<u>Diophantine equation on sixth degree -</u>

-type (6-4-4) with four terms on both sides

Author: Oliver Couto

Email: matt345@celebrating-mathematics.com

<u>Abstract</u>

There are numerical solutions available on Wolfram world of mathematics website (ref. # 1) for the equation, $(a^6+b^6+c^6+d^6)=(e^6+f^6+g^6+h^6)$. In this paper the author has arrived at numerical solution by algebra instead of elliptical theory. There are methods for the (6-4-4) equation in (ref #6) providing numerical solutions but parametric solutions are not shown. Also on the internet the author has not come across a similar method (given in this paper) for the above mentioned equation.

Consider the below equation:

$$(a^6 + b^6 + c^6 + d^6) = (e^6 + f^6 + g^6 + h^6) - - - (1)$$

We have the Identity:

$$u^6 + v^6 = (x^6 - 3uvx^2(2x^2 - 3ab) - 2(uv)^3) ----- (2)$$

Where, x = (u+v)

In equation (1) we take:

$$[m = a + b = e + f, n = c + d = g + h, ab = u, cd = v, ef = p, gh = q]$$
 ---- (3)

equation (1) after transposing we have:

$$(a^6 + b^6) - (e^6 + f^6) = (g^6 + h^6) - (c^6 + d^6)$$
 -----(4)

substituting from (3) into (4) we get:

$$a^{6} + b^{6} = m^{6} - 3um^{2}(2m^{2} - 3u) - 2(u)^{3}$$

$$e^{6} + f^{6} = m^{6} - 3vp(2m^{2} - 3p) - 2(p)^{3}$$

$$g^{6} + h^{6} = n^{6} - 3qn^{2}(2n^{2} - 3q) - 2(q)^{3}$$

$$c^{6} + d^{6} = n^{6} - 3vn^{2}(2n^{2} - 3v) - 2(v)^{3}$$

substituting above four equations in eqn (4) & simplifying we get:

$$(p-u)(6m^4 - 9m^2(p+u) + 2(p^2 + pu + u^2) =$$

$$(v-q)(6n^4 - 9n^2(v+q) + 2(v^2 + vq + q^2) - (5)$$

In-order to solve eqn. (5) we apply the condition: (p-u)=(v-q) or

$$(p+q) = (u+v)$$
 -----(6)

hence we get from eqn. (5):

$$6m^4 - 9m^2(p+u) + 2(p^2 + pu + u^2) = 6n^4 - 9n^2(v+q) + 2(v^2 + vq + q^2) - (7)$$

The author noticed that the terms, $[9m^2(p+u)] \& [9n^2(v+q)] can be eliminated by taking:$

$$2n^2 = -(p+u)$$
 & $2m^2 = -(v+q)$ -----(8)

hence we get:

$$6m^4 + 2(p^2 + pu + u^2) = 6n^4 + 2(v^2 + vq + q^2)$$
 or,

$$3m^4 + (p^2 + pu + u^2) = 3n^4 + (v^2 + vq + q^2)$$
 -----(9)

since we have: (p-u)=(v-q) we get:

$$(v^2 + va + a^2) - (p^2 + pu + u^2) = 3(va - pu)$$

substituing above in (7) we get:

hence we have the three above conditions to satisfy:

namely equations, (6), (8) & (10)

From eqn (8) we have:
$$-(p+u) = 2n^2$$
 & $-(v+q) = 2m^2$

hence,
$$2(m^2 + n^2) = -[(p+u) + (v+q)] = -[(p+q) + (u+v)]$$

since, from eqn (6) we have: (p+q) = (u+v), we get:

$$2(m^2 + n^2) = [(p+u) + (v+q)] = [(p+q) + (u+v)] = -2(u+v)$$

hence,
$$(m^2 + n^2) = -(u + v)$$
 -----(11)

we square both sides of eqn. (11) & we get:

$$m^4 = (u+v)^2 - 2m^2n^2 - n^4$$
 ---- (12)

we also have from eqn (10):

$$(m^4 - n^4) = (vq - pu)$$

substituting for (m^4) , from eqn (12) in above we get a quadratic in the variable "u":

$$u^{2} + u(2v + p) + (v^{2} - vq - 2n^{2}(m^{2} + n^{2})) = 0$$
 -----(13)

