
SURFACE AREA OF THE MÖBIUS STRIP

RICHARD J. MATHAR

Abstract. The (half) area of the surface of the Möbius strip is the expected

product of the length of the circular spine times the width of the sweep line
times a positive correction factor. The manuscript writes down this correction

factor as a Taylor series of the ratio of width over circle radius; the factor

approaches one if that ratio approaches zero. [vixra:2503.0103]

1. Incentive

The first Guldin rule (Pappus’ theorem) provides a formula for the surface gen-
erated by revolving a planar curve with known center of mass around a circle [1,
(8.72)]. The näıve expectation is that the Möbius strip has an area equal to the
product of length of a circular center line by the width which originates from the
idea to take a rectangular piece of paper and to attach its short sides after a twist.
This manuscript corrects this hypothesis and evaluates a correction factor for this
product of width and length.

2. The Straight Screw

The simplest toy model of a twisted surface is screw with a straight long axis
along the horizontal +y coordinate plus a straight sweep line of length w attached
with its center to the y-axis. The sweep line is rotated at an angle θ around the
y-axis, θ, measured in radians, increasing linearly with y:

(1) θ(y) =
2πyk

D
.

The screw is essentially constructed as if a ship with a 2-blade propeller (math-
ematically just a line of length w—with apologies to real engineers) would travel
along the y-axis from 0 to D and all points of the stick were recorded.

The parameter k represents how often the propeller revolves while the ship moves
forward by D units. Figure 1 is an example for k = 3, D = 5, w = 0.6.

A point on the twisted ribbon of the screw has Cartesian coordinates

(2) ~r =

 t cos 2πyk
D

y

t sin 2πyk
D


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Figure 1. A straight screw with direction line along +y. x-axis
along red, y-axis along green, z-axis along blue line.

with two parameters −w/2 ≤ t ≤ w/2, y ≥ 0. The sine of θ multiplied by the
parameter t shows how much a point of the propeller is above the horizontal x− y-
plane. Tangential directions are defined by the partial derivatives,

(3)
∂~r

∂y
≡ ~ry =

 − 2πk
D t sin 2πyk

D
1

2πk
D t cos 2πyk

D

 ;

(4)
∂~r

∂t
≡ ~rt =

 cos 2πyk
D

0

sin 2πyk
D

 .

These are orthogonal with Gaussian parameter F :

(5) F = ~ry · ~rt = 0.

The cross product defines a direction of the surface normal (with a basically arbi-
trary choice of the sign):

(6) ~rt × ~ry =

 − sin 2πky
D

− 2πk
D t

cos 2πky
D

 .

Its length and Gaussian parameter G are

(7) |~rt × ~ry| =
√

1 + (2tπk/D)2 =
√
G.

For a line on the surface that keeps a constant distance t to the y-axis, the line
element ds is the length of (3), which happens to be the same as

√
G for this
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geometry. The length of such a line is

(8) Sk(t) =

∫ D

0

ds =

∫ D

0

dy
√

1 + (2πtk/D)2 =
√
D2 + (2πtk)2.

So a point on the propeller at distance t 6= 0 from the axis moves by a distance
Sk(t) > D while the ship moves by the distance D. The (one-sided) surface area of
the screw is [6, 2.262.1]

(9) Ak =

∫ w/2

−w/2
dtSk(t) =

w

2

√
D2 + (πkw)2 +

D2

2πk
arsinh

wπk

D

≈ Dw
[
1 +

π2k2

6
(w/D)2 − π4k4

40
(w/D)4 +

π6k6

112
(w/D)6 − 5π8k8

1152
(w/D)8 + · · ·

]
.

The limit where the propeller does not rotate: A0 = wD.

3. Möbius Strips

3.1. Mathematical Model, Coordinates. We look at a Möbius strip of directing
circle radius R located in the x− y−plane with a propeller of width w staying with
its middle at the directing/guide curve. In the picture of the ship of Section 2, its
steering wheel is now fixed at an angle that lets the ship run in a circle of radius
R. A point on the directing curve has the Cartesian coordinates

(10)

 R cosλ
R sinλ

0


parameterized by an azimuthal angle 0 ≤ λ ≤ 2π. The tangent line to the circle
points into the orthogonal direction

(11)

 − sinλ
cosλ

0

 .

