed velocity Vobs and the contribution of the baryonic mass 
contained in the orbital radius Vbar as well as its division in bulge stars Vbul, disk stars Vdisk and gas Vgas. These values 
are used to estimate the mass contained in the orbital radius Mbul, Mdisk, Mgas using the mass models. Subsequently, 
the required dark mass Mdark is calculated by comparing the observed acceleration to that predicted by visible matter. 
Each point also includes an estimate of the uncertainty eMdark for the inferred dark mass. 

Two galaxies (UGC 4305 and UGC 6628) were excluded due to negative global dark mass, leaving a final sample of 
173 galaxies. This dataset contains 3,362 kinematic data points, of which 3,039 (approximately 90%) were retained 
for analysis. Data points with negative dark mass values or negative errors were removed to ensure consistency and 
reliability. 

Stellar Population Fitting Method 
For each data point in the SPARC sample, we apply our model to determine the optimal composition of stellar 

remnants and evolved stars—specifically black holes, white dwarfs (0.6 M☉, 0.0085 R☉), red dwarfs (0.4 M☉, 0.5 R☉), 

and red giants (4 M☉, 100 R☉)—that can reproduce the required dark mass Mdark  as closely as possible. 

For each configuration, we compute the gravitational potential energy Edark predicted by the model and evaluate the 

absolute deviation: dark = |Edark  – Mdark| 

The fitting process aims first to bring dark within the observational uncertainty: dark < eMdark or dark < 2eMdark 

While a more precise approach would account for both the uncertainty in the observed dark mass Mdark and the 
uncertainty in the model prediction Edark, we treat eMdark as the effective error margin for Edark as a practical 
simplification. 

If no composition satisfies this criterion, we minimize dark as a second step. Each data point is treated independently. 

Model Fit Results 
The model demonstrates excellent agreement with observational data. Among the 173 galaxies analyzed, 86% (149 
galaxies) exhibit no residual errors across all included data points when evaluated using the relaxed threshold 

dark < 2eMdark. This corresponds to 81% of the total data points (2,467 out of 3,039) meeting the same condition. 

Under the stricter criterion dark < eMdark, 74% of galaxies (128 out of 173) are fully resolved with no individual data 
point exceeding the error threshold, accounting for 71% of the retained data points. 

Overall, 95% of all individual data points meet the 2eMdark condition, and 92% fall within the stricter 1eMdark  
threshold. These results confirm the robustness of the model in reproducing observed dark mass distributions across 
a wide range of galaxy types. 

Moreover, when examining the positioning of the predicted value Edark within the error bar of Mdark —where 0% 
corresponds to an exact match and 100% lies at the edge of the error bar—the results are highly concentrated near 

the center. For the 86% of galaxies that satisfy dark < 2eMdark, the average offset is 3% ± 9%. For the 74% of galaxies 

with dark < eMdark, the offset improves to 1.4% ± 1.6%. 

All error margins (± e) in this analysis correspond to one standard deviation. 

Population Composition in Successful Fits 
One of the most compelling outcomes of the model is the physical plausibility of the stellar compositions required 

to reproduce the observed dark mass. For the 86% of galaxies where the model fit satisfies dark < 2eMdark, the 
algorithm converges to the following average stellar population composition (expressed as a fraction of the total 
baryonic mass):  
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  Black holes:  5.4%  4.6%  

  White dwarfs:  30%  7.7%  

Red giants:  20%  6.7%  

Red dwarfs:  45%  7.7% 

These proportions remain consistent across galaxies meeting the stricter criterion dark < eMdark , as well as those 
with slightly larger residuals. This consistency supports the conclusion that gravitational potential energy can account 
for the observed dark mass using realistic distributions of stellar types. 

The relatively high fraction of white dwarfs inferred by the algorithm might be moderated by including a small 
proportion of neutron stars, which offer high density at lower mass. Similarly, the contribution from red giants may 
be partially substituted by rarer but very low density and more massive hypergiants. These adjustments would 
preserve the energetic balance while remaining astrophysically plausible. 

Intra-Galactic Consistency and Stellar Distribution Profiles 
The previous model demonstrates that it is possible to reproduce the observed dark mass entirely through 
gravitational potential energy generated by common stellar populations—namely black holes, white dwarfs, red 
dwarfs, and red giants. However, this approach optimizes each data point independently and does not enforce 
consistency across points within the same galaxy. 

