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Abstract. Energy-based models (EBMs) are an important family of
models where a piece of the likelihood is intractable, and hence un-
known. For this reason, the parameter estimation in EBMs is a challenge
for the standard estimation methods. In this paper, we present a criti-
cal discussion of gradient-based approaches for inference in energy-based
models. We provide many details of different derivations, clarify connec-
tions and differences. We give practical suggestions for the application
of the different schemes. Specifically, we focus on a suitable choice of
the proposal/reference density that is crucial for the performance of the
gradient-based procedures.

Keywords: Energy-based models, gradient descent, maximum likeli-
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1 Introduction

An energy-based model (EBM) is a statistical model only specified up to the so-
called partition function. The partition function normalizes the model so that it
integrates to one for any choice of the parameters. However, it is often impossible
to obtain it in closed form. Gibbs distributions, Markov and multi-layer networks
are examples of models where analytical normalization is often impossible. See
e.g. [8] for a review.
More specifically, considering empirical data coming from a sample space X ⊆
Rd, an EBM is defined as p(x|θ) = φ(x|θ)

Z(θ) , depending on some parameter θ ∈
Θ ⊆ Rq. The numerator φ(x|θ) is known and can be evaluated, whereas the de-
nominator Z(θ) =

∫
X φ(x|θ)dx is analytically intractable and hence unknown.

The intractable denominator Z(θ) is also referred as the partition function.
Moreover, the function E(x|θ) = − log φ(x|θ) is often called energy (this term
comes from the statistical mechanics). The energy function associates small val-
ues to good estimates of θ and large values to bad estimates of θ. We remark
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that traditional statistical models concerning classification, regression and den-
sity estimation can be reformulated in terms of energy-based models.
Even if nowadays the most common approaches avoid the normalization con-
stant [4], like the noise contrastive estimation [3, 5] and the score matching first
proposed in [7], in this paper we revisit some earlier approaches, that conversely
approximate the normalization constant, based on the noisy gradient descent
of negative log-likelihood function [2, 1] because we noticed that some impor-
tant related statistical issues have been somehow overlooked (and/or missed) in
the literature. We provide many details of different (complete) derivations, dis-
cussing connections and relationships and several practical suggestions for the
choice of a proposal/reference density that is required in these gradient descent
approaches. We remark also that, to handle more flexible distributions, or data
characterized by heterogeneous sub-groups [12] quite recently proposed finite
mixtures of energy-based models.

2 Energy-based models (EBMs)

Let φ(x|θ) = e−E(x|θ) ≥ 0 be a non-negative function defined on X ⊆ Rd,
parametrized by a vector of parameters θ taking values in Θ ⊆ Rq. The non-
negative function E(x|θ) = − log φ(x|θ) defined is often called energy function.
We assume that φ(x|θ) is analytically known and we can evaluate it. Thus, an
energy-based model p(x|θ) is a parametrized family of density functions, defined
for each θ as

p(x|θ) =
φ(x|θ)

Z(θ)
, (1)

For given θ, we can evaluate assume in general that the integral3

Z(θ) =

∫
X
φ(x|θ)dx, (2)

is unknown because it cannot be solved analytically in closed form, i.e., the
integral is intractable.4 Hence, the normalizing constant Z(θ), often called par-
tition function, cannot be evaluated point-wise. This represents a challenge for
a maximum likelihood estimation (MLE), as we discuss below.

3 MLE approaches to parameter estimation in EBMs

Let us assume that we have an observed dataset x = {x1, . . . ,xN} ∈ XN , that
contains iid realizations distributed as the the EBM in Eq. (1) for a specific
unknown vector of parameters θ∗, i.e., xn ∼ p(x|θ∗) for all n = 1, ..., N . In order

3 All the integrals in this work are definite integrals. However, in the rest of the paper,
for simplicity we avoid to write the integration domain.

