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Abstract 

   This paper is an extension of a paper by the author where a quantization of classical spinning 

particle equations is carried out using the Euler angles of the particle.   Relativistic corrections  

are found and compared to the Foldy-Wouthuysen transformation of the Dirac equation.   In the  

first section we only consider constant weak electric and magnetic fields, and find agreement to 

all orders of 1/c2.   We then look at a more general situation and compare our quantization  

method to that of Chiou and Chen again for constant weak fields.   In the last section we  

consider a general constant magnetic field with no electric field and look at the difference 

between this result and the Foldy-Wouthuysen transformation when strong magnetic field 

terms are included. 
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I.Introduction 

   This paper is an extension of a previous paper by the author [1], referred to as the initial paper 

in this article.  The initial paper is based on the equations of motion for a relativistic spinning 

charge in an external electric and magnetic field. These equations can be found in Jackson [2]. 

Only weak constant external fields are considered when an electric field is included, that is we 

are only keeping linear field terms.  Using the Euler angles and particle position as degrees of 

freedom, a Lagrangian and Hamiltonian are found for these equations and then the system is  

quantized using the method of Bopp and Haag [3].    

  In the initial paper we found that we could quantize the system up to third order in 1/c2, and 

found agreement with the Foldy-Wouthuysen transformation [4] of the Dirac equation.   More on   

the Dirac equation can be found in Sakurai [5].   In this extension of the initial paper we find a 

solution to all orders of 1/c2 which agrees with the Foldy-Wouthuysen transformation as found 

in Chiou and Chen [6]. 

   We then look at our quantization method in a more general situation and find an expression of 

the quantization method that agrees with that of Chiou and Chen [7].    In the last section we 

consider a situation where there is no electric field, but a large constant magnetic field is  

considered.  In this case we obtain a quantum equation which is different from the Foldy- 

Wouthuysen transformation if large magnetic fields are allowed. 

 

II.Review of initial paper 

    From Jackson [2] we have the equations of motion for a spinning charge in a general inertial  

frame 
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where s is the spin angular momentum in the particle's rest frame and E and B are the electric 

and magnetic fields in a general frame.   In these expressions 𝛃 = 𝐯/c and γ = (1 − β2)−1/2   

where v is the velocity of the particle in the general frame and c is the speed of light.  q is the  

charge of the particle, m is its rest mass, and t represents the time in a general inertial frame.    

g is the gyromagnetic factor which based on the Dirac equation is taken to be 2.   We use a bold  

symbol to indicate a vector. 

   Now set  s = I where I is the moment of inertia for the particle and  is its angular velocity.   

A factor of  is included because in this paper  represents the derivatives of the Euler angles  

with respect to the time t in a general frame, not the time in the rest frame of the particle.   

   Using the Euler angles and particle position as the degrees of freedom, we have from the  

initial paper the Hamiltonian H and conjugate momentum 𝐩𝐯 and  𝐩𝛚  
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where m0 = m −
1

2c2 Iγ2ω2 and can be considered the non-rotating rest mass.   A is the vector  

potential and  is the scalar potential. 

   To quantize the system we want to express the Hamiltonian H in terms of 𝐩𝐯 and 𝐩𝛚.   From  



the initial paper we were able to do this exactly for only the case of a non-zero B field where we  

obtained 
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where 𝛑 = 𝐩𝐯 −
q

c
𝐀 and m′ = m0 +

1

2Ic2 p𝛚
2.  We have only kept linear fields. 

    When we include a non-zero E field we were able to find a solution up to third order in 1/c2  

which is given by 
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where 
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By comparing equation (6) to equation (7) we find 
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to second order in 1/c2. 

 

III.Exact Solution and Quantization   

  To extend the solution given in equation (7), assume that equation (9) is valid to all orders in  

1/c2 so that equation (7) becomes 
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Then using the relation 
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  To test our assumption of the validity of equation (12) we can use equations (4) and (5) for 𝐩𝐯  

and 𝐩𝛚 in equation (12) to see if we obtain equation (3) for H.  Using equation (5) we can write 
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Then using equation (13) in equation (4) along with 𝛑 = 𝐩𝐯 −
q

c
𝐀 we find 
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and that 
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Then using equations (14) and (15) in equation (12) we obtain 
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Then using equations (13) and (5) in equation (16) we obtain equation (3).  In these calculations 



we have used the relation γ2 − 1 = γ2β2 and only kept linear field terms.   Since we can obtain 

equation (3) in this way it shows that equation (12) is a valid solution. 

   Following the initial paper we can quantize the solution for H in equation (12) by replacing m'  

by m = m0 +
3ℏ2

8Ic2
,  by 𝛑̂ = −iℏ𝛁 −

q

c
𝐀, and 𝐩𝛚 by 

1

2
ℏ𝛔 where  are the Pauli spin matrices in 

vector form and a hat represents an operator.  Thus equation (12) becomes the corresponding 

quantum equation 
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where γ̂𝛑 = (1 +
π̂2

m2c2)
1

2.  This agrees with the Foldy-Wouthuysen expansion of the Dirac  

equation given by Chiou and Chen [6]. 

