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Abstract 

Conventional wisdom says that the formation of large-scale structures in cosmology 

follows from the evolution of density perturbations under the combined effect of 

gravitation and cosmic expansion. We survey here the reasons why this framework fails 

to hold in primordial cosmology, due to the severe limitations placed on the Friedmann-

Robertson-Walker (FRW) metric, the continuity hypothesis and the standard equations 

of fluid flows. We insist that understanding primordial cosmology must rely instead on 

a complex dynamics model of evolving dimensional fluctuations, conjectured to come into 

play far above the electroweak scale. A key outcome of this model is the universal 

generation of topological defects and condensates emerging from the complex Ginzburg-

Landau equation.  
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1. Introduction 

Relativistic cosmology models the Universe as a nearly homogeneous and 

isotropic expanding spacetime, as described by the FRW metric. In this 

framework, the observed large-scale structure of the Universe (galaxies, 

clusters, cosmic web including voids, filaments, halos etc.) develops from 

small perturbations of the smooth overall background. Perturbations are 

studied through cosmological perturbation theory (CPT), which tracks how 

primordial inhomogeneities evolve into large-scale structures from 

fluctuations in energy density, pressure, and spacetime curvature. Despite 

its undisputed successes, CPT remains however inadequate for the study of 

early Universe formation, on spacetime-scales approaching the Planck 

regime. 
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The goal of this report is to survey the reasons why CPT fails to hold in 

primordial cosmology, due to the severe limitations placed on the FRW 

metric, the continuity hypothesis and the standard equations of fluid flows. 

In our view, understanding of primordial cosmology must rely instead on a 

complex dynamics model of evolving dimensional fluctuations, conjectured to 

come into play far above the electroweak scale. A key outcome of this model 

is the universal generation of topological defects and topological condensates 

emerging from the complex Ginzburg-Landau equation (CGLE).  

The report is organized as follows: next section is a condensed review of how 

scalar density perturbations are dealt with in standard cosmology. Section 3 

goes over the limitations of the FRW model and CPT in explaining structure 

formation in primordial cosmology. Section 4 details our perspective on the 

complex dynamics of primordial dimensional fluctuations and their impact on 

structure formation via CGLE and self-organization.  
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For the sake of clarity and accessibility, the report is designed in a “user-

friendly” format, with emphasis on pedagogical exposition rather than 

formal derivations.   

2. Scalar Density Perturbations in Standard Cosmology 

We start by reviewing the evolution equation of scalar density perturbations 

in the standard model of cosmology (the Lambda-CDM model) [1 - 4]. Let 

( , )x t  denote the local matter or energy density. The main parameter of 

interest in CPT is the density perturbation, which quantifies the local density 

deviation normalized to the average density of the Universe, 

 
( , ) ( , )

( , )
x t x t

x t
 


 

 −
= =  (1) 

The density perturbation (1) can be studied in Fourier space using the 

decomposition in modes of momenta k , 

 3( , ) ( )exp( )kx t d k t i k x =   (2) 
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Statistical distribution of modes is described using the concept of power 

spectrum ( )P k . Observations indicate that the amplitude of density 

perturbations is nearly scale invariant, meaning that it stays roughly the same 

across all length scales. As a result, primordial fluctuations carry about the 

same strength and large- and small-scale structures start off with nearly 

similar density perturbations. In terms of the power spectrum, one has 

 1( ) snP k k −  (3) 

in which sn  denotes the scalar spectral index. While 1sn =  corresponds to exact 

scale invariance, observations hint that 0.965sn  , which shows an actual 

slight red tilt (meaning more power allocated to large scales). 