4 We assume that x be a continuous vector, although several considerations are also
valid for the discrete case.
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to estimate the parameter of the distribution, the likelihood function of θ given
x is given by

L(θ|x) = p(x1,x2, . . . ,xN |θ) =

N∏
n=1

p(xn|θ) =
1

Z(θ)N

N∏
n=1

φ(xn|θ),

and then corresponding the log-likelihood L(θ|x) is

L(θ|x) =

N∑
n=1

log p(xn|θ) =

N∑
n=1

log φ(xn|θ)−N logZ(θ). (3)

Since E(xn|θ) = − log φ(xn|θ), the log-likelihood (3) becomes

L(θ|x) = −
N∑
n=1

E(xn|θ)−N logZ(θ). (4)

The maximum likelihood estimation (MLE) of θ is often reformulated as the
minimization of a loss function J(θ) defined as the negative log-likelihood func-
tion (NLL), i.e.,

J(θ) = NLL(θ|x) = −L(θ|x) =

N∑
n=1

E(xn|θ) +N logZ(θ), (5)

so that θ̂ = argθ∈Θ maxL(θ|x) = argθ∈Θ min J(θ). Generally, a standard widely-
used optimization approach is based on the so called gradient-descent, i.e., com-
puting a finite sequence of estimates {θ(t)}Tt=0, starting from some initial guess

θ(0) (and suitable choices of the step value αt) according to

θ̂t = θ̂t−1 − αt∇θJ(θ̂t−1). (6)

For a suitable large number T of iterations, we get the final estimate θ̂T ≈
θ̂ = argθ∈Θ min J(θ), where J(θ) is given in Eq. (5). However, as we remarked
above, Z(θ) is unknown for any θ, and cannot be computed in closed form. As a
consequence, we cannot compute ∇θJ(θ) neither. Therefore, suitable strategies
must be adopted for approximating Z(θ) (or its gradient).

3.1 The Geyer’s approach [2]

Theoretically speaking, the simplest approach relies on applications of some
numerical method for computing Z(θ), and this approximation can be obtained
by importance sampling (IS) [9]. It was proposed firstly in [2], and we also refer
to it as baseline approach. Let q(·) be a known pdf with support X (which implies∫
q(y)dy = 1) and let y = {y1, . . . ,yM}, with y ∈ X ⊆ Rd (m = 1, . . . ,M) be

a sample of size M generated from q(y), i.e. y1, . . . ,yM ∼ q(·) that is chosen by
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the user; in this literature q(·) is called proposal or reference density [2]. The IS

estimator Ẑ(θ) of Z(θ) is given by

Ẑ(θ) =
1

M

M∑
m=1

φ(ym|θ)

q(ym)
=

1

M

M∑
m=1

w(θ)
m , ym ∼ q(y), (7)

where w
(θ)
m = φ(ym|θ)

q(ym) are the (unnormalized) importance weights. It is easy

to show that the estimator above is unbiased [9]. Hence, we can consider the
following approximation of Eq. (5):

JBL(θ) =

N∑
n=1

E(xn|θ) +N log Ẑ(θ),

=

N∑
n=1

E(xn|θ) +N log

[
1

M

M∑
m=1

φ(ym|θ)

q(ym)

]
, ym ∼ q(y). (8)

Note that JBL(θ) is a random variable depending on ym’s, but for fixed y JBL(θ)
becomes a deterministic function of θ. In Figure 1(a), we can see three different
realizations of JBL(θ). Then, the idea is to minimize this function [2],

θ̂BL = arg min JBL(θ). (9)

We remark that the method requires only one generation of the artificial dataset,
i.e., only M artificial data points y1, . . . ,yM ∼ q(y). After this generation and
given {y1, . . . ,yM}, JBL(θ) becomes a fixed, analytically known, and evaluable
cost function. We point out also that there are two ways for reducing the variance
of JBL(θ):

– increasing the sample size: as M → ∞, then Ẑ(θ) → Z(θ) and JBL(θ) →
J(θ) as well.

– select a good proposal density q(y) for fixed value of M ; see the next section
for more details.

