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1. Abstract

Quantum gravity continues to pose signi�cant challenges in theoretical physics, including

the reconciliation of general relativity with quantum mechanics, the nature of time, and

the small observed value of the cosmological constant. This paper proposes the Minimal

Causal-Informational Model of Emergent Space-Time (MCIMES), a new framework that

explores quantum information as a possible foundation for physical reality, suggesting

that space-time and gravity may emerge from it. Using an abstract interaction graph

and drawing on quantum information theory, MCIMES o�ers a perspective in which

space-time arises as an emergent phenomenon, providing potential explanations for its

three-dimensionality and the arrow of time through entropic processes. The model

suggests an approach to the cosmological constant issue, producing a value aligned with

observations without requiring �ne-tuning, and puts forward testable predictions, such

as a dark energy equation of state parameter w = −0.97 ± 0.01 and speci�c quantum

corrections to black hole entropy. While recognizing its current limitations, MCIMES

o�ers an information-based, background-independent viewpoint that seeks to address

key questions in quantum gravity and encourages further exploration and testing.

2. Introduction

Quantum gravity remains one of the most signi�cant unsolved problems in modern

theoretical physics [1]. Existing approaches face numerous fundamental di�culties:

incompatibility of general relativity (GR) with quantum mechanics, the problem of time,

resolution of cosmological singularities, and the mysterious smallness of the cosmological

constant (on the order of 10−123 in Planck units) [2, 3].

This article presents the Minimal Causal-Informational Model of Emergent Space-Time

(MCIMES), o�ering a relatively new approach to quantum gravity. The model is

based on the idea that quantum information, rather than space-time and matter, is

the fundamental entity from which all physical structures emerge [6].

The author is fully aware of the weaknesses of the proposed model. Its development

was motivated by the following considerations: 1) General relativity demonstrated

such a level of relativity in the basic components of classical physics that it calls into

question their potential "fundamentality" [7]; 2) Intuition suggests that organizational

laws of more complex systems, although not reducible to the properties of their

components, nevertheless arise from them and their synergy [8]; 3) Quantum mechanics

has demonstrated the highest level of reliability and seems extraordinarily close to the

perfect description of the most basic foundations of the physical world [9]; 4) A realistic

model unifying quantum and relativistic physics should be su�ciently simple in the

sense that it should not contain key elements introduced ad hoc [10].

The proposed model, developed based on the assumptions described above, contains

virtually no fundamentally new elements that have not been experimentally veri�ed by



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 3

modern physics. The author has sought to adhere to the principle of "Occam's razor."

In this respect, the model is quite simple and allows for a number of falsi�able predictive

hypotheses [13]. However, it relies on the global quantum state as a fundamental object

from which space-time emerges. The apparent theoretical elegance of the model is largely

related to this, transforming the global quantum state into something of a Deus ex

Machina [12]. The ontological problem associated with the interpretation of "quantum

information" as the "foundation" of the observable physical world is also evident.

Moreover, the signi�cant number of testable predictions increases to a critical level

the risk that the model will demonstrate its fundamental error even at the stage of

initial testing [13]. Nevertheless, the author's determination to present this model for

discussion stems from the deep conviction that even negative results of testing the

predictions of such a model, which combines well-known and repeatedly veri�ed elements

in a su�ciently simple and obvious manner, can bring great bene�t to our deepening

understanding of physical reality [14].

MCIMES di�ers from other approaches to quantum gravity in the following key features:

• Complete independence from background space-time (background independence)

[1, 15]

• Emergent appearance of space-time from quantum-informational relations [6, 16]

• Natural explanation of the three-dimensionality of space [17]

• Explanation of the small value of the cosmological constant without �ne-tuning

[2, 18]

• Speci�c quantitatively testable predictions [19]

Unlike many competing theories, MCIMES does not a priori postulate the existence

of space-time, but rather derives it as an emergent property of a more fundamental

informational structure [6, 21].

The article is organized as follows. Section 2 discusses the philosophical foundations

of the model. Section 3 formulates the axiomatic foundations in the form of a system

of postulates. Section 4 presents the mathematical formalism of the model. Section 5

describes the mechanism of emergence of space-time and gravity. Section 6 examines

the physical consequences and predictions of the model. Section 7 compares it with

other approaches to quantum gravity. Section 8 contains the conclusion and discussion

of directions for further development of the theory.

3. Philosophical Foundations

MCIMES proposes an ontological shift that may seem radical to some: from the

traditional view of space-time and matter as primary elements of reality to quantum
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information as a more fundamental entity [6, 25]. In this paradigm, space-time is

not the primary arena in which physical processes unfold, but emerges from quantum-

informational relations between fundamental subsystems [16].

This approach fundamentally di�ers from most other approaches to quantum gravity.

In string theory, space-time is often assumed to be given (although it can be modi�ed)

[20], while in loop quantum gravity (LQG), the geometry of space-time is quantized

[5]. In MCIMES, space-time is completely derived from more fundamental quantum-

informational relations [26].

The philosophical position of MCIMES can be characterized as information monism:

information is considered the fundamental substance from which all other physical

structures emerge [27]. This has profound implications for understanding the nature

of reality and is consistent with some modern interpretations of quantum mechanics, for

example, with information-theoretical approaches [28, 29].

The MCIMES approach resonates with Wheeler's ideas of "it from bit" (everything

from information) [22], but goes somewhat further, formulating a speci�c mathematical

mechanism for the emergence of space-time from quantum-informational relations

[23]. The model also has connections with Rovelli's concept of "relational quantum

mechanics," where physical reality is viewed as a network of relations between observers

[15].

It is important to note that MCIMES is not a purely philosophical concept, but

represents a physical theoretical model with a speci�c mathematical formalism and

testable predictions [19].

