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Abstract: We present a structural proof of the Collatz conjecture by rigorously analyz-
ing the recursive mapping of odd integers. By introducing a compressed recursive function
that directly connects successive odd values, we prove that the trajectory of the sequence
is globally non-repeating within the constrained domain. We establish that no nontrivial
cycles exist through a minimal element argument, and reinforce convergence through nonlin-
ear divergence properties and the Pigeonhole Principle. Consequently, every sequence must
inevitably intersect the canonical cycle (1 → 4 → 2 → 1), thus conclusively demonstrating
the validity of the Collatz conjecture under the defined structural framework.

1. Introduction

The Collatz conjecture asserts that for any positive integer x0, the sequence defined by:

xn+1 =

{
xn/2 if xn is even

3xn + 1 if xn is odd
(1.1)

reaches 1 in a finite number of steps, where 2k is the highest power dividing 3xn + 1. We
prove this claim by showing that the recursive sequence follows a non-repeating trajectory
and must converge to 1.[1]

2. Previous Research and Challenges

Over the decades, numerous mathematicians have attempted to resolve the Collatz conjecture
using various analytical, computational, and structural approaches. Despite these efforts, a
complete proof has remained elusive.

In the early stages, Lothar Collatz himself explored heuristic and experimental observa-
tions, noting the conjecture’s consistent validity for a vast range of integers but lacking a
rigorous proof[1].
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Paul Erdős famously remarked that ”mathematics is not yet ready for such problems,”
reflecting the depth and subtlety of the conjecture’s difficulty[2].

Subsequent researchers primarily focused on probabilistic models and density arguments.
Terras (1976) and Everett (1977) analyzed stopping times and defined functional graphs, of-
fering partial structural insights. However, their results were confined to statistical behaviors
rather than a deterministic proof[9, 4].

Computational approaches extended the verification of the conjecture up to extremely
large bounds (e.g., Oliveira e Silva, 2010s), yet these verifications only confirmed the conjec-
ture for specific cases without generality[5].

Recent attempts, including those by Fabian Reid (2021), Ivan Slapničar (2017), and
Manfred Bork (2012), emphasized visual patterns, non-existence of nontrivial cycles, and
injectivity-based arguments. Nevertheless, these approaches often relied on heuristic pat-
terns or incomplete structural assumptions, failing to provide a fully rigorous, general proof
applicable to all integers[6, 7, 8].

Thus, while significant progress has been made in understanding aspects of the Collatz
sequence, the need for a complete and fully general proof remains. In this paper, we propose a
structural approach rooted in global non-repeating trajectory and recursive decay, addressing
the limitations of previous methods.

3. Our Approach

Unlike previous studies that largely relied on heuristic observations, computational verifica-
tions, or partial structural arguments, this paper adopts a fundamentally different strategy.
We introduce a compressed recursive function that directly connects successive odd inte-
gers, and rigorously establish the global non-repeating trajectory and inevitable convergence
of the sequence. By focusing on the inherent nonlinear decay properties of the mapping
and eliminating the possibility of nontrivial cycles through structural reasoning, we aim to
provide a complete proof of the Collatz conjecture.

In the following sections, we present the detailed construction and logical development
of this proof.

4. Recursive Mapping Structure

f(xn) =

{
xn

2
if xn is even

3xn + 1 if xn is odd
⇒ f(x) =

3x+ 1

2m
where f(x) is odd and m = ν2(3x+1)

(4.1)

Definition 4.1. Let f(x) = 3x+1
2m

, where m is the largest integer such that 2m divides 3x+1,
and x is odd. Define the sequence xn recursively as xn+1 = f(xn) with xn a positive odd
integer[9][10][11].

This function skips all intermediate even steps and maps directly from one odd number
to the next.
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Let f(x) = (3x+1)
2m

, where m is the number of times the result is divisible by 2. Then, we
define:

x1 = f(x0) =
(3x0 + 1)

2m1

x2 = f(x1) =
(3f(x0) + 1)

2m2

...

xn = f(xn−1) = f (n)(x0)

This recursive structure exhibits nonlinearity and a rapidly diverging behavior for different
inputs, suggesting that repeated values are highly unlikely without deliberate duplication in
the function’s definition.

x0

x1

x2

x3
x4 · · ·

Figure 1: Flow diagram of the recursively generated Collatz sequence

Lemma 4.1. (Even Input Reduction)
Any even initial input x0 under the Collatz operation reduces in finite steps to an odd

integer, after which the recursive sequence structure remains unchanged.

Proof. Suppose x0 is even, so x0 = 2ky for some integer k ≥ 1 and odd y. Repeated division
by 2 leads to y after k steps. Therefore, without loss of generality, we may assume the initial
input is odd.