3.2 On the choice of the proposal density q(·)
The proposal density must be satisfy the following two assumption:

1. The analytic form of the proposal density q(·) must be available, and we
need to be able to evaluate it point-wise.

2. We need to be able to draw samples from q(·).
In order to reduce the variance of the estimator in (7), a better choice would be
to choose a proposal density that depends on θ, i.e., q(y|θ). Indeed, the optimal
reference density in this scenario is

qopt(y|θ) = p(y|θ) ∝ φ(y|θ). (10)

It can be shown that this choice minimizes the variance of Ẑ(θ) [10], [9]. We
point out that, even though the choice qopt(y|θ) = p(y|θ) minimizes the the

variance of Ẑ(θ), this choice presents one important drawback and an additional
computational cost:
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a First of all, generally, we are not able to draw samples from the EBM model,
i.e., from qopt(y|θ) = p(y|θ). See Section 6 for further details.

b Secondly, for any proposal density q(y|θ) depending on θ, we should generate

a set of artificial data for each θ, i.e., y
(θ)
1 , . . . ,y

(θ)
M ∼ q(y|θ). Namely, for

each evaluation of JBL(θ) at some θ we would require the generation of
another set of artificial data. For instance, if we desire to evaluate JBL(θ)
in L different points θ1, ...,θL, we would need to draw L artificial samples
of size M , since for each θl, for l = 1, ..., L, we would have a different set

{y(θl)
1 , . . . ,y

(θl)
M }. This fact could also increase variability in the evaluation

of the function JBL(θ).

In particular, this last consideration is shared by any proposal density q(y|θ)
depending on θ, and not just the optimal one.

Independent proposal. Choosing a proposal q(y) independent from θ allows
us to generate only one set of artificial data {y1, . . . ,yM}, for all the processes.
On the other hand, for some values of θ, the proposal q(y) can be a non suitable

choice, and the variance Ẑ(θ) can vary drastically with θ. The experience with
IS estimators suggests the use of a proposal q(y) with great variance, bigger
than the variance of p(x|θ) for any θ, if possible [10].

Non-optimal but good choices. From a theoretical point of view, it is inter-
esting to observe that a non-optimal but good choice of the proposal density is
any density close to the true model generating the observed data, i.e.,

q(y) ≈ p(y|θ∗) =
φ(y|θ∗)
Z(θ∗)

, (11)

This proposal ensures to have small variance in the estimation of Z(θ) around
of the true value θ∗. An even better (and more robust) choice of of q(y) is a
density that mimics the shape of p(y|θ∗) but with more variance (the area under
q(y) is more diffuse). In this scenario, we can avoid catastrophic behaviors of
the IS estimator, as shown in the numerical experiments of [10]. See also the
results depicted in Figures 1-2 of Section 7. Clearly, we do not know θ∗ and we
are not able to draw from p(y|θ∗). However, this consideration can drive the
construction of a good proposal density.
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4 Approximating the gradient: a first derivation

Noting that∇θ log Ẑ(θ) = 1

Ẑ(θ)
∇θẐ(θ), the gradient of the negative log-likelihood

function in Eq. (5), scaled by a factor 1/N , becomes:

1

N
∇θJBL(θ) =

1

N

N∑
i=1

∇θE(xn|θ) +
1

Ẑ(θ)
∇θẐ(θ)

=
1

N

N∑
i=1

∇θE(xn|θ) +
1

1
M

∑M
j=1

φ(yj |θ)
q(yj)

1

M

M∑
m=1

∇θφ(ym|θ)

q(ym)
.

Moreover, recalling φ(x|θ) = e−E(x|θ), we have

∇θφ(x|θ) = −∇θE(x|θ)e−E(x|θ) = −∇θE(x|θ)φ(x|θ).

Replacing above, we obtain

1

N
∇θJBL(θ) =

1

N

N∑
i=1

∇θE(xn|θ)− 1∑M
j=1

φ(yj |θ)
q(yj)

M∑
m=1

∇θE(ym|θ)φ(ym|θ)

q(ym)

=
1

N

N∑
i=1

∇θE(xn|θ)−
M∑
m=1

w̄(θ)
m ∇θE(ym|θ), (12)

where we have defined the normalized importance weights as:

w̄(θ)
m =

φ(ym|θ)
q(ym)∑M

j=1
φ(yj |θ)
q(yj)

=
w

(θ)
m∑M

j=1 w
(θ)
j

, (13)

and w
(θ)
m = φ(ym|θ)

q(ym) are the unnormalized importance weights.

Remark 1 If we are able to draw samples from the model, i.e., y
(θ)
m ∼ qopt(y|θ) =

p(y|θ), using the optimal proposal density, the normalized IS weights become

w̄
(θ)
m = 1

M for each m, and Eq. (12) becomes

1

N
∇θJBL(θ) =

1

N

N∑
i=1

∇θE(xn|θ)− 1

M

M∑
m=1

∇θE(y(θ)
m |θ). (14)

However, recall that we have a new generation of artificial data y
(θ)
m for each θ.