A point on the strip at a distance t to the directing curve has a torsion angle θ
relative to the x− y-plane, such that its z-coordinate is t sin θ in the range −w/2 ≤
t ≤ w/2. This leaves the factor t cos θ for the x and y coordinates. Since the
propeller is obtained by rotation around the tangent (11), its direction must be
orthogonal to that, so dispersion of the t cos θ factor gives a propeller vector of

(12)

 t cos θ cosλ
t cos θ sinλ
t sin θ

 .

Attaching it to the circle (10) gives the Cartesian coordinates of a point on the
strip parameterized by λ and t:

(13) ~r(λ, t) =

 R cosλ
R sinλ

0

+

 t cos θ cosλ
t cos θ sinλ
t sin θ

 =

 (R+ t cos θ) cosλ
(R+ t cos θ) sinλ

t sin θ

 .
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Figure 2. Möbius ribbons for twist numbers k = 0 . . . 3/2.

The principle of the definition now lets the torsion angle θ increase linearly with
λ such that a point of constant t initially at

(14) ~r(0, w/2) =

 R+ w/2
0
0


ends up at

(15) ~r(2π,w/2) =

 R− w/2
0
0


after one λ-rotation through the circle. This is achieved by setting

(16) θ = λ/2.

Continuous surfaces with larger numbers of twists as in Figure 2 can be constructed
by selecting other positive half-integer k = 0, 1/2, 1, 3/2, . . .:

(17) θ = kλ.

Insertion into (13) defines a family of Möbius strips [3, 8]:

(18) ~r =

 [R+ t cos(kλ)] cosλ
[R+ t cos(kλ)] sinλ

t sin(kλ)

 .

3.2. Gaussian Parameters. Two tangential directions on the surface are con-
structed as the partial derivatives:

(19)
∂~r

∂t
≡ ~rt =

 cos(kλ) cosλ
cos(kλ) sinλ

sin(kλ)

 ; E = |~rt| = 1;
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(20)
∂~r

∂λ
≡ ~rλ =

 −tk sin(kλ) cosλ−R sinλ− t sinλ cos(kλ)
−tk sin(kλ) sinλ+R cosλ+ t cosλ cos(kλ)

tk cos(kλ)

 .

These are orthogonal:

(21) F = ~rλ · ~rt = 0.

The cross product (direction of the surface normal, not of unit length) is

(22) ~rt × ~rλ =

 tk sinλ−R sin(kλ) cosλ− t cosλ sin(kλ) cos(kλ)
−tk cosλ−R sin(k) sinλ− t sinλ sin(kλ) cos(kλ)

[R+ t cos(kλ)] cos(kλ)

 .

The length of the cross product is

(23) |~rt × ~rλ| = |~rλ| =
√
G =

√
[R+ t cos(kλ)]2 + (tk)2.

3.3. Edge length. The derivatives of the position as a function of the λ parameter
in (20) define the line segment

(24)
√

(∂rx/dλ)2 + (∂ry/dλ)2 + (∂rz/dλ)2

=
√

[R+ t cos(kλ)]2 + (tk)2 = R

√
[1 +

t

R
cos(kλ)]2 + (tk/R)2

for curves that run at constant distance t to the circular backbone.
The length Sk of such a line along the ribbon (up to the usual debatable factor

of 2 if k is non-integer) is

(25) Sk(t) =

∫ 2π

λ=0

R

√
[1 +

t

R
cos(kλ)]2 + (tk/R)2dλ.

The λ-integral leads to Elliptic integrals which we shall avoid here (App. C).
The Taylor expansion of the kernel in powers of small t/R is

(26)

√
[1 +

t

R
cos(kλ)]2 + (

tk

R
)2 = 1 + cos(kλ)

t

R
+
k2

2
(
t

R
)2 − k2

2
cos(kλ)(

t

R
)3

+
k2

8
[2 cos(kλ)− k][2 cos(kλ) + k](

t

R
)4 − k2

8
cos(kλ)[4 cos2(kλ)− 3k2](

t

R
)5

+
k2

16
[8 cos4(kλ)− 12k2 cos2(kλ) + k4](

t

R
)6

− k2

16
cos(kλ)[8 cos4(kλ)− 20k2 cos2(kλ) + 5k4](

t

R
)7 + · · ·

Term-by-term integration of the power series over
∫ 2π

0
dλ yields

(27) S0 = 2πR
[
1 +

t

R

]
;