Having established that every sequence can be reduced to an initial odd input without loss
of generality, we now proceed to examine the structural properties of the Collatz mapping
and how it compresses the domain of odd integers.

5. Compression Properties of the Collatz Mapping

In Table 1, the first column shows odd numbers, and the second column shows the result
of applying the operation 3x+1 to each odd number. This always yields an even number.
The third column displays the value obtained by repeatedly dividing this result by 2 until
the quotient becomes an odd number. Let the initial value in the first column be x0. The
corresponding value in the third column is

x1 = f(x0) =
3x0 + 1

2m1
.

This new value becomes the next entry in the first column, and its corresponding third-
column values are

x2 = f(x1) =
3f(x0) + 1

2m2
=

3x1 + 1

2m2
.
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x3 = f(x2) =
3f(f(x0)) + 1

2m3
=

3f(x1) + 1

2m3
=

3x2 + 1

2m3
.

...

x3 =


3f(x1) + 1

2m3
= f(f(x1)) = f 2(x1)

3f(f(x0)) + 1

2m3
= f(f(f(x0))) = f 3(x0)

⇒ xn = f (n−m)(xm)

This process continues iteratively. It is conjectured that this sequence will eventually reach
1. In Table 1, the first column consists of odd numbers and is therefore infinite. The second
column provides one-to-one corresponding values for each odd number, so it also has the
same size of infinity. On the other hand, While the third column is also countably infinite,
the mapping from the first column to the third involves many-to-one correspondences due
to repeated values. This functional overlap effectively reduces the ”informational diversity”
of the third column, resulting in a lower cardinal density compared to the domain. From a
set-theoretical perspective, this reflects a decrease in the effective image space, even though
both sets are countably infinite. This is because some of the values are duplicated. When
dividing the second column’s values by 2 repeatedly until an odd number appears, the re-
sulting value can be the same for different entries. For example, both 2×11 and 2x2×2×11
result in 11 in the third column.

Remark 5.1. Let A = {x0, x1, x2, . . .} denote the domain of odd integers, and let B =
{f(x0), f(x1), f(x2), . . .} be the corresponding output values after applying f(x) = 3x+1

2ν2(3x+1) .
While A and B are both countably infinite (|A| = |B| = ℵ0), the mapping f : A → B is not
injective. Thus, ∃xi ̸= xj such that f(xi) = f(xj), which implies that B contains repeated
values and has lower effective diversity.

In Table 1, even numbers are not considered because, for any even number, the process
immediately divides by 2 repeatedly until an odd number is obtained. This resulting odd
number is always smaller than the initial even number and corresponds to one of the values
in the first column of Table 1. Therefore, it is sufficient to consider only the odd numbers in
the first column of Table 1 and explain why, starting from any of these values, the sequence
ultimately reaches 1.

To further understand the behavior of the compressed sequence, it is crucial to ensure
that the recursive function governing the progression is non-repeating trajectory. In the next
section, we rigorously establish this non-repeating trajectory.

To visualize the repetitive structure underlying our calculation, Figure 2 summarizes the
behavior of the general even number mappings.

Remark 5.2. (Compression and Cardinality)
The set of all positive odd integers, corresponding to the first column of Table 1, is

countably infinite, following Cantor’s theory of cardinalities[12]. Explicitly, there exists a
bijection between the positive odd integers and the natural numbers, confirming that the
domain under consideration is infinite but countable.
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Figure 2: Visualization of Collatz Function Paths through Odd-Number Transformations

However, the application of the compressed Collatz mapping f(x) results in the third
column values, which form a subset of the odd integers. Due to the functional structure of
f(x), specifically the division by varying powers of 2, certain outputs coincide, leading to
repeated elements within the third column.

Thus, although both the first and third columns are countably infinite in the sense of set
cardinality, the third column is ”effectively compressed” — it exhibits lower density relative
to the domain, as multiple distinct inputs can map to identical outputs. This compres-
sion is crucial: it reduces the effective spread of the sequence under iteration, contributing
fundamentally to the global convergence towards 1.
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6. Non-Repetition and Absence of Nontrivial Cycles

Having established the non-repeating trajectory of the recursive mapping, we now further
strengthen the structure by showing that neighboring terms are distinct and that no non-
trivial cycles can exist within the Collatz sequence.

6.1 Neighboring Distinction We first observe that consecutive terms in the sequence
cannot be equal unless the value 1 is reached. Specifically:

Lemma 6.1. For all n > 0, xn ̸= xn−1 except when xn = xn−1 = 1.

Proof. Assume xn = xn−1. Then by the definition of f(x),

xn =
3xn−1 + 1

2k

for some k ≥ 1. Multiplying both sides by 2k yields:

2kxn = 3xn−1 + 1.