The linear scalar perturbations to a flat FRW metric takes the form 

 2 2 2( )[ (1 2 ) (1 2 ) ]ji
ijds a d dx dx  = − +  + −   (4) 

where   is the conformal time and ,   are scalar potentials (with = , if 

there are no anisotropic stresses). Relation (2) defines the FRW metric in the 
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so-called conformal Newtonian gauge. There are two key equations of CPT in 

Fourier space, namely, 

a) The continuity equation reflecting energy conservation and given by, 

 2(1 )( 3 ) 3 ( ) 0sw H c w  + + −  + − =  (5) 

b) Euler equation reflecting momentum conservation and written as, 

 
2 2

2(1 3 ) 0
1 1

sk cw
H w k

w w
   + − + − −  =

+ +
 (6) 

Here, 'H a a=  is the conformal Hubble parameter, 'a da d= , w p = , 

2
sc p =  is the square of the sound speed and j

ji k v i k v = =  stands for 

the velocity potential with wavevector k  . 

Using (5) – (6), the equation for the evolution of scalar perturbations in the 

Lambda-CDM Universe assumes the form, 

 2 4 0H G   + − =    (Newtonian limit) (7) 

The full relativistic equation beyond the Newtonian limit (7) reads 
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 2 2 2( , ) ( , , , , ) ( )sA H w B c k a w S   + + =   (8) 

in which (...)A , (...)B  are functions of variables indicated in (8) and ( )S   is 

the source term induced by  .     

3. Limitations of FRW Cosmology in the Primordial Universe 

While being adequate in describing the late dynamics of the Universe, FRW 

cosmology faces crucial limitations when applied to the evolution of the 

primordial Universe: 

1) Along with General Relativity (GR), FRW breaks down near the Big Bang 

singularity where large and highly unstable curvature fluctuations ruin the 

smooth topology of ordinary four-dimensional spacetime. It is also conceivable 

that, in line with the Dimensional Reduction conjecture [11], spacetime 

dimensionality drops down in some continuous but unpredictable fashion.   

2) The cosmological principle posits a smooth (differentiable) and uniform 

Universe, yet these assumptions are bound to be violated near the Big-Bang 
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singularity, as hinted by the Sakharov conditions for baryogenesis and the 

far-from-equilibrium properties of Planck physics. In the same context, 

strong nonlinearities associated with (1), that is, (1)O =  are prone to ruin 

the basis of the entire CPT model.   

3) FRW does not naturally explain the horizon and flatness puzzles of 

cosmology without fine-tuned initial conditions—issues typically resolved 

by inflation, which is still hypothetical and external to the Lambda-CDM 

paradigm. 

4) FRW lacks a mechanism of structure formation from primordial 

fluctuations as it serves only as a background for inflationary cosmology. 

5) The relevance of quantum gravity effects near the Planck scale remains 

highly controversial [14]. 

6) The continuity equation (5) fails when mass/energy/momenta are not 

conserved due to the presence of sources or sinks. Likewise, Bianchi 

identities of GR break down under strong curvature fluctuations (the local 
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spacetime manifold becomes non-smooth and singular) or when the effects 

of deterministic or stochastic chaos cannot be discarded (as implied from the 

generic nonintegrability of Hamiltonian systems [15]). 

7) Fluid equations of the type (6) become invalid in the presence of boundary 

layers, unpredictable dissipation or turbulence, shocks, non-Newtonian 

stress-strain relationship or rarefied flow conditions.    

5. Beyond CPT with Complex Dynamics of Dimensional Fluctuations. 

It is generally believed that, if the ongoing cosmological observations 

continue to diverge from predictions, our current formulation of Lambda-

CDM may require a fundamental paradigm shift. Parallel with the current 

situation in cosmology, independent research indicates that nonlinear 

dynamics of far-from-equilibrium systems has universal features linking the 

complex Ginzburg-Landau equation (CGLE) with the tenets of Quantum 

Field Theory (QFT), Standard Model of Particle Physics (SM) and the high-

energy regime of primordial gravitation [16 – 18, Appendix]. Here we 
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consolidate this view by arguing that CGLE lies behind structure formation 

in cosmology and the emergence of topological defects and condensates in high-

energy physics. From this standpoint, complex dynamics appears to provide 

the most sensible way out of the current crisis in cosmology. Building upon 

the ideas of [12], the next paragraph elaborates on the emergence of CGLE 

from the dynamics of dimensional fluctuations. 