In-order to get integer solutions to eqn (1), the determinant in equation (13),

needs to be a square:

hence the determinant, (w^2) , is given by:

$$w^2 = 4v(p+q) + p^2 + 8n^2(m^2 + n^2) - - - - - - (14)$$

for eqn (14), the integer solution is:

$$(m, n, v, p, q) = (167,148, -42485, -36500, -13293)$$

substituting above in eqn (13) we get: u = -7308

hence,
$$(m, n, u, v, p, q) = (167,148, -7308, -42485, -36500, -13293) - - - - - (15)$$

we also have the equality:

$$m = (a + b) = (e + f)$$
 &,
 $n = (c + d) = (g + h)$ -----(16)

&
$$(m,n) = (167,148)$$

Also we have:

$$u = ab, v = cd, p = ef, q = gh$$
 -----(17)

hence from (15),(16) & (17) we get:

$$m = a + b = 167$$
, $u = (a * b) = -(7308)$

solving above for (a,b), we get, (a,b) = (203, -36) -----(18)

Next:

$$n = c + d = 148, v = (c * d) = -(42485)$$

solving above for (c,d), we get: (c,d) = (293, -145) -----(19)

Next:

$$m = e + f = 167, p = (e * f) = -(36500)$$

solving above for (e, f), we get: (e, f) = (292, -125) - - - - - - - - - - - - - - (20)

Next:

$$n = g + h = 148, q = (g * h) = -(13293)$$

solving above for (g,h), we get: (g,h) = (211,-63) -----(21)

hence from, eqn. (18),(19),(20),(21) we get:

$$(a, b, c, d) = (203, -36, 293, -145)$$
 &

$$(e, f, g, h) = (292, -125, 211, -63)$$

Therefore:

$$(a, b, c, d)^6 = (e, f, g, h)^6$$
 or,
 $(203, -36, 293, -145)^6 = (292, -125, 211, -63)^6$ $---- (22)$

above equation (22), can also be written as:

$$(203, -36,293, -145)^k = (292, -125,211, -63)^k - (23)$$

Note:

The author noticed that equation (23) is also valid for the degree's, (k=1,2,4,6).

Conclusion:

Which is shown above.

Since the degree six, is an even power, the negative signs in the numerical solution of equation (22) can be removed & the equation can be written as below:

$$(203,36,293,145)^6 = (292,125,211,63)^6$$

Also others can attempt to see if a parametric solution is possible for equation (1),

References

1) Wolfram Mathworld: website: mathworld.wolfram.com, section Number-

-theory (Diophantine equations, degree six)				
3) Website, (author) Oliver Couto, Number theory is:				
[http://www.celebrating-mathematics.com]				
4) Published paper, Oliver Couto,				
Vixra.org, # 2502.0196,dtd 28 Feb, 2025, on Sixth powers				
3) Published math paper, author's Oliver Couto & Seiji Tomita, Generalized parametric solution to multiple sums of powers, Universal Journal of applied mathematics, Year July 2015, Volume 3(5),102-111, http://www.hrpub.org ,				
4) Universal Journal of Applied Mathematics, Vol 4(3),45-65, Year OCT.2016, Parametric solutions to (six) nth powers equal to another (six) nth powers for n=(2,3,4,5,6,7,8,9). Author's Oliver Couto & Seiji Tomita				
5) Ajai Choudhry, Number theory web site,				
https://sites.google.com/view/ajaichoudhry/publications				
6) Jaroslaw Wroblewski , Tables of Numerical solutions for various degrees, Website, www.math.uni.wroc.pl/~jwr/eslp				
7) Collection of Algebraic identities (Book), Tito Piezas, http://sites.google.com/site/tpiezas/				
7) Journal of number theory, Vol. #88, 225-240 (year 2001)				
8) Website: Seiji Tomita, computation number theory:				

http://www.maroon.dti.ne.jp/fermat/eindex.html					