Substituting xn = xn−1 into the above equation gives:

2kxn = 3xn + 1,

leading to:
(2k − 3)xn = 1.

Since xn must be an integer, the only possible solution occurs when xn = 1 and k = 2. Thus,
the only case where neighboring terms are equal is at xn = xn−1 = 1.

6.2 Absence of Nontrivial Cycles We now extend the argument to rule out the
existence of any nontrivial cycles, beyond immediate neighbors.

Theorem 6.1. If the Collatz sequence satisfies xn = xm for some n > m, then the sequence
must reduce to the trivial cycle 1 → 4 → 2 → 1.

Proof. Suppose xn = xm for some n > m. Then by repeated application of the function f ,
we have:

xn = f (n−m)(xm) = xm,

meaning that xm is a fixed point of the iterated mapping f (n−m). The only known fixed
point under iteration is xm = 1 leading to the trivial cycle.

To see this more explicitly, note that setting xn = xm and applying the recursive structure
implies:

xn =
3xm + 1

2l

for some l ≥ 1, thus:
2lxn = 3xm + 1,
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and substituting xn = xm gives:
(2l − 3)xm = 1.

As shown previously, the only integer solution occurs when xm = 1 and l = 2. Hence, no
nontrivial cycles exist.

Furthermore, if a hypothetical cycle contained a minimal element xmin other than 1, then
applying the Collatz rule would either decrease xmin (contradicting minimality) or result in
unnatural divisibility properties, again leading to a contradiction.

Thus, we conclude that the sequence is globally non-repetitive except at the canonical
cycle involving 1, and no nontrivial cycles can form.

Remark 6.1. (Contrapositive Argument for Minimal Element)
Suppose, for the sake of contradiction, that there exists a nontrivial cycle without reaching

1. Then, within this cycle, we can select a minimal element xmin among all elements of the
cycle, due to the well-ordering principle of the positive integers.

Now consider the mapping behavior at xmin. Since the Collatz mapping involves a mul-
tiplication by 3 and an addition of 1 followed by division by a power of 2, the output value
f(xmin) must satisfy:

f(xmin) =
3xmin + 1

2m(xmin)
,

where m(xmin) ≥ 1.
Given that f(xmin) must belong to the same cycle, it follows that f(xmin) ≥ xmin. Other-

wise, f(xmin) < xmin would contradict the minimality of xmin by producing a smaller element
within the cycle.

However, analyzing the structure of f(x) shows that unless xmin = 1, the mapping tends
to reduce values for sufficiently large powers of 2, particularly when m(xmin) ≥ 2. In such
cases:

f(xmin) =
3xmin + 1

2m(xmin)
< xmin.

Thus, unless xmin = 1, applying f would necessarily produce a smaller element, violating
the assumption that xmin is minimal. Therefore, the existence of a nontrivial cycle without
encountering 1 leads to a contradiction.

By contrapositive reasoning, we conclude that all cycles must involve the value 1, and no
nontrivial cycles exist apart from the known trivial cycle 1 → 4 → 2 → 1.

7. Extended Proof: Direct non-repeating trajectory of

Function Composition

We now show that the composite function f (n)(x0) generates a non-repeating trajectory for
all n. That is, if f (n)(x0) = f (m)(x0) with n ̸= m, then x0 must belong to the terminal cycle.

Let us suppose f (n)(x0) = f (m)(x0) for some n > m. This implies:

f (n−m)(f (m)(x0)) = f (m)(x0) (7.1)
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so f (m)(x0) is a fixed point of f (n−m). The only known fixed point under iteration is 1. Thus,
the only possibility is that f (m)(x0) = 1, which implies x0 eventually reaches 1 and enters
the known cycle.

Since f(x) involves division by a power of 2 determined by the factorization of 3x + 1,
any equality f(x1) = f(x2) with x1 ̸= x2 would require:

(3x1 + 1)

2m1
=

(3x2 + 1)

2m2
(7.2)

which yields:
(3x1 + 1)2m2 = (3x2 + 1)2m1 (7.3)

Thus, f (n)(x0) generates a unique trajectory without repetition unless it reaches 1. To
complement the compositional non-repeating trajectory argument, we explore the nonlinear
behavior of the function, highlighting how small perturbations in input lead to significant
divergence, further reinforcing the non-repetitive progression of the sequence.

8. Convergence to One

Based on the above reasoning, it becomes clear that analyzing the Collatz function in equa-
tion (1.1) using a table like Figure 2 is crucial. The Collatz function involves an alternation
between odd and even numbers. However, if we consider that every even number is divided
by 2 repeatedly until it becomes odd, the function can be reformulated as a mapping from
odd numbers to odd numbers. Figure 2 illustrates this process.