To introduce intragalactic coherence, we compute mbul, mdisk, mgas and mdark , which represent the masses enclosed 
within the orbital slice corresponding to each data point. The proportions of stellar types and black holes assigned 
to a given point can only depend on the total local baryonic mass, defined as mbul + mdisk + mgas. 

This constraint reduces the available degrees of freedom, making the fitting process more complex, but it ensures 
global physical consistency across the galaxy. 

Under this constraint, the model achieves successful fits—with no residual errors—within dark < 2eMdark  for 62% of 
the galaxies (108 out of 173), covering 49% of the total data points. While this represents a reduction compared to 
the unconstrained model, it provides a key physical advantage: it enables the generation of internally consistent 
stellar composition profiles for each galaxy. 

Figures 11 and 12 present two example galaxies illustrating the recovered stellar distribution across orbital radii, as 
predicted by this constrained optimization. 

 

 
Figure 11 

 
Figure 12 

 
  

  

   

   

   

   

   

   

   

   

                         

           
            

          
          

 
  
 
  
 
 
  
 
 

            

        

  

   

   

   

   

   

   

   

                               

           
            

          
          

 
  
 
  
 
 
  
 
 

            

        



Page 13 of 23 
 

The Mass Energy Field 
To understand how gravitational potential energy—interpreted here as dark mass—affects galactic rotation curves, 
we must first consider the spatial distribution of this mass-energy. Unlike baryonic matter, this invisible component 
is not localized in discrete particles, but rather is distributed throughout the gravitational field itself. 

The persistent invisibility and intangibility of this form of mass-energy presents a conceptual challenge. However, this 
difficulty is not entirely new. As noted by Leon Brillouin (21; 22): 

“All energy has mass, but it seems that the case of potential energy has been omitted. The founders of Relativity 
hardly mention it. In fact, the corresponding energy is spread throughout space, and its mass cannot be exactly 
localized. The symmetry of the distribution suggests dividing the mass between the various interacting particles. It is 
therefore necessary, from classical Relativity onwards, to revise the values of the masses. Well before quanta, 
renormalization was essential (and was omitted) in Einstein's Relativity.” 

Brillouin's insight underscores a key theoretical omission in classical relativity: the mass-equivalence of potential 
energy is spatially distributed and cannot be attributed to any single point. This aligns with our interpretation: the 
gravitational potential energy of a system manifests as an extended, nonlocal mass-energy field. As such, the field 
itself contributes to the curvature of spacetime, producing the dynamical effects attributed to dark mass. 

Field Proportionality and the Localization of Dark Mass 
Although the problem of the mass associated with gravitational potential energy was clearly articulated by Brillouin 
in 1965, it has not received a satisfactory treatment in either classical or relativistic physics. In this work, we postulate 
that the mass stored in the gravitational field is directly proportional to the intensity of the field at a given point. 

Let (Ea) denote the gravitational field produced by a dark mass Ea at position a, and (Ma) the field produced by a 

baryonic mass Ma at the same point. Likewise, at position b, let (Mb) and (Eb) denote the baryonic and dark field 
components, respectively. We assume the following proportionality relationship: 

Φ(𝐸𝑏)

Φ(𝐸𝑎)
=

Φ(𝑀𝑏)

Φ(𝑀𝑎)
 

Using the standard expression for the gravitational field produced by a point mass, 

Φ(𝑀) ∝
𝑀

𝑅
 

where R is the characteristic radius or distance from the source, we obtain: 

Φ(𝑀𝑏)

Φ(𝑀𝑎)
=

𝑀𝑏𝑅𝑎

𝑀𝑎𝑅𝑏

 and 
Φ(𝐸𝑏)

Φ(𝐸𝑎)
=

𝐸𝑏𝑅𝑎

𝐸𝑎𝑅𝑏

 

Equating the two ratios leads to: 

𝐸𝑏𝑅𝑎

𝐸𝑎𝑅𝑏

=
𝑀𝑏𝑅𝑎

𝑀𝑎𝑅𝑏

 

which simplifies to: 

𝐸𝑏

𝐸𝑎

=
𝑀𝑏

𝑀𝑎

 ⇒  𝐸𝑏 = 𝐸𝑎 ⋅
𝑀𝑏

𝑀𝑎

 

 

This relation provides a simple but powerful rule: the local dark mass is proportional to the local baryonic mass, 
under the assumption that gravitational field strength governs the distribution of field-stored mass-energy. 
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Component Contributions to Dark Mass Production  

In the galactic context, the production of gravitationally induced dark mass must be analyzed component by 
component, as each baryonic contributor exhibits a different efficiency in generating potential energy. In practice, 
the available observational data typically separate the baryonic mass into at least two components: the gas mass and 
the stellar disc mass. 

