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Abstract

The scattering of light by light is considered in case where the internal
particles of this process have spin 0. The first calculation of this process was
performed by Karplus et al. (1950). The pedagogical explanation of this proces
was realized for instance by Akhiezer et al. (1965), or, by Beresteteskii et
al. (1982). We use here the model with the Green function for the spin
0 particles. The article is written with the mathematical simplicity and the
Schwinger pedagogical clarity.

1 Introduction

The scattering of light by light which is considered here is in no case interference of
light, or, quantum interfrence because interference is a phenomenon in which two waves
superimpose to form a resultant wave of greater or lesser amplitude. Interference usually
refers to the interaction of waves that are correlated (coherent) with each other because
they originate from the same source, or they have the same or nearly the same frequency.
When two or more waves are incident on the same point, the total displacement at that
point is equal to the vector sum of the displacements of the individual waves. If a crest
of one wave meets a crest of another wave of the same frequency at the same point,
then the magnitude of the displacement is the sum of the individual magnitudes. This
is constructive interference and occurs when the phase difference between the waves is a
multiple of 2π. Destructive interference occurs when the crest of one wave meets a trough
of another wave. In this case, the magnitude of the displacements is equal to the difference
in the individual magnitudes, and occurs when this difference is an odd multiple of π.

We here do not consider the light interference but interaction of light by light. The
first calculation of this process was performed by Karplus et al. (1950). The pedagogical
explanation of this proces was realized, for instance, by Akhiezer et al. (1965), or, by
Beresteteskii et al. (1982). We use here the model with the spin 0. The phenomenon
scattering of light by light is problem of quantum electrodynamics and we use here the
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Schwinger quantum field theory methods (Schwinger, 1969; 1970) at the calculation of
this physical process.

2 Scattering of light by light

The scattering of light by light is considered where the internal particles of this process
have spin 0. The only difference with the situation with spin 1/2 particles is in using the
Green function for the spin 0 particles. Instead of the Green function GA

+ for spin 1/2
particles we work with the function ∆A

+. We follow the Schwinger monograph (Schwinger,
1973).

The proceeds involving the two spin 0 particle exchange and various numbers of photons
is contained in the coupling term

W2.. =
1

2

∫
(dx)(dx′)K(x)∆A

+(x, x′)K(x′). (1)

This formula generates the photon sources in terms of an effective two-particle field in
the form

iϕ(x)ϕ(x′)|eff = ∆A
+(x, x′). (2)

The effective two-particle source follows from comparison

〈0+|0−〉 = i
∫

(dx)ϕ(x)eq
1

i
∂µϕ(x)δAµ(x) (3)

with

〈0+|0−〉 =
1

2

[
i
∫

(dx)K(x)ϕ(x)
]2

=

−1

2

∫
(dx)(dx′)ϕ(x)K(x)K(x′)ϕ(x′), (4)

which gives

iK(x)K(x′)|eff = eq (δAµ(x) + δAµ(x′))
1

i
∂µδ(x− x′), (5)

or,

iK(x)K(x′)|eff = eq (pδA+ δAp) (x)δ(x− x′). (6)

The vacuum amplitude of causal coupling between two photon sources symbolized by
δA and A is analogical to the spin 1/2 situation, or,

〈0+|0−〉 = iδW (A) =
1

2

∫
(dx)(dx′)tr [iK(x)K(x′)|eff iϕ(x)ϕ(x′)|eff ] =

1

2
Tr
[
eq(pδA+ δAp)∆A

+

]
, (7)

where Tr is the more compact notation in which the space-time coordinates join spin and
charge indices as matrix labels.
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For ∆A
+ we can use the well known integral equation with the formal solution

(Schwinger, 1970)

∆A
+ =

[
1−∆+

(
eq(pA+ Ap)− e2A2

)]−1
∆+ =

∆+

[
1−

(
eq(pA+ Ap)− e2A2

)
∆+

]−1
. (8)

Now, instead of eq. (7) we write

iδW (A) =
1

2
Tr
[(
eq(pδA+ δAp)− 2e2δAA

)
∆A

+

]
. (9)

because δA and A are disjoint and their product vanishes in the causal arrangement for
which eq. (7) is derived.