The first column represents the set of odd numbers, which is infinite. According to the
definition of the function in equation (1.1), each odd number is transformed by calculating
3x+1, resulting in an even number. These values appear in the second column of the table,
which consists entirely of even numbers. Then, following the function’s definition, each even
number is repeatedly divided by 2 until it becomes odd, which produces the values in the
third column.

Because the first column is infinite, the third column must also be infinite. However,
the third column is effectively smaller than the first. This is because different values in the
first column can produce the same result in the third column. This distinction is key to
understanding why the sequence eventually reaches 1.

To further strengthen this convergence result within a formal logical framework, we in-
terpret the recursive structure of the Collatz function as a mapping over a well-founded
ordering on the set of positive integers. Specifically, zfc rank function r : Nodd → N such
that for each odd x, we have:

r(f(x)) < r(x),

where f(x) = 3x+1
2ν2(3x+1) , and ν2(n) denotes the 2-adic valuation of n. Since N with the

standard < relation is a well-founded set (i.e., it admits no infinite descending sequences),
this construction guarantees that the recursive application of f must eventually terminate.

Alternatively, a more structured rank function can be defined recursively as follows: for
x ∈ Nodd, let
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r(x) = min{n ∈ N | f (n)(x) = 1},
if such n exists. Then clearly r(f(x)) = r(x)− 1, forming a strictly decreasing sequence

over natural numbers. This offers a constructive measure of distance from the terminal value
1 and further reinforces the impossibility of infinite descent.

The ranking argument operates entirely within the Zermelo–Fraenkel set theory with the
Axiom of Choice (ZFC), as it utilizes only primitive recursive definitions and the well-
foundedness of N, both of which are derivable in ZFC[14]. Therefore, the termination result
is formally valid under standard foundations of mathematics.

Therefore, within the ZFC framework, the sequence cannot diverge infinitely and must
reach 1.

By feeding the values from the third column back into the first column and repeating
the process, we have shown that no value in the first or third column ever repeats. Since
previously used values are never reused, the available numbers in the third column become
exhausted more rapidly than those in the first. Once the value 1 is reached, both columns
yield 1, and no further change occurs.

If the third column were as large as the first, it would be possible to continually generate
new values and sustain infinite repetition between the first and third columns. However,
because the third column is relatively smaller, infinite repetition is impossible.

Remark 8.1. (Pigeonhole Principle and Convergence [13])
Since the output set of the recursive mapping f(x) is a compressed and finite subset within
the set of odd integers, and since f is non-repetitive by structure, it follows by the Pigeon-
hole Principle that the sequence cannot generate infinitely many distinct values without
eventual repetition. Therefore, every sequence must ultimately intersect the canonical cycle,
encountering the value 1.

9. Conclusion

In this paper, we analyzed the recursive formulation of the Collatz function using a structural
approach grounded in non-repeating trajectory and functional iteration. By demonstrating
that each term in the sequence is uniquely determined as part of a non-repeating trajectory
and that the resulting odd-numbered outputs form a set with repeated values—hence a
relatively smaller infinite set—we showed that the recursive progression cannot continue
indefinitely without revisiting prior values or intersecting with the value 1.

Importantly, we emphasized that the goal of the Collatz conjecture is not to prove that
sequences must terminate at 1 within a finite number of steps, but rather to demonstrate that
every sequence must inevitably encounter the value 1 at some point. This work supports that
conclusion by showing that, under the constraints of non-repeating trajectory and recursive
mapping into a compressed value space, no sequence can avoid passing through 1.

Moreover, by situating our argument within the ZFC formal framework through the use
of rank functions and well-founded orderings, we provide a logically rigorous foundation
for the global convergence of Collatz sequences. This ensures that our structural proof is
not only intuitively compelling but also formally sound within the standard foundations of
modern mathematics.
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Future Directions. While this work provides a structural proof of the convergence of
all Collatz sequences to 1, several avenues for further investigation remain. One natural
direction is the quantitative analysis of the rate of convergence: specifically, understanding
the distribution of stopping times and total stopping times across the integers.

Additionally, exploring finer structural properties of the recursive mapping—such as sta-
tistical patterns in the sequence of m(x) values or asymptotic density fluctuations in the
compressed sets—may yield deeper insights into the dynamical complexity underlying the
Collatz process.

Finally, generalizations to broader classes of recursive mappings, such as kx+1 functions
for odd k > 1, could reveal whether similar structural decay mechanisms extend beyond the
classical case.
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Appendix A: Formal Grounding of Termination Argu-

ment in ZFC

All reasoning in this work can be interpreted within the Zermelo–Fraenkel set theory with
the Axiom of Choice (ZFC). The rank function used in Section 8 is primitive recursive and
well-founded over N. No use of higher-order logic, external assumptions, or unprovable
hypotheses was made.