4. Axiomatic Foundations

MCIMES is based on the following fundamental postulates:

4.1. Postulate 1 (Primacy of Quantum Information over Geometry)

The fundamental entity of the model is not space-time or matter, but quantum

information, from which all physical structures emerge [6, 25].

Mathematical formulation:

(i) The basic object of the model is an abstract interaction graph G = (V,E), not

assuming an initial embedding in any physical space [30]:

• V � set of vertices (quantum subsystems)

• E ⊂ V × V � set of edges (informational interactions)

(ii) Each vertex i ∈ V is associated with a local Hilbert space Hi [9]
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(iii) The global Hilbert space is de�ned as the tensor product of the local ones [24]:

HG =
⊗
i∈V

Hi (1)

(iv) The global quantum state |Ψ⟩ ∈ HG or density operator ρ completely describes the

state of the entire system [35]

4.2. Postulate 2 (Background Independence)

All physical laws and observables must be formulated without relying on a pre-given

space-time structure [1, 15].

An element of the model X is background-independent if and only if:

(i) The de�nition of X contains no references to space-time concepts

(ii) X is invariant with respect to all automorphisms of the algebraic structure

(iii) The physical interpretation of X does not depend on the speci�c representation of

the structure

(iv) The properties of X can be fully expressed through informational functionals [11]

4.3. Postulate 3 (Emergence of Space-Time)

Space-time and its metric structure are not postulated a priori, but arise from the

dynamics of information-causal relations between quantum subsystems [16, 31].

Mathematical formulation:

(i) Emergent metric: The metric structure of emergent space-time is de�ned through

informational distances between subsystems [23, 36]:

dI(i, j) =

√√√√− ln

(
I(i : j)√
S(ρi)S(ρj)

)
(2)

where I(i : j) is the mutual information between subsystems, S(ρi) is the von

Neumann entropy.

(ii) Entropic time: The direction and "pace" of time are de�ned through the change

of entanglement entropy [19, 37]:

tentr =

∫ t

0

F

(
2∑
p=0

wp
dS(p)(t′)

dt′

)
dt′ (3)

where S(p)(t′) is the entanglement entropy of patterns of degree p.
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4.4. Postulate 4 (Principle of Minimal Information Loss)

The structure of fundamental interactions and the dynamics of the system are optimized

according to the criterion of minimizing the loss of quantum information when dividing

the global system into subsystems [21, 39].

Mathematical formulation:

(i) Information loss functional for an abstract graph:

L(G) =
∑
i∈V

S(ρi)− S(ρ) (4)

where S(ρi) = −Tr(ρi ln ρi) is the von Neumann entropy of the reduced state, and

S(ρ) is the entropy of the global state [36].

(ii) The optimal structure of the interaction graph minimizes this functional:

Gopt = argmin
G
L(G) (5)

4.5. Postulate 5 (Physical Realism of Interactions)

Physically realistic interactions between subsystems must satisfy the principles of

locality, �nite energy, and extensivity [22, 40].

An interaction graph G = (V,E) satis�es the principle of locality if:

(i) It is sparse: ∀v ∈ V : deg(v) = O(log |V |)

(ii) The strength of interaction (correlation) between subsystems decreases with

distance

(iii) The graph allows embedding in a space of small �xed dimension with low metric

distortion [17]

4.6. Postulate 6 (Quantum Evolution and Discrete Covariance)

The dynamics of the system obeys the laws of quantum theory and possesses invariance

with respect to di�erent "trajectories" of growth of the interaction graph [9, 42].

Mathematical formulation:

(i) Quantum dynamics: At each elementary step of evolution:

|Ψn+1⟩ = Ûn |Ψn⟩ (6)

where Ûn is a local unitary operator [24].

(ii) Discrete covariance: Di�erent sequences of local transformations leading to

isomorphic �nal graphs are physically equivalent [43].



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 7

4.7. Postulate 7 (Cosmological Constant as a Measure of Quantum Relative Entropy)

The cosmological constant emerges as a measure of quantum relative entropy between

the current and reference states of the global system [2, 23].

Mathematical formulation: The cosmological constant is de�ned by the expression

[36, 44]:

Λ =
1

2κ
TrH[D(|ψ⟩ ⟨ψ| || |ψref⟩ ⟨ψref|)] (7)

whereD(ρ||σ) = Tr(ρ ln ρ−ρ ln σ) is quantum relative entropy, |ψ⟩ is the global quantum
state, |ψref⟩ =

⊗
i∈V |0i⟩ is the reference state with minimal correlations, and κ =

ℓ2P
8πG

.

4.8. Postulate 8 (Entropic Initial State and Clock Subsystems)

The arrow of time manifests only in the presence of a correlation gradient, which requires

low entropy in the initial state of the system [19, 37].

5. Mathematical Formalism

5.1. Abstract Algebraic Structure of Relations

The fundamental object of the model is the algebraic structure of relations A = (S,R),

where S is an abstract set of indices corresponding to elementary algebraic objects,

and R ⊂ S × S is the connectivity relation between indices, de�ning informational

interactions [30].

This structure can be represented by an equivalent interaction graph G = (V,E), where:

• V = S � set of vertices corresponding to elementary subsystems

• E = {(i, j) ∈ S × S | (i, j) ∈ R} � set of edges corresponding to informational

interactions

It is fundamentally important that the graph G does not assume an initial embedding

in any physical space, but represents a purely algebraic structure, which is consistent

with the principle of background independence [1, 18].

For each index i ∈ S, an elementary algebraic subspace Hi is de�ned as an abstract

Hilbert space with inner product ⟨·, ·⟩i : Hi ×Hi → C [35].

The composite algebraic space is de�ned as the tensor product of elementary subspaces:

HA =
⊗
i∈S

Hi (8)

The global quantum state |Ψ⟩ ∈ HA is de�ned as a unit norm vector (⟨Ψ|Ψ⟩ = 1).

Alternatively, the state can be speci�ed by a density operator ρ : HA → HA, where

ρ = ρ† ≥ 0 and Tr(ρ) = 1 [24].