We then write eq. (9) as

iδW (A) =

1

2
Tr
[(
eq(pδA+ δAp)− 2e2δAA

) (
1−∆+(eq(pA+ Ap)− e2A2)

)−1
∆+

]
=

−1

2
δTr ln

[
1−

(
eq(pA+ Ap)− 2e2A2

)
∆+

]
. (10)

There are other representation of W (A) which are useful in special situations. For
instance, we get the specific form of W (A) if we use the proper-time representation of ∆A

+

(Schwinger, 1973):

∆A
+ =

1

Π2 +m2 − iε
= i

∫ ∞
0

dse−is(Π
2+m2), (11)

where ε→ 0+ is implicit in the integral as a convergence factor exp(−εs). After insertion
of eq. (11) into eq. (9) we get:

δW (A) = −1

2
i
∫ ∞

0
dsTr

[
δ(Π)2e−is(Π

2+m2)
]
, (12)

or,

W (A) = − i
2

∫ ds

s
Tre−is(Π

2+m2). (13)

Now, the goal is to evaluate the trace of of the corresponding term in (13) and to
express W (A) in terms of the effective Lagrange function, or in other words, to express
it in the form

W (A) =
∫

(dx)L(F ), (14)

where L(F ) is the effective Lagrange function. First, let us try to find Tr of exp(−is(Π2 +
m2)).

Using the commutator
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[Πµ,Πν ] = ieqFµν , (15)

we get [
Πµ,Π

2
]

= 2ieqFµνΠ
ν (16)

and therefore

Πµ(s) = eisΠ
2

Πµe
−isΠ2

, (17)

which can be transcribed in the equivalent form

dΠµ(s)

ds
= 2eqFµνΠ

ν(s) (18)

with the matrix solution

Π(s) = e2eqFsΠ = Πe−2eqFs, (19)

because of the antisymmetry of Fµν .
Now, let us introduce the following tensor

Tµν = Tr′
[
ΠµΠνe

−isΠ2
]

= Tr′
[
Πµe

−isΠ2

Πν(s)
]

=

Tr′
[
Πν(s)Πµe

−isΠ2
]
, (20)

where Tr’ does not refer to charge space.
The equivalent form of Tµν is as follows:

Tµν = Tr′
[
ΠµΠν(s)e

−isΠ2
]
− Tr′

[
[Πµ,Πν(s)] e

−isΠ2
]
, (21)

where for the commutator that appeared it is

[Πµ,Πν(s)] =
[
Πµ,Π

λ(s)
(
e−2eqFs

)
λν

]
= ieq

{
Fe−2eqFs

}
µν
. (22)

Now, using eqs. (19) and (22) we can express eq. (21) in the matrix form as follows:

T = Te−2eqFs − ieqFe−2eqFsTr′e−isΠ
2

, (23)

or,

T
(
1− e−2eqFs

)
= −ieqFe−2eqFsTr′e−isΠ

2

, (24)

or,

Tr′ΠΠe−isΠ
2

= −ieqF F

e2eqFs − 1
Tr′e−iΠ

2

. (25)

We use this result to get

i
d

ds
Tr′e−isΠ

2

= Tr′Π2e−isΠ
2

= −ieqTr′
F

e2eqFs − 1
Tr′e−isΠ

2

, (26)
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which is the differential equation for Tr′ exp(−isΠ2).
The solution of the derived differential equation (26) is possible express as follows

(Schwinger, 1973):

Tr′e−isΠ
2

= C exp

{
−1

2
Tr′ ln

(
sinh eqFs

eqF

)}
=

C

s2

[
det

eFs

sinh eFs

]1/2

, (27)

where we have used identity Tr ln = ln det, the dimensionality of space-time in the latter
form and the fact that the sign of q is immaterial.