(28)

S1/2 = 2πR
[
1+

1

8
(
t

R
)2+

7

128
(
t

R
)4+

25

1024
(
t

R
)6+

75

32768
(
t

R
)8− 2793

262144
(
t

R
)10+ · · ·

]
;

(29) S1 = 2πR
[
1 +

1

2
(
t

R
)2 +

1

8
(
t

R
)4 − 1

8
(
t

R
)6 − 15

128
(
t

R
)8 +

21

128
(
t

R
)10 + · · ·

]
;
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(30)

S3/2 = 2πR
[
1+

9

8
(
t

R
)2− 9

128
(
t

R
)4− 783

1024
(
t

R
)6+

37035

32768
(
t

R
)8+

267183

262144
(
t

R
)10+ · · ·

]
;

(31) S2 = 2πR
[
1 + 2(

t

R
)2 − (

t

R
)4 − 5

4
(
t

R
)6 +

75

8
(
t

R
)8 − 1533

64
(
t

R
)10 + · · ·

]
;

(32)

S5/2 = 2πR
[
1+

25

8
(
t

R
)2−425

128
(
t

R
)4+

1825

1024
(
t

R
)6+

928875

32768
(
t

R
)8−56366625

262144
(
t

R
)10+· · ·

]
.

The fact that these Sk(t) are larger than 2πR for k > 0 is no surprise, because
these are basically lengths measured along the cutting edges of screws for screws
that do not have straight but circular axes of length 2πR.

The length of the rim of the stripe is obtained by inserting t = ±w/2. (The sign
obviously matters only for the planar case S0.)

3.4. Area. The area is [10, (8.19)][1, (3.498b)]

(33) Ak =

∫∫ √
EG− F 2dλdt =

∫∫
|~rt × ~rλ|dλdt =

∫ w/2

−w/2
dtSk(t)

=

∫ 2π

0

dλ

∫ w/2

−w/2
dt
√

[R+ t cos(kλ)]2 + (tk)2

= R

∫ 2π

0

dλ

∫ w/2

−w/2
dt

√
[1 +

t

R
cos(kλ)]2 + (

tk

R
)2

=
wR

2

∫ 2π

0

dλ

∫ 1

−1
dx

√
[1 +

xw

2R
cos(kλ)]2 + (

xwk

2R
)2.

Remark 1. Optionally one could multiply this by 2 to cover the ‘back-side’ area,
i.e., to sweep this in the range 0 ≤ λ ≤ 4π.

Remark 2. The t-integral may be executed [6, 2.262.1,2.262.2]

(34)

∫ w/2

−w/2
dt
√
R2 + 2Rt cos(kλ) + t2 cos2(kλ) + t2k2

=
(cos2(kλ) + k2)t+R cos(kλ)

2(cos2(kλ) + k2)

√
[R+ t cos(kλ)]2 + t2k2

+
R2k2

2(cos2(kλ) + 8k2)3/2
arsinh

(cos2(kλ) + k2)t+R cos(kλ)

kR
|w/2t=−w/2

but since this still leaves a pending λ-integration, this analysis is not continued from
there.

The case k = 0 is the trivial planar hollow circle, difference of areas of circles
with radii R± w/2, with A0 = π[(R+ w/2)2 − (R− w/2)2] = 2πwR.

The further strategy is to utilize the power series expansion of Sk(t) assuming
w is small, where the integration over the powers of t is elementary.

Definition 1.

(35) ŵ = w/R

is the unitless ratio of the strip width by the radius of the backbone circle.
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The terms with odd powers of t disappear while integrating because the t−limits
are symmetric. Ak is 2πRw multiplied by an even function of ŵ.

Insertion of the Sk-series into (33) and term-by-term integration of (28) over
−w/2 ≤ t ≤ w/w yields

(36) A1/2 = 2πwR
[
1 +

1

96
ŵ2 +

7

10240
ŵ4 +

25

458752
ŵ6 +

25

25165824
ŵ8

− 2793

2952790016
ŵ10 − 53277

223338299392
ŵ12 + · · ·

]
There is an apparent discrepancy between this formula and the usual manual con-
struction of a Möbius model which attaches two ends of a rectangular stripe of
dimension 2πR×w after bending/twisting. In fact the paper model does not keep
the center line of the rectangular stripe on a planar circle; its 2-dimensional surface
is even more complex than the mathematical model (13) [11, 7, 12].