Remark 2 Assume again that we are able to draw samples from the model,

i.e., y
(θ)
m ∼ qopt(y|θ) = p(y|θ). An additional issue is that we cannot evaluate

completely p(y|θ) since Z(θ) is unknown. Thus, we cannot evaluate the unnor-
malized IS weights

w(θ)
m =

φ(y
(θ)
m |θ)

qopt(y
(θ)
m |θ)

=
φ(y

(θ)
m |θ)

p(y
(θ)
m |θ)

= Z(θ)
�����
φ(y

(θ)
m |θ)

�����
φ(y

(θ)
m |θ)

= Z(θ), ∀ m, (15)
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and, as a consequence, we cannot actually evaluate JBL(θ) in Eq. (8), but only its
gradient ∇θJBL(θ) in Eq. (14) (that only depends on the normalized weights, i.e.,

w̄
(θ)
m = 1

M ). However, if we are only interested in minimizing JBL(θ), evaluating
its gradient ∇θJBL(θ) is enough.

5 Approximating the gradient: a second classical
derivation

Here, we follow a more classical derivation employed in different works about
inference in EBMs [1, 6]. Instead of approximating Z(θ), let us consider directly
the computation of the gradient of the negative log-likelihood function (5) scaled
by the factor 1/N ,

1

N
∇θJ(θ) =

1

N

N∑
n=1

∇θE(xn|θ) +
1

Z(θ)
∇θZ(θ).

Since Z(θ) =
∫
φ(x|θ)dx =

∫
exp(−E(x|θ))dx, we have

∇θZ(θ) = −
∫
∇θE(x|θ) exp(−E(x|θ))dx = −

∫
∇θE(x|θ)φ(x|θ)dx,

and replacing above we obtain

1

N
∇θJ(θ) =

1

N

N∑
i=1

∇θE(xi|θ)− 1

Z(θ)

∫
∇θE(y|θ)φ(x|θ)dx,

=
1

N

N∑
i=1

∇θE(xi|θ)−
∫
∇θE(x|θ)p(x|θ)dx, (16)

≈ 1

N

N∑
i=1

∇θE(xi|θ)− 1

M

M∑
m=1

∇θE(y(θ)
m |θ), y(θ)

m ∼ p(·|θ). (17)

Remark. Note that Eq. (17) coincides with Eq. (14) and we remark that the
following points (the first two have been previously discussed):

(a) Generally, we are not able to draw samples from the EBM model, i.e., p(y|θ).
See Section 6 for more details.

(b) We need to generate a different set of artificial data y
(θ)
1 , . . . ,y

(θ)
M for each

θ. This point is valid for any proposal density q(y|θ) depending on θ.

(c) Even if we are able to draw from p(y|θ), we can approximate only the gra-
dient ∇θJ(θ) but not J(θ) by Monte Carlo arguments. See last remark in
Section 4 and Eq. (15). However, in order to minimize J(θ), the information
of its gradient is enough. Moreover, other numerical integration methods
could be employed for recovering J(θ) from its gradient, if required.
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Another possibility. Here we describe an alternative procedure to avoid the
generation of samples from the model p(x|θ). We can use an IS approach for ap-
proximating the integral in Eq. (16), i.e., we can consider the following equality,∫

∇θE(x|θ)p(x|θ)dx =

∫
∇θE(x|θ)

p(x|θ)

q(x)
q(x)dx,

=
1

Z(θ)

∫
∇θE(x|θ)

φ(x|θ)

q(x)
q(x)dx,︸ ︷︷ ︸

(∗)

so that Z(θ) can be approximated by (7) and the term (∗) can be approximated
by similar IS arguments [9] and we get

∫
∇θE(x|θ)p(x|θ)dx ≈ 1∑M

j=1

φ(yj |θ)
q(yj)

M∑
m=1

∇θE(ym|θ)φ(ym|θ)

q(ym)
,

=
1∑M

j=1 w
(θ)
j

M∑
m=1

w(θ)
m ∇θE(ym|θ),

=

M∑
m=1

w̄(θ)
m ∇θE(ym|θ), ym ∼ q(x), (18)

where w̄
(θ)
m are the normalized weights in Eq. (13). We solve the previous issues:

(a) we are able to draw from q(·) (since we choose the proposal density q(·)),
and (b) we draw only once M artificial data. However, q(·) can be not suitable
for some values of θ.