If the gas component contributes a dark mass Egas  from a baryonic mass Mgas, and the stellar disc contributes Edisk  
from a baryonic mass Mdisk it is necessary to compute their relative contributions to the total gravitationally induced 
dark mass. These can be expressed as: 

𝑒gas =
𝐸gas 𝑚gas

𝑀gas

,  𝑒disk =
𝐸disk  𝑚disk

𝑀disk

 

The total contribution is then: etot = egas + edisk 

However, this division is still simplistic. As shown earlier, the gravitational potential energy varies significantly 
depending on stellar type (e.g., red dwarfs, red giants, white dwarfs, black holes). A more accurate treatment would 
require dividing the baryonic mass into multiple categories, each with distinct mass and radius parameters. These 
variations determine the gravitational binding energy and thus the amount of dark mass effectively “generated” by 
each category. A coarse two-component model can serve as an approximation, but more detailed modeling is 
essential for precision. 

Two-Component Model with a Single Fitting Parameter 
In the absence of detailed information about stellar sub-populations, we restrict the analysis to the two primary 
baryonic components typically available in observational data: gas and the stellar disc. Their respective contributions 
to the gravitationally induced dark mass are modeled using a single free parameter f, which represents the fraction 
of Edark  attributed to the gas component. 

The total modeled dark mass is expressed as: 

𝐸dark = 𝐸gas + 𝐸disk = 𝑓𝐸dark + (1 − 𝑓)𝐸dark 

From this, we define the relative contributions for each data point as: 

𝑒gas =
𝑓𝐸dark  𝑚gas

𝑀gas

,  𝑒disk =
(1 − 𝑓)𝐸dark  𝑚disk

𝑀disk

 

where: 

• Edark , Mgas, and Mdisk are values measured at the midpoint radius of the galaxy. 

• mgas  and mdisk are the local baryonic mass values at the data point. 

The parameter f is optimized once per galaxy and applied uniformly across all data points. Despite its simplicity, this 
model reproduces the observed dark mass within the margin of error for 76 of the 175 galaxies in the SPARC sample—
corresponding to 43% of the dataset. 

To remain conservative in our error analysis, we assign to each calculated value etot  the same uncertainty as that of 
the corresponding observed dark mass pdark. 

Figures 13 and 14 illustrate representative examples of galaxies well fitted by this single-parameter, two-component 
model. 

Incremental Refinement of the Two-Component Model 
It is possible to increase the accuracy of the model by introducing additional f parameters, each associated with a 
distinct radial region of the galaxy. These parameters allow the relative weighting between gas and stellar disc 
contributions to vary spatially, thereby improving the fit to the observed dark mass profile. 
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For each segment, the scaling is performed using the midpoint of the segment as the local reference, with its own 
values of Edark , Mgas, and Mdisk. This ensures that the proportional calculation within each region remains physically 
consistent and properly normalized. 

Using two f parameters, we achieve error-free fits for 29 additional galaxies. Allowing three f parameters yields an 
additional 6 galaxies with perfect fits. In total, this approach provides error-free solutions for 111 out of 175 galaxies, 
or approximately 63% of the SPARC sample. 

The ability to reproduce the observed dark mass distributions across such a large fraction of galaxies—using only 
local baryonic mass and gravitational potential energy scaling—strongly supports the existence of a direct, physically 
meaningful relationship between baryonic mass and the inferred dark mass. This reinforces the core hypothesis that 
gravitational potential energy, when correctly modeled, accounts for the so-called dark matter without requiring 
matter. 

 
Figure 13 

 
Figure 14 

Dark Energy 
In previous models for calculating the gravitational potential energy of self-gravitating systems (galaxies, clusters, 
etc.), the large-scale direct interaction term between distant bodies was considered negligible. This term, of the form 
−GmM/d, where d can be interpreted as the mean separation between bodies, is indeed extremely small on stellar 
scales. However, at cosmological scales, and when summed over all bodies in the universe, its contribution becomes 
significant. 

Let us consider a set of n point masses of mass m, separated on average by a distance d, for a total mass M. The sum 
of interactions between each mass and the cumulative preceding ones yields a potential energy: 

Δ𝐸dil = −
3𝐺𝑚2

5𝑑
∑(𝑖 − 1)

𝑛

𝑖=1

= −
3𝐺𝑚2

5𝑑
⋅

𝑛(𝑛 − 1)

2
≈ −

3𝐺𝑀2

10𝑑
 (for 𝑛 ≫ 1) 

This energy describes the “diluted” state of the universe: a configuration of weakly bound masses at large distances. 