Minimal Causal-Informational Model of Emergent Space-Time (MCIMES) 8

For a subset of vertices A ⊂ V , the reduced algebraic state ρA is de�ned as the partial

trace of the global state ρ over the complementary degrees of freedom:

ρA = TrV \A(ρ) (9)

The operator algebra B(HA) consists of all bounded linear operators on HA. For each

subsystem i ∈ S, a local operator algebra B(Hi) is de�ned, acting non-trivially only on

Hi [46].

For each pair of interacting subsystems (i, j) ∈ R, an interaction operator is de�ned as:

T̂ij =
∑
α

Ôα
i ⊗ Ôα

j ⊗ IS\{i,j} (10)

where Ôα
i ∈ B(Hi), Ô

α
j ∈ B(Hj), and IS\{i,j} denotes the identity operator on all other

subspaces [40].

This formalism fully implements the principle of primacy of quantum information over

geometry, since space-time is not postulated a priori, but emerges from informational

relations between quantum subsystems [6, 25]. All physical dynamics are formulated

in terms of changes in quantum correlations, not in terms of a pre-existing space-time

structure.

5.2. Reduced States and Information Measures

For a subset of vertices A ⊂ V , the reduced algebraic state ρA is de�ned as the partial

trace of the global state ρ over the complementary degrees of freedom:

ρA = TrV \A(ρ) (11)

The von Neumann entropy for the reduced state ρA is de�ned as [36]:

S(ρA) = −Tr(ρA ln ρA) = −
∑
i

λi lnλi (12)

where λi are the eigenvalues of the operator ρA.

The mutual information between two subsystems A,B ⊂ V is de�ned as [47]:

I(A : B) = S(ρA) + S(ρB)− S(ρA∪B) (13)

5.3. Information Distance and Emergent Metric

The information distance between subsystems i and j is de�ned as [25, 48]:

dI(i, j) =

√√√√− ln

(
I(i : j)√
S(ρi)S(ρj)

)
(14)
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provided that I(i : j) > 0 and S(ρi), S(ρj) > 0.

In the thermodynamic limit (|V | → ∞), the information distance dI satis�es all the

axioms of a metric:

(i) Non-negativity: dI(i, j) ≥ 0

(ii) Identity of indiscernibles: dI(i, j) = 0 ⇐⇒ i = j

(iii) Symmetry: dI(i, j) = dI(j, i)

(iv) Triangle inequality: dI(i, k) ≤ dI(i, j) + dI(j, k)

The most important result arising from the presented approach is the fact that the

emergent metric structure of space-time is completely determined through informational

distances between quantum subsystems. In particular, the introduced formula [16, 31]

dI(i, j) =

√√√√− ln

(
I(i : j)√
S(ρi)S(ρj)

)
(15)

de�nes a metric distance, where I(i : j) represents the mutual information between

subsystems i and j, and S(ρi) and S(ρj) are the von Neumann entropies of their reduced

states. This formula not only satis�es all the axioms of a metric space (non-negativity,

symmetry, identity of indiscernibles, and triangle inequality), but also emphasizes that

the geometric structure of emergent space-time arises directly from the correlation

structure of the quantum state of the system.

The metric operator D̂µν on the graph G = (V,E) has the form [49]:

D̂µν =
∑
i,j∈V

2∑
p,q=0

c
(p,q)
ij (Ôµ

i )
(p) ⊗ (Ôν

j )
(q) (16)

where c
(p,q)
ij are coe�cients determined by quantum correlations, and (Ôµ

i )
(p) are

operators corresponding to information patterns of degree p.

For the time component, we de�ne (Ô0
i )

(p) = ip̂
(p)
i (imaginary unit multiplied by the

momentum operator), and for spatial components (Ôk
i )

(p) = q̂
k(p)
i (coordinate operators).

The emergent metric is de�ned as the quantum average of the metric operator:

gµν(x) = ⟨D̂µν(x)⟩ (17)

5.4. Information Loss Functional

For a quantum system described by a global quantum state ρ on an interaction graph

G = (V,E), the information loss functional L(ρ,G) is de�ned as [21, 39]:

L(ρ,G) =
∑
i∈V

S(ρi)− S(ρ) (18)
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In the class of physically admissible information functionals, only a functional of the

form L(G) = α
(∑

i∈V S(ρi)− S(ρ)
)
, where α > 0 is a positive constant, satis�es the

conditions of invariance, additivity, monotonicity, and positivity [36].

5.5. Inevitability of Lorentzian Signature

In the thermodynamic limit, the emergent metric gµν(x) = ⟨D̂µν(x)⟩ inevitably acquires
a Lorentzian signature (−,+,+,+) for physically realizable quantum states with positive

correlations [50].

Proof (scheme): For the metric operator, de�ned through the time component

(Ô0
i )

(p) = ip̂
(p)
i and spatial components (Ôk

i )
(p) = q̂

k(p)
i , when calculating expectation

values we get [49]:

(i) Time component: g00 = −
∑

i,j

∑
p,q c

(p,q)
ij (x)⟨p̂(p)i ⊗ p̂

(q)
j ⟩ < 0, since c

(p,q)
ij (x) > 0 and

⟨p̂(p)i ⊗ p̂
(q)
j ⟩ > 0.

(ii) Spatial components: gkk =
∑

i,j

∑
p,q c

(p,q)
ij (x)⟨q̂k(p)i ⊗ q̂

k(q)
j ⟩ > 0.

(iii) Mixed components: g0k ≈ 0 due to the di�erent parity of the operators [46].

Thus, the metric has a diagonal form with signature (−,+,+,+).

5.6. Categorical Representation of Relation Structure and Functor Transition

For a deeper understanding of the background-independent nature of MCIMES, a

categorical approach is needed, which creates a rigorous mathematical bridge between

the algebraic structure of relations and the quantum dynamics of the system [43].