6 Generating artificial data from p(x|θ)

Generally, we are not able to draw artificial data from the EBM p(x|θ) for a given
θ. In this case, there are mainly two alternatives: apply an MCMC algorithm or
an “IS - plus - resampling” scheme. Below, we describe the details of both. As
an example of MCMC, we consider the Metropolis-Hastings (MH) algorithm.

MH algorithm. As an example of possible MCMC method, we provide a
Metropolis-Hastings schemes with an independent proposal density q(·) (inde-
pendent from the previous state of the chain) [11]. We consider the use of an
independent proposal density to facilitate the comparison with the other schemes
in the rest of the work:

1. Starting with an arbitrary initial vector y
(θ)
0 .

2. For m = 1, . . . ,M :

(a) Draw y′ from q(y).
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(b) Set y
(θ)
m = y′ with probability,

α = min

[
1,

p(y′|θ)

p(y
(θ)
m−1|θ)

q(y
(θ)
m−1)

q(y′)

]
= min

[
1,

φ(y′|θ)

φ(y
(θ)
m−1|θ)

Z(θ)

Z(θ)

q(y
(θ)
m−1)

q(y′)

]
,

= min

[
1,
φ(y′|θ)

q(y′)

q(y
(θ)
m−1)

φ(y
(θ)
m−1|θ)

]
.

Otherwise, set y
(θ)
m = y

(θ)
m−1 with probability 1− α.

3. The output is {y(θ)
1 , . . . ,y

(θ)
M }.

IS plus resampling. Below, we present the details of the “IS plus resampling”
scheme. Again, we need the use of a proposal density q(·) but the idea is get first
a sample z = {z1, . . . , zM} with zm ∼ q(·) (m = 1, . . . ,M) and then consider

resamples points {y(θ)
1 , . . . ,y

(θ)
M } from z:

1. Draw z1, . . . , zM ∼ q(·).
2. Assign the weights

w(θ)
m =

φ(zm|θ)

q(zm)
, m = 1, . . . ,M. (19)

3. Compute the normalized weights,

w̄(θ)
m =

w
(θ)
m∑M

i=1 w
(θ)
i

, m = 1, . . . ,M. (20)

4. Resample (bootstrap) M times with replacement, within {z1, . . . , zM} ac-

cording to normalized weights w̄
(θ)
m , m = 1, . . . ,M . The M resampled sam-

ples will be denoted as {y(θ)
1 , . . . ,y

(θ)
M }. Note that y

(θ)
m ∈ {z1, . . . , zM} for

any value of m. The outputs are the M resampled particles {y(θ)
1 , . . . ,y

(θ)
M }.

Note that, with respect to the derivation in Section 3.1, we have the additional
step of the resampling. We finally highlight that in both cases, MCMC or IS, an
internal proposal density is required. Then, generally, even if we would like to
employ the model p(x|θ) as a reference density, we need the choice and use of
another proposal density q(y), within the Monte Carlo sampling schemes.
Furthermore, in both cases, we obtain samples distributed (approximately) as the
target density p(y|θ). Since the target density p(y|θ) changes with θ, then the

obtained samples {y(θ)
1 , . . . ,y

(θ)
M } depend also on the specific fixed θ. Therefore,

we need to generate a different set of artificial data y
(θ)
1 , . . . ,y

(θ)
M for each θ, i.e.,

the use of the MCMC or “IS plus resampling” algorithm must be repeated for
different θ.
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7 Some numerical considerations

For the sake of simplicity, and to know the ground-truth, in order to evaluate
the different performance, we consider a one-dimensional Gaussian density with
zero mean, µ = 0, as observation model, i.e.,

p(x|θ) = N (x|0, θ) =
1√

2πθ2
exp

(
− x2

2θ2

)
, (21)

where

φ(x|θ) = exp

(
− x2

2θ2

)
, E(x|θ) =

x2

2θ2
, Z(θ) =

√
2πθ2. (22)