Simplification of ΔEp 
 

Δ𝐸𝑝 =
3𝐺

5
(

𝑀𝑛
2

𝑅𝑛

− 𝑛
𝑚2

𝑟
) 

Assuming Mn = nm, we have: 

𝑀𝑛
2 = 𝑛2𝑚2 and 𝑅𝑛 = (

𝑀𝑛𝑟3

𝑚
)

1/3

= 𝑛1/3𝑟 

       

       

       

       

       

       

       

       

       

                            

                   
                

 
 
  
  

 
 
 
  
 
 
 

            

        

       

       

       

       

       

       

       

       

       

                

                   
                

 
 
  
  

 
 
 
  
 
 
 

            

        



Page 16 of 23 
 

 
Substituting into the equation: 

Δ𝐸𝑝 =
3𝐺

5
(

𝑛2𝑚2

𝑛1/3𝑟
−

𝑛𝑚2

𝑟
) =

3𝐺

5
(𝑛5/3 − 𝑛)

𝑚2

𝑟
 

The asymptotic behavior shows that for n >> 1, the n5/3 term dominates over n, justifying the approximation: 

Δ𝐸𝑝 ≈
3𝐺

5
⋅

𝑀𝑛
2

𝑅𝑛

 

Gravitational Compaction Energy 
In contrast, if the same total mass M is compacted into a homogeneous solid sphere of radius R (e.g., preserving 
solar density), the gravitational potential energy becomes: 

Δ𝐸comp = −
3𝐺𝑀2

5𝑅
 

The energy difference between these two configurations is: 

Δ𝐸𝑝 = Δ𝐸dil − Δ𝐸comp =
3𝐺𝑀2

5
(

1

𝑅
−

1

2𝑑
) 

This expression is always positive for R ≪ 2d, which is indeed the case in the real universe: R∼1016 m (solar density), 
d∼1026 m (average intergalactic separation or corrected Hubble radius), R/d∼10−10, making the effective contribution 
significant. 

A crucial observation is that R is fixed (set by the compactness and chosen density), while d increases with cosmic 
expansion. Therefore, the effective gravitational potential energy ΔEp increases with d (and thus with volume V): 

𝑑Δ𝐸𝑝

𝑑𝑉
> 0 ⇒  𝑃 = −

𝑑Δ𝐸𝑝

𝑑𝑉
< 0 

This result is interpreted as a negative gravitational pressure, not originating from an exotic scalar field, but from the 
geometric evolution of a structured gravitational field. As space expands, background gravitational interactions 
weaken, leading to a growing potential energy. Its negative derivative acts as a repulsive pressure — a natural source 
of accelerated expansion. 

Application to the Observable Universe at Galactic Density 
Instead of compacting the total mass of the universe to stellar (solar) density, we now assume the universe is 
structured in galactic halos containing both baryonic and dark matter. These halos are modeled as oblate ellipsoids 
with a height equal to one-third their radius. 

For a typical compatible galaxy (SPARC, EAGLE, Illustris): 

• Average mass (baryons + dark matter): 𝑀gal ∈ [1.6, 3.3] × 1042  kg 

• Average halo radius: 𝑅halo ∈ [2.4, 3.7] × 1021 m 

Using mass (baryonic + dark matter) of the observable universe: 𝑀gal ≈ 8.8 × 1052 kg (according to ΛCDM)  

𝑅𝑛 = (
3𝑀tot

4πρgal

)

1/3

=  (
3𝑁𝑀gal

4π𝑀gal/𝑉gal

)

1/3

= (
3𝑁𝑉gal

4π
)

1/3

 

With: 

𝑉gal =
4

9
π𝑅halo

3 ⇒ 𝑅𝑛 = (
3𝑁 ⋅

4
9

 π𝑅halo
3

4π
)

1/3

= (
𝑁

3
⋅ 𝑅halo

3 )
1/3

= (
𝑁

3
)

1/3

 

Compacting the total mass of the observable universe at this density yields: 𝑁 ∈ [2.7 × 1010,  5.5 × 1010] 
(compatible with Deep Field and JWST). 
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Δ𝐸𝑝 =
3𝐺𝑀2

5
(

1

𝑅𝑛

−
1

2𝑑
) 

Using 𝑑 = 𝑘𝑐 H⁄ ≈ 4.5 × 1026  m with k = 3.27 (comoving radius in ΛCDM), we obtain numerically: 

Δ𝐸𝑝 ∈ [6.6 × 1070,  2.6 × 1071] J 

This result matches the estimated range for the total dark energy of the observable universe, as inferred from Planck 
2018 + WMAP + SNIa + BAO data: 

𝐸Λ ∈ [6.6 × 1070,  2.6 × 1071] J 

It follows that the macroscopic gravitational potential energy, derived from galactic-scale structure, may provide a 
purely geometric and classical interpretation of dark energy — requiring neither exotic fields nor arbitrary 
cosmological constants. 