 

 IV.General method for linear fields 

  To extend this method to a general form, write eq. (2) in the form 
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where 𝐁′ is a general function linear in the E and B fields and depends upon  and  so that  

𝐁′ = 𝐁′(γ, 𝛃, 𝐄, 𝐁).  Following the initial paper we can write a Lagrangian for this in the form 
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where we have only kept linear field terms and kept E and B constant.  The conjugate 



momentum 𝐩𝐯,  𝐩𝛚 and Hamiltonian H take the form 
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where 𝛁𝐯 represents the gradiatat with respect to v and 𝛁𝛚 represents the gradiant with respect  

to .   Then using eq. (21) we can write 
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and using eq. (23) in eq. (20) we find 
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where we have defined γ𝛑 by eq. (25) and ignored non-linear field terms.   Using eq. (23) in  

eq. (22) the Hamiltonian can be written as 
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Then using eq. (25) for , eq. (26) becomes 
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where we have used the relation γ2 −  1 = γ2β2.  Then using eq. (21) for  and ignoring second  

order field terms eq. (27) becomes 
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Then since 𝐁′ is linear in the fields if we only keep linear fields we can replace  by γ𝛑 and  by 

 
q
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𝛑 in 𝐁′.  Thus eq. (28) for the Hamiltonian becomes 
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   Following the initial paper we can quantize the solution for H in eq. (29) by replacing m' by  

m = m0 +
3ℏ2

8Ic2,  by 𝛑̂ and 𝐩𝛚 by 
1

2
ℏ𝛔.  Thus eq. (29) becomes the corresponding quantum 

equation 
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This leads to the method used by Chiou and Chen [7] where they use a conjugate momentum 

based only on the translational equation and for the Hamiltonian combine the translational and  

spin terms leading to an expression 

 

  H = mc2γ −  
q
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1

γ
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They then replace  by γ𝛑 and  by 
1

mcγ𝛑
𝛑 based on their definition of conjugate momentum and 

quantize the system by replacing  by 𝛑̂ , γ𝛑 by γ̂𝛑 and s by 
1

2
ℏ𝛔 leading to eq. (30).   They also 

look at the case where g is not 2 and obtain the F-W transformation of the Dirac-Pauli equation 

[8].   It is interesting that the two different methods lead to the same results. 

 

V.Quantization for large constant magnetic fields 

   It is interesting to note that eqs. (3-5) are valid for any constant magnetic field if the electric 

field is zero.  That is we do not need to restrict the equations to only a weak B field where only 

linear terms are kept.  In that case following the initial paper and using eq. (4) we can write 
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Iγ2ω2}−2}1/2                                                                                   (32) 

 

and then from eq. (5) we have                                
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Using these relations in eq. (3) for H we have   
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Upon quantization eq. (34) becomes 
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Now we have a term proportional to I, and if we set m = m0 +
3ℏ2

8Ic2 then since 
3ℏ2

8c2 is finite if we 

look at the limit of I going to zero for a point like particle then m0 would need to take on a 

negative value to account for finite m value.    If we take I to be small enough so that we can 

ignore the 
1

2
I

q2

m2c2 B2 term then setting m = m0 +
3ℏ2

8Ic2 , eq. (35) takes the form 

 

   iℏ
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  This agrees with the Foldy-Wouthuysen transformation with a constant magnetic field if we 

ignore the  
1

4

q2ℏ2

m2c2 (𝛔 ⋅ 𝐁)2 term, see Case [9].  Thus eq. (36) gives a different equation for a 

constant large magnetic field then the Foldy-Wouthuysen transformation of the Dirac equation.    

It would be interesting if an experiment of the motion of the electron in a strong magnetic field  

was carried out to see whether the eq. (36), or the Foldy-Wouthuysen transformation of the Dirac  

equation gave better agreement with the experimental results.  It could also be interesting if we  

allow I to be non-zero then it might be possible by experiment to put a limit on its value.   If the 

experiments agreed with the Foldy-Wouthuysen equations then it would show that the 

quantization method used here is only valid for low intensity fields.  

            



Conclusion 

    As in the initial paper we have only considered the spin 1/2 case and compared our results to  

the Foldy-Wouthuysen transformation of the Dirac equation.  In principle higher order spins 

could be considered and compared to non-relativistic expansions of higher order relativistic spin 

 equations.   It would be interesting if  this method could also be extended to non-constant fields. 

   The fact that we get agreement to all orders of the Foldy-Wouthuysen transformation as given  

by Chiou and Chen makes it more probable that the electron can be considered as actually 

spinning, or at least that its spin is as real as its position.  From this calculation it would appear  

that the Dirac equation is equivalent to the canonical quantization of a classical spinning charge, 

at least for constant fields of low intensity.   

   For large magnetic fields that fact that we obtain an equation different from the Foldy- 

Wouthuysen transformation indicates that either this approach is only valid for low intensity 

fields, or that the Foldy-Wouthuysen transformation is only valid for low intensity fields.   The  

only way to tell which is correct would be to conduct an experiment of the electron in a high  

intensity magnetic field. 
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