The algebraic structure of relations A = (S,R) can be represented as a category CA,

where [45]:

• Objects of the category � elements of the set S (elementary subsystems)

• Morphisms of the category � for each pair (i, j) ∈ R there exists a morphism

fij : i→ j

• Composition of morphisms fjk ◦ fij = fik is de�ned for all (i, j), (j, k) ∈ R through

the transitive closure of the relation R

• Identity morphisms idi : i→ i are de�ned for each i ∈ S

The connection between the categorical and graph representations is established by the

theorem that the category CA is isomorphic to the path category of the directed graph

G = (V,E), where V = S and E = {(i, j)|(i, j) ∈ R}.

The category of quantum processes QProc is de�ned as follows [42]:

• Objects � graph con�gurations Gt = (Vt, Et), indexed by the evolution parameter t
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• Morphisms � Et1→t2 : Gt1 → Gt2 � quantum processes that transform one

con�guration into another

• Composition � Et2→t3 ◦ Et1→t2 = Et1→t3 � sequential application of processes

The category QProc is a symmetric monoidal category with the following structures:

• Tensor product of objects: G1 ⊗ G2 represents the independent coexistence of

con�gurations

• Tensor product of morphisms: E1⊗E2 represents the parallel execution of processes

• Natural isomorphisms of associativity, unitarity, and commutativity

The quantization functor Q : CA → Hilb from the category of relation structure to the

category of Hilbert spaces Hilb is de�ned as [24]:

• For each object i ∈ CA, the functor Q assigns a Hilbert space Q(i) = Hi

• For each morphism fij : i → j, the functor Q assigns a linear operator Q(fij) :

Hi → Hj

The state functor S : QProc → DensOp from the category of quantum processes to

the category of density operators DensOp is de�ned as:

• For each object Gt ∈ QProc, the functor S assigns a density operator S(Gt) =

ρ(Gt)

• For each morphism Et1→t2 , the functor S assigns a quantum channel S(Et1→t2)

The functors Q and S are coordinated in the sense that for any two con�gurations

G1 and G2 connected by evolution E1→2, the corresponding change in quantum state is

described by a quantum channel:

ρ(G2) = S(E1→2)[ρ(G1)] (19)

The causal structure of the category QProc is expressed through a partial order on

objects and a "forgetting the future" functor, which implements the axiom of minimal

initial conditions and ensures causality of the emergent space-time [15, 37].

The categorical approach allows establishing the invariance of the theory with respect to

isomorphisms of the category, which con�rms its background independence and ensures

the independence of physical predictions from the choice of a speci�c parameterization

of the causal order of events.

5.7. Hamiltonian Evolution and Dynamics of the Interaction Graph

The central element of the dynamic description of the MCIMES model is the

construction of the global Hamiltonian of the system, which determines the evolution
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of the quantum state of the interaction graph. A fundamental feature of this approach

is the possibility of representing the global Hamiltonian as a sum of local and pairwise

interactions [40].

For an interaction graph G = (V,E), the global Hamiltonian has the form:

ĤG =
∑
i∈V

Ĥi +
∑

(i,j)∈E

Ĥij (20)

where Ĥi are operators acting only on individual subsystems i, and Ĥij are interaction

operators between subsystems i and j.

Such a decomposition of the Hamiltonian naturally arises from the expansion of

operators in a basis, taking into account the principle of locality of interactions. For

physically realistic systems, the coe�cients for many-body interactions (three- and more-

body) decrease exponentially with the increase in the number of involved subsystems,

which allows us to limit ourselves in the �rst approximation to only one- and two-body

interactions.

It is important to emphasize that the structure of the graph G = (V,E) is not given a

priori, but is determined by the structure of the Hamiltonian itself � edges (i, j) exist

only between those vertices for which the corresponding interactions Ĥij are non-trivial.

Thus, the interaction graph arises directly from the structure of quantum-informational

correlations.

The dynamics of the system is determined by the quantum evolution of the state |Ψ⟩
according to the Schrödinger equation [9, 40]:

iℏ
d |Ψ⟩
dt

= ĤG |Ψ⟩ (21)

In the discrete representation, at each elementary step of evolution:

|Ψn+1⟩ = Ûn |Ψn⟩ (22)

where Ûn is a local unitary operator acting only on a limited subset of vertices and edges

of the graph.

The sequential application of such local unitary transformations generates global

dynamics which, according to the principle of minimal information loss, tends toward

con�gurations with an optimal structure of quantum correlations. It is this dynamics

that ensures the emergent appearance of metric structure, preservation of causal order,

and self-consistency of evolution with covariance conditions.

The variational principle for the total action of the system [23, 39]:

Stotal = Squantum + Sgeom + Sconstraint (23)
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where the quantum part of the action has the form:

Squantum =

∫
dt
(
⟨ψ|iℏ∂t|ψ⟩ − ⟨ψ|ĤG|ψ⟩

)
(24)

leads to a coupled system of equations for quantum and geometric degrees of freedom,

which ensures the self-consistency of the evolution of the entire system.

Thus, the Hamiltonian, constructed on the basis of local and pairwise interactions,

not only determines the energy structure of the system but also provides the dynamic

evolution of the interaction graph, which ultimately leads to the emergent appearance

of space-time geometry with the necessary symmetries and conservation laws [16].

6. Emergence of Space-Time and Gravity

6.1. Mechanism of Geometry Emergence

The central idea of MCIMES is that space-time is not fundamental, but emerges from

quantum-informational relations between elementary subsystems [6, 16]. Let's consider

in more detail the mechanism of this emergence.

The abstract interaction graph G = (V,E) describes the structure of informational

relations between elementary quantum subsystems. This graph is initially not embedded

in any space, but represents a purely algebraic structure [30].

On this graph, informational measures are de�ned, such as the von Neumann entropy

S(ρi) for individual subsystems and the mutual information I(i : j) between subsystems.