Emergent Pressure from Gravitational Potential 
The effective gravitational potential energy of the structured system, previously written as: 

Δ𝐸𝑝 =
3𝐺𝑀2

5
(

1

𝑅
−

1

2𝑑
) 

can be expressed as a function of cosmic volume V, noting that: 

• R, is constant (galactic structure is assumed stable), 

• 𝑑 ∝ 𝑉1/3 
Then: 

Δ𝐸𝑝(𝑉) =
3𝐺𝑀2

5
(

1

𝑅
−

1

2𝑉1/3
) 

The corresponding effective pressure is: 

𝑃(𝑉) = −
𝑑Δ𝐸𝑝

𝑑𝑉
= −

3𝐺𝑀2

5
⋅

1

2
⋅

1

3
𝑉−4/3 = −

𝐺𝑀2

10𝑉4/3
 

This pressure is strictly negative and decreases with expansion. It does not stem from exotic substances or 
hypothetical fields, but arises from the weakening of gravitational interaction as volume increases. This macroscopic 
potential energy, generated by gravitational structuring, stores information in the field itself. Its derivative manifests 
as a repulsive effect — a geometric mechanism that can mimic dark energy. 

Integration into General Relativity 
In general relativity, the source of spacetime curvature is not mass alone, but the energy–momentum tensor 𝑇μν. For 

a homogeneous and isotropic universe, this tensor reduces to that of a perfect fluid: 

𝑇μν = (ρ +
𝑃

𝑐2
) 𝑢μ𝑢ν + 𝑃𝑔μν 

The pressure obtained above is not a hypothesis but a geometric consequence of the gravitational field’s structure. 
It is thus natural to consider this pressure — arising from effective potential energy — as contributing to a 
gravitational component of the energy–momentum tensor: 

𝑇grav
μν

= (ρpot +
𝑃grav

𝑐2
) 𝑢μ𝑢ν + 𝑃grav𝑔μν 

where: 

ρpot =
Δ𝐸𝑝

𝑉
,  𝑃grav = −

𝐺𝑀2

10𝑉4/3
 

This tensor has the same structure as that of dark energy, but its origin is not constant — it emerges dynamically 
from the gravitational structuring of the universe. 
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Reproducing ΛCDM Cosmology 
To assess the cosmological implications of this effective pressure, we substitute it into the Friedmann equations. 
Assuming a spatially flat universe (k = 0): 

𝑎̈

𝑎
= −

4π𝐺

3
(ρ +

3𝑃

𝑐2
) 

With:  

𝜌 =
𝑀

𝑉
,  𝑃 = −

𝐺𝑀2

10𝑉4/3
 

We obtain the dynamical equation for cosmic volume: 

𝑉̈

𝑉
−

1

3
(

𝑉̇

𝑉
)

2

= −
𝐴

𝑉
+

𝐵

𝑉4/3
 

with A ∝ GM and B ∝ G2M2/c2. This nonlinear equation admits two asymptotic regimes: 

At early times (matter-dominated), gravity dominates, and the universe expands as: 

𝑉(𝑡) ∝ 𝑡2  ⇒  𝑎(𝑡) ∝ 𝑡2/3 

At late times, gravitational pressure dominates, and the expansion becomes exponential: 

𝑉(𝑡) ∝ 𝑒3𝐻𝑡  ⇒  𝑎(𝑡) ∝ 𝑒𝐻𝑡 

This reproduces the behavior of ΛCDM cosmology, without invoking a cosmological constant, but by deriving it from 
an effective geometric pressure rooted in the structured gravitational field. 

Conclusion 
The objective of this article was to demonstrate that the phenomenon commonly referred to as “dark matter” can 
be fully accounted for by gravitational potential energy. Through both theoretical and empirical approaches, we have 
shown that the potential energy generated by gravitational interactions—particularly when applied to systems like 
the Earth–Moon or Earth–Sun—is far from negligible and must be considered as a real, physical quantity. 