5.1 CGLE from Dimensional Fluctuations above the Electroweak Scale  

Reaction-Diffusion (RD) processes are a subset of complex phenomena 

defined within the framework of Nonequilibrium Statistical Physics. These 

models are typically formulated in 1d+  dimensions, where d  is the 

dimension of the Euclidean manifold representing the physical space and t  

is the time coordinate. Ref. [12] develops a toy RD model acting on a two-

dimensional lattice ( 2)d = , whose local variables are time-varying 

dimensional fluctuations ( ) [2 ( )]t d t = − . The model includes a scattering 

event at rate D , a clustering event at rate u  and a decay (or percolation) event 
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at rate c  = − , with   being a control parameter nearing its critical value 

c . Up to a leading order approximation, the macroscopic properties of RD 

processes may be encoded in a mean-field (MF) equation, which quantifies 

the competition between losses and gains in a generic density parameter 

( )t . In particular, the decay/percolation process occurs with a rate 

proportional to ( )t  and leads to a gain in density. By contrast, the 

clustering process drops the density with a rate proportional to 2( )u t . 

Ignoring diffusion, the resulting MF equation takes the form  

 2( )
( ) ( )

t
t u t

t


 


= −


 (9) 

In the context of [12] the control parameter ( ) [ ( )]t t  =  represents the 

density of dimensional fluctuations ( ) 1t   while ( )t  denotes the density of 

active  (or unstable) lattice sites. A straightforward extrapolation of (9) is given 

by the system of coupled partial differential equations    

 1
1 1 1 2

( , )
( , ) ( , , )

x t
D x t f

t


   


=  +


 (10a) 
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 2
2 2 1 2

( , )
( , ) ( , , )

x t
D x t g

t


   


=  +


 (10b) 

According to [12] and references therein, an arbitrary solution of (10) lying 

near the bifurcation point at 0   can be expressed through a complex-valued 

function ( , )r   obeying the CGLE in one spatial dimension, 

 
2

2

2
(1 ) (1 )i i

r

 
  


 

= + + − +
 

 (11) 

Here, the set of new coordinates is given by  

 r x=  (12a) 

 2t =  (12b) 

where, 

 1 2 1 2
0( ) ( ) 1c    = −  −   (13) 

As it is known, CGLE represents a nonlinear partial differential equation 

which serves as a universal model for the onset of spatiotemporal dynamics 
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in nonlinear systems. It is especially helpful in the study of critical behavior 

where order parameters emerge – such as superfluidity, superconductivity, 

turbulence, Bose-Einstein condensation, nonlinear waves and pattern 

formation. In (11) ( , )r   acts as order parameter, ,   are real coefficients 

accounting for diffusion and nonlinear effects, respectively. Stated 

differently, the term ( , )r   stands for the linear growth or decay, the 

Laplacian measures the contribution of diffusion and the nonlinear term 

2
  embodies the contribution of self-interaction.       

5.2 Cosmological Structure Formation from CGLE   

Pattern/structure formation and self-organization emerging from CGLE is a 

rich and active research topic, with applications across various disciplines. 

To avoid excessive information and to stimulate further independent 

analysis, here we limit the discussion to few representative examples.  

a) Topological defects are localized regions where the order parameter is 

singular or undefined – like points, lines or surfaces around which the phase 
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of   winds in some nontrivial manner. In two- and three dimensions, typical 

examples include vortices (points where 0 =  and the phase of  = arg( )  

winds by 2 n around the core), domain walls are interfaces between regions 

with different phase or amplitude configurations, and dislocations/spirals 

which are phase defects of wavefronts in pattern forming systems.  