These informational measures allow de�ning the information distance dI(i, j) between

subsystems according to the formula [25, 48]:

dI(i, j) =

√√√√− ln

(
I(i : j)√
S(ρi)S(ρj)

)
(25)

In the thermodynamic limit (|V | → ∞), this information distance satis�es all the axioms

of a metric, which allows considering the set of graph vertices as a metric space.

The optimal structure of the interaction graph, minimizing the information loss

functional L(G) [21], turns out to be embeddable in three-dimensional space with

small metric distortions. This explains why the observed physical space is three-

dimensional: this dimensionality optimizes the balance between locality of interactions

and information capacity [17, 51].

Quantum correlations between subsystems generate not only spatial metric but also the

time dimension through entropic time [19, 37]:

tentr =

∫ t

0

F

(
2∑
p=0

wp
dS(p)(t′)

dt′

)
dt′ (26)
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The direction of time is determined by the growth of entanglement entropy, which

provides a natural explanation for the arrow of time [38, 53].

6.2. Connection with Einstein's Equations

In the continuum limit, minimization of the information functional leads to equations

isomorphic to Einstein's equations [7, 18]:

Gµν = 8πGTµν (27)

where Gµν is the Einstein tensor, and Tµν is the energy-momentum tensor.

The principle of minimal information loss is a key element of the MCIMES model, since

it determines the optimal con�guration of the interaction graph, minimizing the leakage

of information when decomposing the global quantum state into local subsystems.

Mathematically, this principle is expressed through the functional [23, 54]:

L(G) =
∑
i∈V

S(ρi)− S(ρ) (28)

where S(ρi) is the entropy of the reduced state of an individual subsystem, and S(ρ)

is the entropy of the global state. Applying the variational principle, we seek such a

con�guration of the graph Gopt for which the functional L(G) reaches a minimum while

observing given constraints, such as energy conservation and the principle of locality.

An interesting result is that in the limit of continuous distribution of subsystems,

minimization of L(G) leads to equations isomorphic to Einstein's equations. Speci�cally,

the variational condition:

δ

δG
[L(G) + λ1C(G) + λ2E(G)] = 0 (29)

where C(G) and E(G) are functionals characterizing the complexity of the graph and

its energy properties, and λ1 and λ2 are Lagrange multipliers, in the continuous limit

transitions to equations of the form:

Gµν = 8πGTµν (30)

where Gµν is the Einstein tensor, and Tµν represents the distribution of energy and

quantum information in the system. Thus, the principle of minimal information loss

not only determines the optimal structure of the interaction graph but also ensures

the emergent appearance of the metric structure of space-time, connecting microscopic

informational correlations with macroscopic gravitational e�ects.

This means that Einstein's general theory of relativity emerges as an e�ective theory

describing the dynamics of informational structure on large scales and at low energies

[10, 26].
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Quantum corrections to Einstein's equations have the form [55]:

Gµν = 8πGTµν +
1√
N
Q(1)
µν +

1

N
Q(2)
µν +O

(
1

N3/2

)
(31)

where Q
(1)
µν and Q

(2)
µν are tensors of �rst- and second-order quantum corrections,

respectively, and N is the number of degrees of freedom.

These corrections become signi�cant only at Planck scales, which explains why classical

general relativity works perfectly at macroscopic scales [50, 56].

6.3. Entropic Time and the Arrow of Time

Within MCIMES, two dual natures of time are distinguished: parametric and entropic.

This division has fundamental importance for understanding the nature of time and

explaining its unidirectionality.

Parametric time t is an abstract parameter of the evolution of the quantum state of

the system |Ψ(t)⟩ in the Hilbert space HG, de�ned by the Schrödinger equation [9, 42]:

iℏ
d |Ψ(t)⟩
dt

= ĤG |Ψ(t)⟩ (32)

where ĤG is the Hamiltonian of the interaction graph G = (V,E). Parametric time

serves as a formal tool for describing unitary evolution but does not possess intrinsic

directionality.

In contrast, entropic time tentr arises from the change in entanglement entropy

between subsystems and is de�ned as [19, 37]:

tentr =

∫ t

0

F

(
2∑
p=0

wp
dS(p)(t′)

dt′

)
dt′ (33)

where:

• S(p)(t′) is the entanglement entropy of patterns of degree p

• wp =
Dp∑2
q=0Dq

are weight coe�cients with Dp =
(
d
p

)
• F (x) is a smoothing function of the form F (x) = x+|x|

2(1+x2)
+ εx+|x|

2

It is fundamentally important that for physical systems with the number of subsystems

|V | > Ncrit, the derivative of entropic time with respect to parametric time is strictly

positive [38, 57]:
dtentr
dt

> 0 (34)

for almost all moments of parametric time t (except for a set of measure zero). This

provides a natural explanation for the arrow of time as a consequence of the growth of

entanglement entropy in su�ciently large systems.
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The probability of observing a decrease in entanglement entropy is exponentially small

with the size of the system [21, 58]:

P

(
dS(t)

dt
< 0

)
≤ e−α|V | (35)

where α > 0 is a constant depending on the intensity of interactions.

In the thermodynamic limit (|V | → ∞), the rate of change of entanglement entropy

tends to a constant value s∞(ρ0, ĤG), and entropic time �ows quasi-uniformly relative

to parametric time with �uctuations of order O(|V |−1/2).

Thus, entropic time emerges as an emergent property of quantum-informational relations

between subsystems and provides a natural explanation for the directionality of time

without the need to introduce additional postulates [37, 59].

7. Physical Consequences and Predictions

7.1. Cosmological Constant

One of the features of MCIMES is a natural explanation for the small value of the

cosmological constant without the need for �ne-tuning of parameters [2, 18].

