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  Abstract
        A Bayesian method for dynamic hypothesis-based randomness estimation 
of a sequence of experimental data is proposed. Examples of pseudorandom 
number generator testing are given.
Keywords: Bayesian method.

              The prior probability of getting heads or tails is 0.5. Therefore, with 
repeated tossing, the number of heads or tails should be approximately the 
same. If heads came up five times in a five-fold toss, tails are intuitively 
expected in the next toss. Tossing a coin is a physical process, and it is 
impossible to take into account all the influencing factors. Previously, it was 
believed that the ideal random number generator is tossing a “fair” coin, but 
researchers [1] in 2023 (!) as a result of 350,757 tests proved that, as a rule, 
coins fall on the same side they started with.
             This paper examines the possibility of using the Bayesian method, 
based on experimental data and observations, to easily and reliably identify and 
evaluate discrepancies with theory, which in turn can guide the search for 
physical causes of such discrepancies.
Observations of coin tosses (event B) can be taken into account when 
calculating the posterior probability, confirming or not confirming the hypothesis 
of one side or the other of the coin in the next N+1 tosses. In the Bayesian 
method, the posterior probability is:
                                            

                                      P(R /B)=
p(R)⋅p(B /R)

p(R)⋅p(B /R)+ p(O)⋅p(B /O)
             (1)

                                     P(O /B)=
p(O)⋅p(B /O)

p(R)⋅p(B /R)+ p(O)⋅p(B /O)
              (2)

               

1



             Here: P(R /B) and P(O /B) are the conditional (a posteriori) probabilities of 
confirming the hypotheses, namely: the next N+1 coin tosses will result in tails   
or heads, respectively, provided that the results of N observations (event B) are 
true;
             –   p(R)   and  p(O)   are the a priori probabilities of tails and heads, 
respectively;
            –  p(B /R)  and p(B /O) are the conditional probabilities that events R and 
O, respectively, will occur.
                 
          In the general case, for a polyhedron with S sides, the posterior 
probability of the hypothesis of the appearance of the face Sk in N+1 
observations is:

                                 P(Sk /Bk) =   
p(Sk)⋅p(Bk /Sk)

∑
1

S

p(Sk)⋅p(Bk /Sk)
                      (3)

          Here:          p(Sk) is the a priori probability of the face Sk, for a regular 
polyhedron - 1/ S ;
                             p(Bk /Sk) - the influence of the observation results on the 

confirmation of the hypothesis:

                                  p(Bk /Sk)   =    ∑
i=1

N
1

(Ski+1)
                              (4)

         where N is the number of observations of the face Sk in N trials.
                  Ski = 1 when the face is observed and Ski = 0 when it is not.

           The inverse frequency in formula (4) suggests that the given facet should 
not appear in the next observation, and the unit in the denominator confirms the 
hypothesis through recursion.
           Figure 1 shows graphs of the results of testing popular pseudo-random 
number generators (simulation of tossing a "fair" coin) in C++: Xorosshiro128+, 
Linear_Congruential, Squares_RNG and Mersenne_Twister. The X-axis shows 
the number of observations, 100 in total, and the Y-axis shows the ratio of the 
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natural logarithms of the probability of hypotheses for two sides - Ln(P1/P2), 
calculated using formulas (3) and (4). The prior probability for both sides is taken 
to be 0.5. 

 

 

Fig. 1 Dependence of the logarithm of the 
ratio of probabilities of hypotheses on the number of observations

              Figure 2 shows correlograms, graphs of the function of dependence of 
the autocorrelation coefficients (ACF) of the logarithms of the probability of 
hypotheses on the lag.
             The table summarizes the results of testing hypotheses on the ACF, the 
fulfillment of the law of the iterated logarithm (LIL law) [5], the frequency of sign 
changes and the relative pseudo-period of randomness (local period of 
ergodicity). The law of the iterated logarithm was tested using the formula:         

                                               
|∑ ln (P1/P2)|
σ √2n ln ln (n)

  

           here: σ2 – is the variance, n is the number of observations, in our case 
100.
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Fig.2 Correlograms, autocorrelations of the ratios of the logarithms of 
hypotheses (ACF).

Generators    
  

  ACF 
    

    σ2     Law   
    LIL 

Frequency of 
sign change 

Period of 
ergodicity   

      Xoroshiro128+            ≠ 0 0.012 1.6363        26          1

Linear Congruential            ≠ 0 0.093 1.3050       12         0.46

  Mersenne_Twister            ≠ 0 0.089 1.6507       20         0.77

    Squares _RNG            ≠ 0 0.013 0.5728       24         0.92
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             According to the table, the autocorrelation check (ACF) shows a lack of 
randomness in the sequence of hypothesis logarithms. Furthermore, a deviation 
from the law of the iterated logarithm (LIL) indicates a connection between the 
internal parameters of two mutually exclusive hypotheses.

             In our view, the regularity and absence of random parameters in the 
hypotheses enable an evaluation of the efficiency and quality of generators by 
examining the stability of hypothesis logarithm oscillations (Fig. 2)

             Here are the signs indicating the presence of structures in a random 
number sequence:

             The lower the dispersion of wandering logarithms (as per the LIL law), 
meaning smaller deviations from 1, the higher the predictability of the numbers;

             A low frequency of sign changes at large amplitudes suggests a hidden 
structure, whereas a high frequency of sign changes points to a high pseudo-
random period, or a longer local ergodicity period;

            Prolonged oscillations above or below zero indicate one hypothesis 
'dominates' the other, which implies an imbalance in the generator;

           In a truly random sequence, the oscillations of hypothesis logarithms 
should cross zero frequently and avoid staying within any single region for 
extended periods. Conversely, prolonged waves of oscillations may indicate 
trends or patterns, pointing to hidden or explicit structures.

          Based on these criteria, we conclude that all tested generators meet the 
requirements of pseudorandom number generators, albeit with varying 
performance quality. The best results were achieved by Xoroshiro128+ and 
Squares_RNG.

        The proposed method for the dynamic analysis of hypothesis logarithm 
oscillations, grounded in experimental and observational data, is not limited to 
testing generators.

5



             

                                                References
    [1]. Fair coins tend to land on the same side they started: Evidence from 
350,757 flips   arXiv:2310.04153v3
   [2]. "Bayes Theorem - Formula, Statement, Proof | Bayes Rule". Cuemath. 
Retrieved 2023-  10-20    
  [3].   "Bayes' Theorem: Introduction". Trinity University. Archived from the       
original on 21 August 2004. Retrieved 5 August 2014.

  [4]. ttp://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html

  [5].  https://en.wikipedia.org/wiki/Law_of_the_iterated_logarithm

  [6].  Вентцель Е.С. Теория вероятностей. М.:Высш.шк. 2001

 _____________________________
       1 Email: alexroz2008@gmail.com 

6

https://www.cuemath.com/data/bayes-theorem/
mailto:alexroz2008@gmail.com
https://en.wikipedia.org/wiki/Law_of_the_iterated_logarithm
http://www.trinity.edu/cbrown/bayesweb/
http://www.trinity.edu/cbrown/bayesweb/
https://web.archive.org/web/20040821012342/http://www.trinity.edu/cbrown/bayesweb/