Using simplified theoretical models, we established that this potential energy, when converted via the mass–energy 
equivalence relation E = mc2, yields contributions on the same order of magnitude as the dark mass inferred from 
galactic rotation curves.  

This leads to a critical implication: if gravitational potential energy exists—as is well established—and if the mass–
energy equivalence is universally valid, then the mass associated with that energy must manifest gravitational effects. 
In other words, if potential energy is physically real, then dark mass must exist as a consequence of it. 

Therefore, the observed effects attributed to dark matter may not require the existence of new particles or exotic 
matter. Instead, they can be understood as arising naturally from the structure of the gravitational field itself. The 
presence of sufficient gravitational potential energy to account for galactic dynamics constitutes a sufficient physical 
condition for the phenomenon currently labeled as “dark matter.” The mass–energy relation demands that this 
energy contributes to the curvature of space-time, and thus to gravitational phenomena at galactic and cosmological 
scales. 

We subsequently compared our theoretical model to a substantial body of observational data and obtained an 
excellent fit, despite the necessarily simplified assumptions used throughout. This empirical success provides a 
necessary condition for validating the model: the gravitational potential energy predicted by the distribution of 
baryonic mass must be sufficient to account for the observed dark mass. Our results show that this condition is 
fulfilled across a wide range of galaxy types. 

We then extended our model by applying the principle of causal proportionality—namely, that identical mass 
distributions of the same type must generate proportionally identical effects. If a baryonic mass M, composed of 
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stars of a given type (e.g., solar-mass stars), produces a corresponding dark mass E, then a subcomponent of mass m 
will generate a dark mass: 

𝑒 =
𝐸𝑚

𝑀
 

When expressed as a gravitational field, this implies that the spatial distribution of dark mass follows the distribution 
of baryonic mass—provided that the composition (stellar types, gas fraction) remains homogeneous. This directly 
recovers the empirically observed correlation between baryonic and dark mass profiles (23; 24), but here it arises 
naturally as a consequence of the gravitational field’s structure, rather than requiring a phenomenological 
assumption. 

Thus, the hypothesis that dark mass is generated by gravitational potential energy not only accounts for its magnitude 
but also provides a fundamental explanation for its spatial distribution. What had previously appeared mysterious—
the alignment between baryonic and dark matter—is shown here to be the logical consequence of field-based mass-
energy equivalence. 

Finally, this same gravitational potential energy offers a natural explanation for the emergence of negative pressure 
on cosmological scales. As gravitational interactions become progressively diluted with the increasing separation of 
structures, the macroscopic binding energy decreases—corresponding thermodynamically to an effective negative 
pressure. This pressure, derived directly from the evolution of the structured gravitational field, drives an accelerated 
expansion consistent with observations of dark energy. Thus, gravitational potential energy not only accounts for the 
dark mass, but can also generate the repulsive effect that governs the large-scale dynamics of the universe. 

The Problem of the Epistemological Obstacle 
Perhaps the most profound question raised by this work is why the role of gravitational potential energy in generating 
dark mass has remained unrecognized for so long. Both gravitational potential energy and the mass–energy 
equivalence relation E = mc2 are well-established principles, each supported by extensive experimental validation. 
Moreover, the concept of binding energy contributing to mass is not new: nuclear binding energy, for example, is 
well understood as a measurable mass defect in atomic systems, though its localization is typically attributed to the 
quantum field. 

The primary reason gravitational binding energy has been historically dismissed as a source of mass is the perception 
that gravity is too weak a force to produce significant energy effects. However, our results challenge this assumption. 
While nuclear binding energy yields modest contributions to mass on the scale of atomic nuclei—often a few 
percent—gravitational potential energy can generate dark mass equivalents many times greater. In galactic systems, 
the ratio of gravitational potential energy to baryonic mass can exceed a factor of 10, and in clusters or larger 
structures, this ratio can reach orders of magnitude higher. 

This contrast highlights a scale-dependent truth: gravity is weak on the quantum scale but becomes dominant on 
astronomical scales, while the strong nuclear force behaves inversely. Immense at the subatomic level but negligible 
beyond the nucleus. The failure to account for this scale dependence may explain why the gravitational origin of dark 
mass has remained obscured despite the theoretical and empirical tools needed to uncover it. 