We assume that Z(θ) is unknown and apply the gradient approaches described
in this work. We set θ∗ = 2 and N = 100, so that the observed data are drawn
as

xn ∼ p(x|θ∗) =
1√
8π

exp

(
−x

2

8

)
, (23)

for n = 1, . . . , N . We consider two possible Gaussian reference/proposal densi-
ties: the first one is an independent Gaussian proposal with µp = 2 and σp = 2,
whereas the second one is a Gaussian proposal (which depends on θ) with µp = 2
and σp = 2 + θ,

q1(y) = N (y|2, 2) =
1√
8π

exp

(
− (y − 2)2

8

)
, (24)

q2(y|θ) = N (y|2, 2 + θ) =
1√

2π(2 + θ)2
exp

(
− (y − 2)2

2(2 + θ)2

)
. (25)

Namely, the artificial data are generated from ym ∼ q1(y) or y
(θ)
m ∼ q2(y|θ), for

m = 1, . . . ,M . We consider two values of M ∈ {100, 5000}. We test the results in
1000 independent runs to average the results. Figure 1 provides the results using
q1(y). Figure 1(a) depicts three curves JBL(θ) in Eq. (8) after generating three
different realizations of artificial data {y1, . . . , yM} ∼ q1(y), with M = 100. In
Figures 1(b)-1(c) (corresponding to M = 100 and M = 5000, respectively) we
show the 100% of variability of 1000 curve JBL(θ) with a green area, the empirical
mean of the curves JBL(θ) with a dashed blue line, and the true negative log-
likelihood J(θ) with a solid red line. Figure 2 depicts the same curves and results
but considering the second proposal q2(y|θ).

In Figure 1, asM →∞ we can observe the converge of JBL(θ) to J(θ) specially
for values of θ < 2, but the convergence struggles for values of θ > 2, even with
M = 5000. This is due to the choice of the proposal, which is not suitable for
value of θ > 2. Whereas, in Figure 2, the green area (i.e., the variability of JBL(θ))
is much more smaller than in in Figure 1, even with M = 100. For M = 5000,
we have almost a perfect convergence. The reason is the q2(y|θ) has a standard
deviation, 2 + θ, always greater than the standard deviation of the model, that
is 2 [10]. Therefore, q2(y|θ) provides much better estimator θ̂ in terms of mean

square error, since it provides more efficient estimations of Ẑ(θ).
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(a) N = M = 100 (b) N = M = 100 (c) N = 100,M = 5000

Fig. 1. (a) Approximation of the negative log-likelihood J(θ) (shown with a solid red
line) using the first proposal with µp = 2 and σp = 2. (b) and (c) The green area shows
the 100% of variability of JBL(θ). The empirical mean curve is depicted with a blue
dashed line.

(a) N = M = 100 (b) N = 100, M = 5000

Fig. 2. Approximation of the negative log-likelihood J(θ) (shown with a solid red line)
using the second proposal with µp = 2 and σp = 2 + θ for N = M = 100 (a) and
N = M = 5000 (b) . The green area shows the 100% of variability of JBL(θ). The
empirical mean curve is depicted with a blue dashed line.

8 Conclusions

We have provided a detailed description of the use of gradient-based approaches
for parameter estimation in EBMs. Different complete derivations are described
discussing connections and relationships. We have given several practical sugges-
tions for the choice of a proposal/reference density in other to ensure a suitable
approximation of the negative log-likelihood and its gradient. We have also re-
marked several possible relevant issues that have been in some way overlooked
(or missed) in the literature. Nevertheless, as said in Section 1, other approaches
are available in the literature to estimate EBMs, such as the noise contrastive
estimation and the score matching. As future work, we plan to study the con-
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nections with these possible other schemes. We finally remark that similar issues
hold also modeling data characterized by heterogeneous sub-groups [12] propose
a finite mixture of non-normalized densities, which is specified by

p(·|ψ) =

G∑
g=1

πgpg(·|θk)

Z(θg)
=

G∑
g=1

ξgpg(·|θg), (26)

where G is the number of components of the mixture, π = {π1, . . . , πG} are the

mixing weights which sum to one,
∑G
g=1 πg = 1.
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