No new aspect arises in the analysis if twist numbers k ≥ 1 are computed—
besides the fact that for integer k the computed area is indeed the area of only one
of two sides.
(37)

A1 = 2πwR

[
1 +

1

24
ŵ2 +

1

640
ŵ4 − 1

3584
ŵ6 − 5

98304
ŵ8 +

21

1441792
ŵ10 +

105

27262976
ŵ12 + · · ·

]
;

(38) A3/2 = 2πwR
[
1 +

3

32
ŵ2 − 9

10240
ŵ4 − 783

458752
ŵ6 +

4115

8388608
ŵ8

+
267183

2952790016
ŵ10 − 28573965

223338299392
ŵ12 + · · ·

]
;

(39)

A2 = 2πwR

[
1 +

1

6
ŵ2 − 1

80
ŵ4 − 5

1792
ŵ6 +

25

6144
ŵ8 − 1533

720896
ŵ10 − 399

6815744
ŵ12 + · · ·

]
;

(40) A5/2 = 2πwR
[
1 +

25

96
ŵ2 − 85

2048
ŵ4 +

1825

458752
ŵ6 +

309625

25165824
ŵ8

− 56366625

2952790016
ŵ10 +

3746147475

223338299392
ŵ12 + · · ·

]
.

4. Summary

The (quasi one-sided) surface area of the Möbius strip of width w swept along a
planar directing circle of radius R is given by (36), where (35) denotes the unitless
ratio of the two main parameters. The main message is the same as for the surface
of a straight screw: the area is not the product of the length of the sweep line by
the length of the directing curve if the area is not flat.

Appendix A. Acknowlegements

Figures 1 and 3 are meshlab renderings of STL files.
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Appendix B. Embedding of Möbius strips

The parameters of the second quadratic fundamental normal form are listed here
[1, (3.503c)][10, (8.26)]. The normal vector of the plane is via (22)

(41) ~n =
1√
G
~rt × ~rλ.

The products of partial derivatives are

(42) L = −~nλ · ~rλ =
1√
G

sin(kλ)
[
[R+ t cos(kλ)]2 + 2t2k2

]
;

(the factor in the square brackets is not the same as the discriminant of the root
in (23); it is not G.)

(43) N = −~nt · ~rt = 0;

(44) M = −(~nλ · ~rt + ~nt · ~rλ)/2 =
kR√
G
.

Appendix C. Elliptic Integrals

The integrals (33) along the spine of the strip have the shape

(45)

∫ 2π

0

dλ

√
[1 +

xw

2R
cos(kλ)]2 + (

xwk

2R
)2

= 2

∫ π

0

dφ

√
(1 +

xw

2R
cosφ)2 + (

xwk

2R
)2.

The substitution cosφ = ξ rephrases this as an elliptic integral

(46) . . . = 2

∫ 1

−1
dξ

√
(1 +

xw

2R
ξ)2 + (

xwk

2R
)2

1√
1− ξ2

=
2xw

2R

∫ 1

−1
dξ

√
(
2R

xw
+ ξ)2 + k2

1√
1− ξ2

=
xw

R

∫ 1

−1
dξ

√
(ik +

2R

xw
+ ξ)(−ik +

2R

xw
+ ξ)

1√
(1− ξ)(1 + ξ)

= xŵ

2∑
m=0

βm

∫ 1

−1
dξ

ξm√
(ik + 2R

xw + ξ)(−ik + 2R
xw + ξ)(1− ξ)(ξ − (−1))

with imaginary unit i. According to the Byrd-Friedmann formula [2, 259.00] the
case m = 0 is an elliptic integral of the first kind; The other two cases m = 1, 2
are linear combinations of elliptic integrals of the first, second and third kind [2,
259.03].

Appendix D. Outlook: Möbius Bodies

To enter a discussion of Möbius solids with finite volume, one may define sweep
curves that are closed (so they have a definitive area) and move these along a
directing circle.

The simplest example is a sweep curve that is a circle that stays with its center
on the rim of the directing circle to create the torus with a well-known volume [1,

https://orcid.org/0000-0001-6017-6540
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Figure 3. Möbius bodies defined by sweeping a regular triangle
of edge length 0.3 along a circle of radius 1. x-axis in red, y-axis
in green, z-axis in blue.