The constant C can be determined from considering the small s limit. This situation
with the small s is dominated by large Π values and the non-commutativity of different Π
components cases to be significant. Using four-dimensional forms of conventional quantum
relations, we get

s→ 0 : Tr′e−isΠ
2

=
∫

(dx)〈x|e−isp2 |x〉 =

∫ (dp)

(2π)4
(dx)e−isp

2

, (28)

where

∫ (dp)

(2π)4
e−isp

2

=

(∫ ∞
−∞

(dp1)

(2π)
e−isp

2
1

)3 ∫ ∞
−∞

(dp0)

(2π)
e−isp

2
0 . (29)

With regard to Laplace relation

∫ ∞
−∞

dp1e
−isp21 =

(
π

is

)1/2

; s > 0 (30)

we have

∫ (dp)

(2π)4
=

1

4π2

1

is2
. (31)

After insertion of eq. (31) into eq. (28) and then into eq. (27), we get

C = − 1

(4π)2
i
∫

(dx). (32)

Now, we can write for W (A):

W (A) = −
∫

(dx)
1

(4π)2

∫ ∞
0

ds

s3
e−ism

2
[
det

eFs

sinh eFs

]1/2

=
∫

(dx)L(F ), (33)

where

Lspin 0(F ) = − 1

(4π)2

∫ ∞
0

ds

s3
e−ism

2
[
det

eFs

sinh eFs

]1/2

. (34)

The reality of the Lagrange function is obvious after deforming the path integration
according to transformation s→ is. In other words
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Lspin 0(F ) =
1

(4π)2

∫ ∞
0

ds

s3
e−sm

2

{[
det

eFs

sinh eFs

]1/2

− 1− 1

3
(es)2F̃

}
, (35)

where we have used notation

F̃ = −1

4
F µνFµν =

1

2
(E2 −H2) (36)

to which we add

G̃ = −1

4
∗F µνFµν = E ·H (37)

and

H̃± = 2(F̃ ± iG̃) = (E± iH)2. (38)

The general evaluation of the determinant can be realized by means of the eigenvalues
of tensor F. It is convenient to introduce the selfdual tensors as follows:

F± = F ± i ∗F, ∗F± = ∓iF±. (39)

Considered as matrices, the two tensors commute, and the square of each is multiple
of the unit matrix. It is possible to checked it by explicit use of the small number of
independent components. The squares are

(F 2
±)µν = gµνH̃± (40)

where the coefficients H̃± are found by forming the trace. Using the equivalent relations

1

2
(F 2 − ∗F 2) = gµνF̃ , (∗FF )µν = gµνG̃, (41)

the eigenvalues appear in oppositely signet pairs, ±F ′,±F ′′, where

F ′, F ′′ =
1

2

[
H̃

1/2
+ ± H̃1/2

−

]
. (42)

Accordingly

[
det

eFs

sin eFs

]1/2

=
eF ′s

sin eF ′s

eF ′′s

sin eF ′′s
=

2(es)2iG̃

cos(esH̃
1/2
− )− cos(esH̃

1/2
+ )

=
(es)2G̃

Im cos(esH̃1/2)
, (43)

where we have finally written just H̃ in place of H̃−.
In such a way the spin 0 result Lagrangian is

Lspin 0(F ) =
1

(4π)2

∫ ∞
0

ds

s3
e−sm

2

[
(es)2G̃

Im cos(esH̃1/2)
− 1− 1

3
(es)2F̃

]
. (44)

The Lagrange function (35) can be expressed approximately in terms quartic in the fields.
To obtain it we use the determinant expansion according to the algorithm:
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det(1 + A) = 1 + trA+
1

2

(
(trA)2 − trA2

)
+ ... (45)

This gives

[
det

eFs

sin eFs

]1/2

= 1 +
1

3
(es)2F̃ +

1

90
(es)4(7F̃ 2 + G̃2) + ... (46)

and

L04;spin 0 =
α2

90

1

m4
(7F̃ 2 + G̃2) =

α2

90

1

m4

[
7

4
(E2 −H2)2 + (E ·H)2

]
. (47)

3 Discussion

In the preceding text we exhibited the space-time form of couplings that involve only the
electromagnetic field, and we also used these forms directly for calculations, in the special
circumstance of slowly varying fields. With more general situations, however, it is usually
preferable to consider an appropriate causal arrangement and then perform the space-time
extrapolation. We are recognizing now that source theory is flexible; it is not committed
to any special calculational method and is free to choose the most convenient one. Indeed,
it is the interplay and synthesis of various calculational devices, each adapted to specific
circumstances, that constitutes the general source theory computational method

The arrangement is, two photons collide to create a charged particle pair, and then
the two photons emitted in the subsequent annihilation of the particles are detected. For
spin 0 particles, we can use the analogy with the preceding methods with some extensions
(Schwinger, 1973) and considering the strong magnetic field situation (Schwinger, 1989).
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