Another major conceptual obstacle to recognizing the gravitational origin of dark mass lies in the widespread use of 
Newton's second theorem. Indeed, it allows a solid sphere to be considered as a point mass. This simplification 
naturally comes to mind when studying large stellar systems and has led to a poor understanding of what useful 
gravitational potential energy is. Traditional approaches focus on the relative position of celestial bodies, considered 
as point masses, emphasizing the term E = – GmM / d as the main contribution. However, as we have demonstrated, 
this term is negligible compared to the energy associated with a restructuring of the system—for example, the 
merger or separation of massive bodies—under conservation of volume density. 

The relevant potential energy does not result solely from distance, but from the energy difference between two 
distinct macroscopic states of the system. It is this transformation of state, respecting the physical properties of 
matter, that reveals the true energy content of the gravitational field. The historical focus on positional interaction, 
rather than on the internal reorganization of masses, has contributed to masking the role of potential energy as the 
real source of space-time curvature. By reconsidering potential energy as a quantity localized in the field and 
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generating mass, we find a physically coherent explanation of the dark mass phenomenon—already contained in 
classical gravitational theory, but which has remained unnoticed due to a discreet but decisive conceptual bias. 

Challenge of General Relativity and Theoretical Implications 
A deeper theoretical difficulty lies in the fact that Newtonian gravity (GN) is not the fundamental theory of 
gravitation—General Relativity (GR) is. Unlike GN, GR does not admit a general, global conservation law for energy. 
As Emmy Noether showed, conservation of energy in GR only holds under very specific symmetries, such as time-
translation invariance, which do not apply in dynamically evolving spacetimes. In particular, the notion of 
gravitational potential energy, central to Newtonian dynamics, does not have a direct, covariant analog in GR. 

This creates a conceptual tension: if a phenomenon as significant as the dark mass arises from gravitational potential 
energy, and this energy is absent or ill-defined in GR, then one must ask why Newtonian theory—a weak-field 
approximation—appears to succeed where the full relativistic theory offers no equivalent formulation. The challenge 
is philosophical as well as physical. 

Nevertheless, GN remains extraordinarily accurate in the weak-field regime and is vastly simpler to work with than 
GR. The dynamics of galaxies, where the gravitational field is weak and velocities are non-relativistic, fall squarely 
into this domain. In Newtonian gravity, the potential energy of the system is known, but to determine the correct 
dynamics, that energy must be reintroduced into the system—that is, it must be treated as a source of gravity. It is 
difficult to believe that GR would yield significantly better results unless the issue lies in an incomplete accounting of 
gravitational self-induction—the field's interaction with its own energy density (25; 26; 27; 28). If this is indeed the 
case, then the most natural resolution would be to find a weak-field expansion of GR in which this self-induction 
appears explicitly. In such a formulation, the gravitational potential energy term should re-emerge, but now as a 
derived, not postulated, quantity. 

More speculatively, the fact that gravity “recognizes” all forms of energy—including gravitational potential energy, 
long regarded as a mere computational artifact—suggests the existence of a deeper unifying principle. The Higgs 
field already hints at such a principle in a limited domain: it translates scalar potential energy into inertial mass for 
certain particles. Gravity appears to generalize this mechanism, coupling not just to scalar fields but to all forms of 
energy—kinetic, electromagnetic, nuclear, or gravitational. 

Speculative Developments 
Notably, no experiment has ever observed a violation of the equivalence between inertial and gravitational mass. 
This reinforces the idea that all energy, regardless of its origin, contributes equally to the gravitational field. In a 
quantum framework, this universality could point to a more fundamental origin: the graviton, rather than being an 
elementary particle, may be a Goldstone boson (29) emerging from the spontaneous breaking of a deeper spacetime 
symmetry (30; 31; 32; 33).  

If spacetime consists of locally flat, discrete units—atoms of geometry—then curvature could arise from their relative 
orientations, much like angular defects in a crystal lattice. In this view, mass-energy would correspond to geometric 
misalignments among these fundamental building blocks of space-time. The resulting macroscopic curvature would 
be an emergent phenomenon: the manifestation of how energy redistributes itself through the relational structure 
of the underlying geometry. 

That such an interpretation remains conceptually underappreciated may reflect not a lack of theoretical feasibility, 
but rather a persistent epistemic bias—a tendency to overlook well-established principles such as E = mc2 and 
gravitational potential energy as the foundation for a radically simple explanation. 

Although general relativity revolutionized our understanding of space and time, it does not exclude the existence of 
a flat, infinite, non-curved spacetime background—essentially, a Newtonian-like universe. Minkowski space is an 
exact solution of Einstein's equations in the absence of matter and energy, representing a limiting case in which the 
metric remains fixed, curvature vanishes, and time flows uniformly for all inertial observers. 