3.3.4]. Another category is a curve defined by a regular polygon of n sides which
is twisted by θ-angles which are multiples of 2π/n while its center of mass stays on
the directing circle through one rotation λ = 0 . . . 2π. For a triangular cross-section
(created by warming up and vandalizing one of the famous swiss chocolate bars),
one may for example twist the triangle by 120◦ in one revolution or 360◦ in one
revolution as illustrated in the upper and lower Figure 3.

(i) In the 120◦ or 240◦ twisted case, the body has only one surface: after traveling
once or twice around the z-axis and staying on the smooth surface without passing
over an edge, one ends up at different places on the surface (the analog of the Möbius
strip with half-integer k-numbers); to return to the same place one must travel
by multiples of 3 around the z-axis. (ii) In the 360◦-twisted case, traveling once
around the z-axis returns to the same place and the surface contains 3 individual
areas separated by the 3 ridges.

The computation of the volume of the twisted triangle may be founded on the
Gauss integral theorem that computes the triple integral of the divergences of a
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Figure 4. A regular triangle with side length a with center at the
origin as in (47).

A

z

B

R

a

θ

x

C

Figure 5. A regular triangle with side length a in the rot-shifted
version of (52).

vector field (which is ~r) by the surface integral of the dot product of the vector
field with the surface normal [1, 13.118b][6, 10.711]. The rest of the section is an
explicit execution of this algebra.

A regular triangle of side length a has altitude h =
√

3a/2, area A. =
√

3a2/4,
a reference position with center at the origin of coordinates, and Cartesian coordi-

nates of 3 corners ~A, ~B and ~C

(47)

 a/
√

3
0
0

 ;

 −a/(2√3)
0
a/2

 ;

 −a/(2√3)
0
−a/2

 ;

aligned as in Fig. 4. The triangle is rotated by the angle θ proportional to the

https://orcid.org/0000-0001-6017-6540


SURFACE AREA MÖBIUS STRIP 11

azimuth λ such that the surface is continuous after one revolution λ = 0 · · · 2π,

(48) θ = kλ,

where the parameter k = 0, 1/3, 2/3, 3/3, 4/3 . . . is a multiple of 1/3.
The triangle rotated counter-clock-wise by θ around the y-axis pushes the three

~A, ~B, ~C vertices to coordinates
(49) a/

√
3 cos θ
0

a/
√

3 sin θ

 ;

 −a/(2√3) cos θ − a/2 sin θ
0

−a/(2
√

3) sin θ + a/2 cos θ

 ;

 −a/(2√3) cos θ + a/2 sin θ
0

−a/(2
√

3) sin θ − a/2 cos θ


as in Fig. 5. These triangles are shifted to place their centers on the circle by adding
R to the x-coordinates, then rotated by λ around the z-axis, so the edges of the
Möbius body are at

(50) ~A =

 (R+ a
√

3 cos θ) cosλ

(R+ a/
√

3 cos θ) sinλ

a/
√

3 sin θ

 ;

(51) ~B =

 (R−
√

3a/6 cos θ − a/2 sin θ) cosλ

(R−
√

3a/6 cos θ − a/2 sin θ) sinλ

−
√

3a/6 sin θ + a/2 cos θ

 ;

(52) ~C =

 (R−
√

3a/6 cos θ + a/2 sin θ) cosλ

(R−
√

3a/6 cos θ + a/2 sin θ) sinλ

−a/(2
√

3) sin θ − a/2 cos θ

 .

Points on the Möbius surface have coordinates

(53) ~rAB = ~A+ ζ( ~B − ~A); ~rBC = ~B + ζ(~C − ~B); ~rCA = ~C + ζ( ~A− ~C);

by linear interpolation with 0 ≤ ζ ≤ 1. By computing the partial derivatives
∂~rAB/∂λ, ∂~rAB/∂ζ, their cross product

(54) ~nAB ≡ ∂~rAB/∂λ× ∂~rAB/∂ζ,

and the same for the edges BC and CA, we obtain the surface normals ~nAB , ~nBC ,
~nCA as functions of λ and ζ. The dot products are