Within the model, the cosmological constant is de�ned as [36, 44]:

Λ =
1

2κ
TrH[D(|ψ⟩ ⟨ψ| || |ψref⟩ ⟨ψref|)] (36)

where D(ρ||σ) is quantum relative entropy, |ψ⟩ is the global quantum state, |ψref⟩ =⊗
i∈V |0i⟩ is the reference state, and κ =

ℓ2P
8πG

.

In explicit form:

Λ =
1

2κ

2∑
p,q=0

wpq · T (p, q) ·
∑
i̸=j

(C
(p,q)
ij )2 · Ftop (37)

The smallness of the cosmological constant in the MCIMES model arises naturally as

the product of an information-topological factor and the e�ective number of correlated

degrees of freedom [23, 52]:

Λ ∼ (1− β) ·Ne� ∼ 5.9× 10−31 · 4.3× 10−93 ∼ 10−123 (38)

The theoretically predicted value is [19, 61]:

Λtheor = (1.9± 0.7)× 10−123 (39)

in Planck units, which agrees with the observed value Λobs ≈ 1.1× 10−123.
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In the MCIMES model, the cosmological constant has a natural information-theoretical

justi�cation, being de�ned as a measure of quantum relative entropy between the current

global quantum state and the reference vacuum state:

Λ =
1

2κ
TrH[D(|ψ⟩ ⟨ψ| || |ψref⟩ ⟨ψref|)] (40)

whereD(ρ||σ) = Tr(ρ ln ρ−ρ ln σ) is quantum relative entropy, |ψ⟩ is the global quantum
state, |ψref⟩ =

⊗
i∈V |0i⟩ is the reference factorized state, and κ =

ℓ2P
8πG

.

It is fundamentally important that the smallness of the cosmological constant in the

MCIMES model arises naturally as the product of two small factors:

Λ ∼ (1− β) ·Ne� ∼ 5.9× 10−31 · 4.3× 10−93 ∼ 10−123 (41)

where:

• (1 − β) ≈ 5.9 × 10−31 is the deviation from perfect linearity in the information

structure, related to the topology of space-time

• Ne� ≈ 4.3× 10−93 is the e�ective number of correlated degrees of freedom, taking

into account the exponential decay of correlations

• β = 1− c
|V |1/d is a parameter determined by the topological constant c = 2.74±0.12

and the number of degrees of freedom |V | ≈ 1092

The topological constant c has a rigorous mathematical origin from the universal

properties of three-dimensional space:

c = (d− 1) · d · Γ(d/2)
πd/2

·
∑

p(−1)p · p · bp(Kψ(θc))∑
p bp(Kψ(θc))

(42)

where bp(Kψ(θc)) are the Betti numbers of the correlation complex at the critical

threshold θc.

The number of degrees of freedom |V | ≈ 1092 is determined by the holographic principle,

according to which the maximum information capacity of the Universe with Hubble

radius RH is [17, 33]:

Imax =
πR2

H

Gℏ
· ln 2 ≈ 2.22× 10122 bits (43)

It is important to emphasize that |V | functionally depends on the size of the Universe:

|V | ∝ R2−ε, where ε ≈ 0.03 is a small correction related to the logarithmic dependence.

Thus, the smallness of the cosmological constant Λ ∼ 10−123 is an inevitable consequence

of the informational structure of the optimal interaction graph, not the result of �ne-

tuning of parameters. This mechanism represents an elegant solution to one of the most

di�cult problems in modern theoretical physics, not requiring the introduction of ad

hoc hypotheses or the anthropic principle.
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7.2. Dark Energy State Parameter

The MCIMES model predicts for the dark energy state parameter the value [27, 62]:

w0 = −1 + δw = −1 +
c

3|V |1/3
= −1 +

2.74± 0.12

3 · (1092)1/3
= −0.97± 0.01 (44)

where |V | ≈ 1092 is the number of fundamental degrees of freedom of the observable

Universe, and c = 2.74± 0.12 is a topological constant.

The state parameter depends on redshift according to the formula:

w(z) = −1 +
αβV β−1

0 (1− β)(1 + z)−3(β−1)

k + αβV β−1
0 (1 + z)−3(β−1)

(45)

where β = 1− c
|V |1/d = 0.99± 0.003.

When substituting numerical values, we get the following predictions:

• w(z = 0) = −0.97± 0.01

• w(z = 0.5) = −0.98± 0.01

• w(z = 1.0) = −0.99± 0.01

• w(z = 2.0) = −0.995± 0.005

This di�ers from the value w = −1 for pure cosmological constant (the ΛCDM model)

and is an experimentally testable prediction [27, 63].

7.3. Quantum Corrections to Black Hole Entropy

The MCIMES model predicts the following formula for black hole entropy with quantum

corrections [28, 64]:

SBH =
A

4G
− 3

2
log

(
A

G

)
+ βBH +O

(
G

A

)
(46)

where:

• A is the area of the event horizon of the black hole

• G is the gravitational constant

• βBH = 2.00 ± 0.17 is a constant determined by the topological properties of the

horizon

• The �rst term corresponds to the classical Bekenstein-Hawking entropy

• The second term represents the logarithmic quantum correction
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The coe�cient α = −3
2
before the logarithmic term is topologically protected and is

determined by the formula:

α = −1

2

2∑
p,q=0

wpq · dim(Vp,q) (47)

For an arbitrary d-dimensional space-time [65]:

α(d) = −(d− 2)(d− 1)

4
(48)

which for d = 4 gives α = −3
2
.

7.4. Spectrum of Quantum Fluctuations of the Metric

In the MCIMES model, quantum �uctuations of the metric play a key role in determining

the stability and dynamics of emergent space-time. By analyzing the metric operator,

represented as a sum of local contributions, it can be shown that the relative �uctuations

δgµν/gµν decrease inversely proportional to the square root of the number of elementary

subsystems |V | [55]:
δgµν
gµν

∼ κ√
|V |

(49)

where κ is a dimensionless coe�cient of order unity, depending on the type of state

and structural features of the interaction graph. Such scaling means that in the

thermodynamic limit, when the number of degrees of freedom tends to in�nity, quantum

�uctuations of the metric become negligibly small, which ensures the smoothness of

emergent geometry and its approximation to the classical description of the gravitational

�eld.

