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Abstract: Based on heuristics related to Cramér’s conjecture, this paper pro-
poses a suitable hypothesis and investigates its implications. The study encom-
passes prime gaps, Andrica’s conjecture, the mean of consecutive prime numbers,
and a detailed analysis of Oppermann’s conjecture.

1. Introduction

According to the prime number theorem, the number of primes less than n
is asymptotic to n/nlogn, and the average gap between primes less than n is
logn. Therefore, nth prime is asymptotic to nlogn; that is

Pn

lim =1
n—o0 nlogn

which can be recast as p,, ~ nlogn. In other words, nlogn approximates p,, in the
sense that the relative error of this approximation approaches 0 as n approaches
infinity. So, we have

Pnt1 + P ~ (n+ 1)log(n + 1) + nlogn

because
i Dn+1 + Dn
1m
n—oo (n + 1)log(n + 1) + nlogn
. 1 1
- nl_}II;o( (n+1)log(n+1) nlogn + (n+1)log(n+1) + nlogn)
Pn+1 Pn+1 Pn Pn

This result shows it is possible to add p,, ~ nlogn and p, 41 ~ (n+1)log(n+1).
However, subtraction is not possible; that is,

Pa = Pat1 = (n+ 1)log(n + 1) — nlogn (1)



Rather, it holds that

lim sup Pn+1 — Pn - >
n—oo (M4 1)log(n+ 1) —nlogn
lim inf Prt1 = Dn =0

n—oo (n+ 1)log(n + 1) — nlogn
proof. Note that

lim sup Poti—Pn _ oo, liminf Pnit ZPn _ (2)

n— o0 logpn n—oo logpn

E. Westzynthius proved the former in 19312, Daniel Goldston, Janos Pintz

and Cem Yildirim proved the latter in 20052, First, we claim
l l
lim 209(0logn) _ (3)
n—oo  logpn

For every 2 <n € N,

log(nlogn)
—— =log,, (nlogn
logpn p )
put k(n) = logy, (nlogn). Then, we obtain pem) = nlogn which yields
nlogn
oy = 1
Dn
Knowing that p,, ~ nlogn, we consider the limit of p,ll_k(n);
n n l
lim prll_k(") — lim 22— P O 12
n—00 n—00 pn(”) n—oo nlogn pﬁ(")

Therefore, lim,, .o, k(n) = 1 as claimed. We also claim that
lim log(nlogn) _q (4)
n—oo (n + 1)log(n + 1) — nlogn

By the L’Hoépital’s rule,

. log(nlogn)
lim
n—oo (n + 1)log(n + 1) — nlogn
~ lim logn + log(logn)
~ nco (n 4 1)log(n + 1) — nlogn
LH 1/n+ 1/nlogn
~ n=oo log(n + 1) — logn
. logn + 1
= lim
n—oo nlogn(log(n + 1) — logn)
. logn + 1
im
n—oo lognlog(1 + 1/n)"
. logn+1
= lim ———
n—oo  logn
=1




Now, put

B log(nlogn) (n + 1)log(n + 1) —nlogn ~ (n + 1)log(n + 1) — nlogn

( logp, log(nlogn) logpa

then, because of (3),(4), we have lim, o, F(n) = 1 and thus, for sufficiently
large M,

1 3
Z<F 2
5 < (n)<2

where n > M. Multipling by (pn+1 — pn)/logp, leads us to

lpn—i-l — DPn < Pn+1 _pnF(n) < §pn+1 — DPn

2 logpn logpn 2 logpn
By the Squeeze Theorem and (2), we obtain
lim sup Prt1 7 Pn o n) = oo
n—00 logpn (5)

Knowing that

Pnt1 — Pn ) = Pnt1 — Pn
logpn (n+ D)log(n+ 1) — nlogn

so, we can represent (5) as

Pni+1 — Pn

li =
l,rffolip (n+ 1)log(n+ 1) — nlogn >
lim inf Prt1 = Dn =0

n—oo (n+ 1)log(n + 1) — nlogn

Therefore, we need another method to find the approximate expression of
DPnt1 — Pn- (n 4 Dlog(n + 1) — nlogn is not appropriate although p,, ~ nlogn.
In this paper, instead of finding a solution, We will approach this problem in a
different way. B

Cramer conjecture is a conjecture regerding the gaps between prime num-
bers. The conjecture states that

gn ‘= Pnt+1 — Pn = O((logpn)Q)

holds where O is a big O notation. And sometimes the following formulation is
called Cramer’s conjecture;

lim sup Pn+1 — Pn _
n—oo  (logpn)?

which is stronger than former. This conjecture is based on the Cramér random
model, a model for the distribution of primes. In this model, the probability



that a positive integer n > 3 is a prime is approximately 1/logn.