(55) ~rAB · ~nAB = − 1

12
a
[
− 6R2 cos(kλ)− 2a2 cos(kλ) + 3aR sin(2kλ)

+
√

3a2ζ sin(kλ)− 3aRζ sin(2kλ) + 33/2aRζ cos(2kλ) + 3a2ζ cos(kλ)

− 33/2aR−
√

3aR cos(2kλ) + 6
√

3R2 sin(2kλ)
]
;

(56) ~rBC · ~nBC =
1

12
a
[
2
√

3a2ζ sin(kλ)−
√

3a2 sin(kλ) +
√

3aR cos(2kλ)

+ 33/2aR− 12R2 cos(kλ)− a2 cos(kλ) + 3aR sin(2kλ)

− 6aRζ sin(2kλ)
]
;
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(57) ~rCA · ~nCA =
1

12
a
[
−
√

3a2ζ sin(kλ) +
√

3a2 sin(kλ)

− 2
√

3aR cos(2kλ) + 33/2aR+ 3a2ζ cos(kλ) + 6R2 cos(kλ)

− a2 cos(kλ) + 33/2aRζ cos(2kλ) + 6
√

3R2 sin(kλ) + 3aRζ sin(2kλ)
]
.

The intermediate sum of all three sub-surfaces is divided by 3 (because ∇ · ~r = 3
within the Gauss theorem)

(58)
1

3
(~rAB · ~nAB + ~rBC · ~nBC + ~rCA · ~nCA) =

√
3

4
a2R

and does not depend on k, ζ or λ. The volume is

(59) Vk =

∫ 1

0

dζ

∫ 2π

0

dλ

√
3

4
a2R =

√
3π

2
a2R,

and this is exactly the value 2πRA. that is also derived by the second Guldin rule
[1, (8.75)].

Remark 3. This is a feature of our construction of keeping the center of the twisted
sweep curve on the directing circle [5, 9, 4]: The volume integral could be evalu-

ated as
∫ 2π

0
dλ
∫∞
0
xdx

∫
dzΘ(x, z, λ) in Cylinder Coordinates where Θ is a func-

tion which is one inside the solid, zero outside and x is the associated Jacobian.
In the inner double integral

∫∫
xdxdz the substitution x = x′ + R moves the cross

section such that its center of mass is at x′ = 0, and splits into two integrals,∫∞
0
x′dx′

∫
dzΘ(x′, z, λ) + R

∫∞
0
dx′
∫
dzΘ(x′, z, λ). The first of these with kernel

xΘ(x′, z, λ) is the first moment in the horizontal direction, which is the x′-coordinate
of the center of mass, which is zero because we defined the body by keeping the cen-
ter at a distance R. The second of these is R multiplied by the ordinary integral
which is just the area. So the inner two integrals evaluate to RA. independent of θ;
the outer integral eventually contributes a factor 2π. In particular, regularity of the
twisted sweep curve is not required to keep the second Guldin rule for the volume
intact.

The surface of these twisted triangles is

(60) Sk =

∫ 1

0

dζ

∫ 2π

0

dλ[|~nAB |+ |~nBC |+ |~nCA|]

for which we only give the results of leading terms of the power series expansions
of small a/R:

(61) S0 = 6πaR;

(62) S1/3 = 6πaR+
π

36R
a3 +

π

320R3
a5 +

2273π

4354560R5
a7 + · · · ;

(63) S2/3 = 6πaR+
π

9R
a3 +

π

90R3
a5 +

29π

27216R5
a7 + · · · ;

(64) S1 = 6πaR+
π

4R
a3 +

19π

960R3
a5 − 11π

10752R5
a7 + · · · .

The non-twisted case S0 = 6πaR is the first Guldin’s rule applied to a regular
triangle with edge length a and angle θ = 0 in Fig. 5, where the centers of the sides
AB and CA have distances R + h/6 to the z-axis and the side BA has distance
R− h/3 to the z-axis, in total 2(R+ h/6) +R− h/3 = 3R.
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10. R. Sauer and I. Szabó, Mathem. Hilfsmittel des Ingenieurs, Teil iii, Die Grundlehren der

mathematischen Wissenschaften, no. 141, Springer, Berlin, Heidelberg, 1968. MR 0231562
11. E. L. Starostin and G. H. M. van der Heijden, Equilibrium shapes with stress localisation for
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