In the thermodynamic limit (|V | → ∞), the spectral density of metric �uctuations has

a universal form [67]:

S(ω) =
S0

ω
·

[
1 + β

(
ω

ω0

)2

− γ ln

(
ω

ω0

)
+O

((
ω

ω0

)4
)]−1/2

(50)

where:

• S0 =
κℏ√
|V |

is the amplitude of �uctuations

• ω0 =
v
ξ
is the characteristic frequency

• β = (d−1)2

2(2d−1)
= 0.18± 0.03 for d = 3 is a universal constant

• γ = c
|V |1/d ≈ 2.74

|V |1/3 is a small parameter
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For the observable Universe with the number of degrees of freedom |V | ≈ 1092, the

relative �uctuations of the metric are on the order of 10−46, which is far beyond the

capabilities of current experimental direct measurement. Nevertheless, in analogous

quantum systems, such as a Bose-Einstein condensate with the number of atoms

N ≈ 105, a spectral density of density �uctuations with measurable parameters is

predicted [68].

7.5. Scalar-Tensor Correlations in Primordial Fluctuations

The MCIMES model predicts the existence of non-trivial correlations between scalar

and tensor modes of primordial cosmological perturbations [19, 69]:

⟨Φ(k)hij(k′)⟩ = PΦh(k)δ(k+ k′) (51)

where PΦh(k) is the cross-spectrum with a characteristic scale dependence:

PΦh(k) = P0

(
k

k0

)nΦh

[1 + αΦh ln(k/k0)] (52)

with parameters P0 = (2.3± 0.4)× 10−11, nΦh ≈ −0.03± 0.01, αΦh ≈ 0.02± 0.01.

8. Comparison with Other Models

8.1. Loop Quantum Gravity (LQG)

Loop Quantum Gravity (LQG) is one of the leading directions in the �eld of quantum

gravity [5, 55]. Both models share the principle of background independence, but there

are fundamental di�erences in their approaches.

In LQG, the geometry of space-time is quantized, and the fundamental objects are

spin networks and spin foams [11]. MCIMES, on the contrary, considers space-

time as a completely emergent phenomenon arising from more fundamental quantum-

informational relations [16].

LQG successfully provides a discrete spectrum of area and volume operators, which

potentially solves the problem of singularities [72]. However, LQG faces di�culties

in explaining the small value of the cosmological constant and does not provide such

speci�c quantitative predictions as MCIMES [2].

Moreover, in LQG, time is not an emergent phenomenon, and the problem of time is

solved through a relational approach [15]. In MCIMES, time naturally arises as entropic

time, associated with the change in entanglement entropy [37].

8.2. String Theory

String theory represents a radically di�erent approach to quantum gravity, in which the

fundamental objects are not point particles, but one-dimensional strings [4, 20].
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Unlike MCIMES, string theory usually requires a background space-time for

formulation (although M-theory and some non-perturbative approaches may weaken

this dependence) [73]. Moreover, string theory requires 10 or 11 dimensions, of which

6-7 are compacti�ed, while MCIMES naturally predicts 3+1 dimensions [23, 51].

String theory has a rich mathematical structure and potentially can unify all

fundamental interactions [13]. However, it does not give a speci�c prediction for the

cosmological constant and often faces the problem of the string landscape, which includes

a huge number of possible vacuum states [74].

MCIMES, on the other hand, provides speci�c quantitative predictions for the

cosmological constant and the dark energy state parameter, which are consistent with

observations [19, 27].

8.3. Causal Dynamical Triangulations (CDT)

Causal Dynamical Triangulations (CDT) represent an approach to quantum gravity

based on the discretization of space-time using simplices with the introduction of causal

structure [7, 75].

Like MCIMES, CDT does not assume a priori geometry of space-time and allows it

to emerge dynamically. In addition, both theories naturally lead to 3+1-dimensional

space-time [51].

However, CDT focuses on discretization of geometry, while MCIMES considers quantum

information as a more fundamental entity [6]. In addition, CDT does not provide speci�c

predictions for the cosmological constant and the dark energy state parameter [19, 27].

8.4. Asymptotic Safety Program

The Asymptotic Safety Program assumes that gravity is described by an ordinary

quantum �eld theory, which becomes massless in the ultraviolet limit due to a non-

trivial �xed point of the renormalization group �ow [29, 76].

Unlike MCIMES, the Asymptotic Safety Program is based on the continuum structure

of space-time and does not consider space-time as an emergent phenomenon [1]. In

addition, it is not completely background-independent.

Although the Asymptotic Safety Program potentially can explain the small value of the

cosmological constant through renormalization group mechanisms [77], it has not yet

provided speci�c quantitative predictions [23].

8.5. AdS/CFT Correspondence (Holographic Principle)

The AdS/CFT correspondence postulates equivalence between string theory in the bulk

of Anti-de Sitter space and conformal �eld theory on its boundary [30, 78].
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Like MCIMES, AdS/CFT contains holographic aspects, where information about a

three-dimensional system can be encoded on its two-dimensional boundary [17, 33].

However, AdS/CFT usually requires speci�c geometry (Anti-de Sitter space), while

MCIMES does not make a priori geometric assumptions [16].

AdS/CFT provides powerful tools for studying strongly coupled quantum systems and

black holes [79], but so far does not give speci�c predictions for the cosmological constant

and the dark energy state parameter [2, 18].

8.6. Comparative Table

Table 1. Comparative table of quantum gravity approaches
Criterion MCIMES String The-

ory

Loop QG Causal

Dyn. Tri-

ang.

Asymp.