In the context of CGLE, topological defects emerge from broken symmetry and 

solutions with nontrivial phase structures. They form spontaneously from 

instabilities, noise or as remnants of quenched phase transitions (Kibble-

Zurek mechanism). The so-called winding number (or topological charge) 

quantifies the phase change around defects. 

b) Topological condensates represent coherent and long-lived, often self-

organized macroscopic structures formed by the aggregation of topological 

defects.  

Fig. 1 below is a visualization of a topological vortex arising from CGLE. The 

left panel shows the amplitude of the order parameter  , which vanishes 
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at the center (the vortex core). The right panel shows the phase, which winds 

by 2  around the core and defines the topological charge of the vortex.   

 

Fig. 1: Visualization of a topological vortex derived from CGLE.  

It is instructive to note that topological defects can be regarded as dual objects 

to the elementary particles of high-energy physics, as highlighted by the 

table and symbolic diagram shown below. According to this view, there is 

an intriguing analogy in how symmetries and topology lead to conserved 

quantities and defects [5 – 10]. 
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Vortex lattices derived from CGLE are periodic arrangements of vortices, 

forming structured patterns in the complex amplitude field. They represent 

a self-organized state of the underlying nonlinear system, often found in 2D 

simulations or real-world systems near oscillatory instabilities. The 
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evolution of vortex lattices is a complex interplay of self-organization, 

turbulence, and external influences, leading to a variety of dynamic phases 

and structural transitions. Fig 2 displays snapshots of a two-dimensional 

order parameter 
2

( , , )x y t taken at various time intervals. It illustrates how 

structure changes dynamically over time, exhibiting features common in the 

evolution of vortex lattices and cosmic voids / halos.  

 

 

Fig. 2: Evolving 2D vortex lattices as analog of cosmic voids.  
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Fig. 3 visualizes the evolution of vortex lines in the three-dimensional (3D) 

CGLE, which echoes the formation of helical strings in the cosmic web. This 

structure develops from the instability of vortex filaments in the high-

dispersion limit of (11), namely 1   [13].  

 

Fig. 3: Evolution of vortex lines in 3D CGLE. 
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6. Discussion 

There are well motivated reasons why, due to their inherent assumptions 

and constraints, both FRW and CPT models are inadequate for 

understanding structure formation in primordial cosmology. By contrast, 

there are compelling hints that a framework based on complex dynamics of 

evolving dimensional fluctuations is essential for explaining primordial 

cosmology, as it connects to phenomena occurring far above the electroweak 

scale. The proposed framework builds upon the universal generation of 

topological defects and condensates associated with the complex Ginzburg-

Landau equation (CGLE). The main benefit of this proposal is that the 

premises of CGLE are independent from any formulation of classical gravity, 

classical Thermodynamics or the theory of fluid flows. In addition, the 

duality of cosmological structure formation and topological solutions of 

Quantum Field Theory is likely to bring unforeseen insights into future 

model building efforts. 
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APPENDIX 

From CGLE to the Standard Model of Particle Physics (SM) 

CGLE is sometimes quoted in the form 

 
2

2

2
(1 ) (1 )b i i

r

 
  


 

= + + − +
 

 (A1) 

with 1b  . Under the assumption that there is no dissipation (spatial 

homogeneity), taking 0 = , rescaling the order parameter ,a a    →→  

( 1a  ) and substituting it in (A1) yields 

 
22b a


  




= −


 (A2) 

Furthermore, if the order parameter reduces to a scalar field ( → ), side 

by side comparison of (A2) with the flow equation (12) of the Higgs potential 

in [19], gives the identification 

 2 2)
( )

2 ( 2


  



= − = −


v

V
 (A3) 
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 22b v=  (A4) 

 2 4a =  (A5) 

Here, ,v  denote the self-interaction coupling and vacuum expectation 

value of the Higgs scalar, respectively. By (A2) – (A5) and following [18 - 20], 

leads to the conclusion that CGLE recovers the entire flavor structure of the 

SM via successive bifurcations.  
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