In this context, one may speak of a “universe at rest”, by analogy with a mass at rest: a geometrically inert state in 
which both space and time are “at rest.” Such a spacetime, devoid of intrinsic curvature, could serve as a conceptual 
background on which physical processes unfold—even if general relativity, in its full formulation, neither presumes 
nor requires such a background. 
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This perspective opens the door to a compelling idea: perhaps geometry is not inherently dynamic but becomes so 
only when interactions—such as gravity—disturb this fundamental rest state. In this view, the Newtonian universe 
would act as an implicit absolute frame of geometric rest, and general relativity would describe the deviations from 
it induced by energy and matter. This reinterpretation gives conceptual legitimacy back to gravitational potential 
energy as a real, geometrically meaningful quantity—and lays the theoretical groundwork for explaining dark mass 
not through exotic particles or modified gravity, but through a classical mechanism rooted in the self-interaction of 
the gravitational field itself. 

This raises a deeper implication. The very existence of gravitational potential energy—as a unified and measurable 
form of energy—presupposes the existence of a universal mechanism of energy storage at the most fundamental 
level. A compelling candidate is spacetime itself. If gravitational potential energy is real, then something must store 
that energy—and the only universally present structure is the spacetime manifold. This leads to a conceptual 
inversion of general relativity: rather than mass-energy curving spacetime, one could say that curvature itself gives 
rise to mass-energy. In this view, spacetime is not deformed by energy, but energy is the manifestation of spacetime’s 
internal geometric state. Gluons, despite being massless, are in fact the primary source of gravitational curvature in 
the universe.  

This central role of gluons finds deep theoretical support in recent work (34) who showed that gravitational scattering 
amplitudes can be constructed as double copies of non-Abelian gauge amplitudes, specifically those of gluons in 
QCD. Applying this structure to realistic theories such as the Standard Model requires accounting for spontaneous 
symmetry breaking—it reveals a deeper principle: gauge interactions already contain the structural seeds of gravity. 
In this light, the gluon, carrier of the binding energy that gives rise to mass and the dominant contributor to 
gravitational curvature, becomes a compelling candidate for a fundamental “atom of spacetime.” It unifies dynamic 
energy and geometry, and its mathematical structure is naturally predisposed to generate gravitation. This 
correspondence strongly supports the view that gravity is not a separate field, but the emergent geometric form of 
energy dynamics itself—including that of gauge fields. 

In this perspective, spacetime is not deformed by energy; rather, energy itself is a manifestation of the internal state 
of geometry. This interpretation naturally aligns with the equivalence principle, the universality of gravitational 
coupling, and even with global energy conservation—despite the presence of dynamic geometries. If correct, it 
implies that mass, inertia, and gravitation are not fundamental entities but emergent consequences of the geometric 
and connective structure of spacetime itself. The gravitational field would no longer be a mere force but an energetic 
reservoir—capable of storing and releasing mass through its own geometric configuration. 

Pushed to its extreme, emergence dissolves even the concept of time from space. There are no clocks in the 
universe—only interactions between particles (35; 36). The notion that what we call “time” is merely the sequential 
ordering of quantum events becomes not only plausible but natural, especially if gravity itself arises from the web of 
fundamental interactions. If such approaches have so far succeeded only in recovering Newtonian gravity, it may be 
because gravitational potential energy has been neglected as a physically real quantity—particularly its capacity for 
self-induction. Gravitational potential energy could very well be the final missing ingredient in the search for a unified 
framework. 

Final Remarks 
In conclusion, the study of dark mass does not require an alternative theory of gravitation, exotic particles, or even 
General Relativity. The framework of classical Newtonian mechanics, when extended to include the mass–energy 
equivalence E = mc2, proves sufficient. More importantly, we have demonstrated that simple, physically grounded 
models can accurately reproduce the magnitude and distribution of dark mass across a wide range of galactic 
systems. These models can be systematically improved—for example, by incorporating detailed stellar population 
synthesis, more accurate treatment of interstellar gas dynamics, or refined modeling of radial distributions. The same 
methodology may also be extended to larger cosmic structures such as galaxy clusters and superclusters. 

One conclusion is unavoidable: gravitational potential energy can no longer be neglected in discussions of galactic 
dynamics and the dark matter problem. Its inclusion provides both a quantitative and conceptual resolution to a 
long-standing astrophysical mystery. The C++ program used to perform all numerical calculations and generate the 
corresponding figures is freely available at: dark-mass-generator.sourceforge.io.  

http://dark-mass-generator.sourceforge.io/
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