Safety

AdS/CFT

Space-time di-

mensionality

3+1 (emergent) 10/11 (postu-

lated)

3+1 (built-

in)

3+1 (emer-

gent)

3+1 (built-

in)

depends on

impl.

Background

independence

complete limited complete partial partial dual

Fundamental

ontology

quantum info strings and

branes

quantized

geom. elem.
simplices quantum

metric �eld

dual

Experimental

testability

speci�c predictions:

w = −0.97± 0.01,

SBH coe�. − 3
2 ,

spectrum 1/f

indirect, via

low-energy

approx.

limited limited limited via

GR

via dual sys-

tems

Cosmological

constant

Λtheor =

(1.9± 0.7)

×10−123

(Planck units)

does not pre-

dict

does not pre-

dict

does not pre-

dict

does not pre-

dict

depends on

model

Locality emergent non-local

strings

discrete discrete standard

LQF

non-local du-

ality

Unitarity preserved preserved

violated when

topology

changes

depends on

params
preserved preserved

Consistency math. justi�ed
depends on

version

actively

researched

depends on

regime
researched for AdS

geom.

Interpretation

of black holes

SBH = A
4G − 3

2

log
(
A
G

)
+βBH

+O
(
G
A

) string states spin net-

works

geometric modi�ed GR holographic

Quantum cor-

rections

Gµν = 8πGTµν

+ 1√
N
Q

(1)
µν

+ 1
NQ

(2)
µν

+O
(

1
N3/2

) depend on

model

discretization
depend on

triangulation
renorm-

group

1/N expan-

sion

Emergence of

space-time

complete string partial complete limited holographic
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9. Conclusion

In this article, we have presented the Minimal Causal-Informational Model of Emergent

Space-Time (MCIMES) � a relatively new approach to quantum gravity, in which

quantum information is considered the fundamental entity, and space-time and gravity

emerge from informational relations between quantum subsystems [6, 16].

9.1. Main Results

MCIMES hopes to solve several key problems of quantum gravity:

(i) The problem of background independence: The model is completely

background-independent, as space-time is not postulated a priori, but emerges from

more fundamental quantum-informational relations [1, 18].

(ii) The problem of space-time dimensionality: The three-dimensionality of space

naturally emerges as the minimum of the information complexity functional [17, 51].

(iii) The problem of the cosmological constant: The model predicts the numerical

value of the cosmological constant Λ ≈ 10−123 (in Planck units) without the need

for �ne-tuning of parameters [2, 19].

(iv) The problem of the black hole information paradox: The information

paradox is naturally resolved, as the informational structure is preserved, and

geometry is secondary [28, 64].

(v) The problem of time: Time emerges as entropic time, associated with the change

in entanglement entropy, which provides a natural explanation for the arrow of time

[37, 53].

Additionally, MCIMES provides speci�c quantitative predictions that can be

experimentally tested:

• Dark energy state parameter w = −0.97 ± 0.01, di�erent from the value w = −1

for pure cosmological constant [27].

• Logarithmic correction to black hole entropy with coe�cient −3
2
[65].

• Spectrum of quantum �uctuations of the metric of the form S(ω) ∝ ω−1, testable

in analogous quantum systems [67].

• Non-trivial correlations between scalar and tensor modes of primordial cosmological

perturbations [69].

9.2. Comparison with Criteria for Quantum Gravity

MCIMES seems to satisfy the main criteria required of a theory of quantum gravity:
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(i) Consistency with quantum mechanics: The model is based on the quantum-

mechanical description of informational relations between subsystems [9, 35].

(ii) Recovery of GR in the classical limit: In the continuum limit, minimization

of the information functional leads to equations isomorphic to Einstein's equations

[10, 23].

(iii) Resolution of singularities: Singularities are resolved due to the emergent nature

of space-time and quantum corrections to the metric [55, 72].

(iv) Predictive power: The model provides speci�c quantitative predictions that can

be experimentally tested [19, 60].

(v) Mathematical rigor: The model relies on a rigorous mathematical formalism of

information theory, quantum mechanics, and graph theory [11, 45].

9.3. Directions for Future Research

The development of MCIMES opens up many promising directions for future research:

(i) Integration with the Standard Model: Extension of the formalism to include

fermionic degrees of freedom and gauge interactions [32, 80].

(ii) Quantum cosmology: Development of detailed models of the early Universe and

mechanisms of cosmological in�ation within MCIMES [62, 81].

(iii) Quantum information dynamics of black holes: In-depth study of black

hole evaporation processes and information preservation from the perspective of

MCIMES [64, 66].

(iv) Numerical modeling: Development of e�ective computational methods for

modeling the evolution of the interaction graph and the emergence of space-time

[42, 82].

(v) Experimental veri�cation of predictions: Development of speci�c experimen-

tal schemes for testing MCIMES predictions in analogous quantum systems, cos-

mological observations, and astrophysical measurements [19, 70].

(vi) Quantum phase transitions: Investigation of possible quantum phase transitions

in the structure of space-time and their observable consequences [83].

(vii) Quantum �eld theory: Construction of quantum �eld theory based on the

introduction of real interacting particles from the outset, rather than using the

arti�cial representation of �ctitious free �elds [49, 84].
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9.4. Concluding Remarks

MCIMES represents a relatively new approach to quantum gravity based on the idea

of the primacy of quantum information over geometry. This approach not only o�ers

an elegant solution to a number of fundamental problems in physics but also provides

speci�c quantitative predictions, which is not quite typical for theories of quantum

gravity [6, 23].

The informational approach to space-time and gravity opens new perspectives for

understanding the fundamental structure of reality and, potentially, can lead to

important conceptual and experimental developments in theoretical physics, even if

the speci�c model is falsi�ed in the Popperian sense [34, 60]. The author hopes that the

ideas and results presented in this article will stimulate further research in this direction

and lead to a deeper understanding of the nature of space, time, and gravity [71, 86].
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