But Maier’s theorem shows that the Cramér random model does not ade-
quately describe the distribution of primes on short intervals, and a refinement
of Cramér’s model taking into account divisibility by small primes suggests that

Pn+1 — Pn

lim sup 5 > 2exp(—y) ~ 1.1229 - -

nooo (logpn)

These conjecture say that the limit superior of g,,/(logp,)? converges. (But
Jénos Pintz suggested that it may diverge®.) It is supported that there exists
m such that the superior of g,/(logp,)™ converges by the preceding several
heuristics. So, Let u be the smallest m that satisfies the following conditions:

meN, lim —I" _—9

n—oo (logpp)™

which implies that

. dn
lim ——————— =0 6
o (log(nlogn))H (6)
because
gn 9n logpn

lim ————— = lim F=0x1=0

2% Toglnlogn)) — 2% Tlogna) Tag(nlogn)

(See (3)). To avoid the possibility of such m not having a minimum, g is assumed
to be a natural number for convenience. Nevertheless, . may not exist as such
m doesn’t exist, but in this paper, it is assumed to exist, and we will examine
what conclusion we can reach.

2. Prime gap
Remark 1. For every k > 0,

Py p k
1.[[] P — 1'[[] n =1 7
o (nlogn)k n1—>oo(nlogn) (7)

Lemma 1. For every k£ > 0,

l l B
n—oo  (nlogn)k
proof. Let x = nlogn, then by L’Hopital’s rule,

(log(nlogn))H . (logx)" v/u lim u(logz)r=1 LH

lim ———22 = lim —~2% =

n—oo  (nlogn)k z—o0  xk T—00 kak
% !
= — =00
z—o00 kHxk



(6) and (7) allow us to conclude that for every k > 0,

n — Pn l k n — Pn l k

noo ph (log(nlogn))i — n=oc (log(nlogn))*  pj

Hence, we have

. Pn+1 — Pn
lim_ *T =(8)x(9)=0 (10)

or

k
lim —Pn =00
n—00 Pp41 — Pn

By epsilon-delta argument, we now obtain
V>0, INeN st. n>N = g, :=pur1 —pn <Pt

(11)

= Pn < Pns1 < Do+ Dk

3. About Andrica’s conjecture

Andrica’s conjecture is a conjecture regarding the gaps between prime num-
bers. The conjecture states that the inequality

\/pn+l - ’\/pn < 1

holds for all n€ N. And a strong version of Andrica conjecture is as follows;
Except for p, € {3,7,13,23,31, 113}, that is n € {2,4,6,9,11,30}, one has

1 ) 1
VPn+1 —/Pn < 53 equivalently n i= Pnt1l — Pn < p;/2 4 1

In this chapter, we prove that
Jim (Prt1 = v/Pn) =0
1
proof. Let € > 0, k € (0, 5), Then, clearly

k k

. pk L pk

lim ——— = lim ————— =
n—00 (\/Dn +€)2 —pp,  n—0 26,/pp + €2

Thus,

1
¥e>0, Yk € (0,5), I EN st n>N = PE < (VPn + €)% —pa

= po+0E < (o +e€)?



Meanwhile,

vk € (0, %), IN, €N, st. n>Ny = poy1 <pn+05 (0 (11))
Put N=max(Ny, Na), Then we obtain
n>N = poy1 < (Voo +e)?
which can be represented as, for n > N,

VPn+1 — /Pn <€

Since this inequation holds for every € > 0, the epsilon-delta argument allow us
to conclude

nli)n;o(\/pn—i-l - \/pn) =0n (12)
Furthermore, let y > 1, z < %, then, since VL > 0, M € N s.it. n > M
= p,l/ Y > L, the generalized binomial theorem allow us to obatain
lim l/p—n
n—00 (pn Y + €>y — Pn
= Jim =17 = =2/
n—o00 (pn'i‘(?)pny yE-i—(g)pny y€2+"')_pn
. P y—1
= lim : L =0 (rx<=—)
n—»o0 ((zl;)pgly—l)/ye + (g)p%y—2)/y€2 +--4) Y

In the same method as the proof of (12),

vy > 1, nlgrgo(pi/ﬁ’l —p/") =0

3-1. The arithmetic mean, the geometric mean
and the harmonic mean of primes

The relation between the arithmetic mean and the geometric mean of nth
prime and (n + 1)th prime is as follows:

anrl + Pn

5~ Vb
proof.

i (ot — V) = 0

= lim (Fnrr — VPn)? =0

= i (puss + P — 2/Fipn) =0 (13)



Thus,

+ P — 2y/PriiPn
lim 2ot BB gy Pett BP0 D SVPePe gy w14
n=00 2\/Ppt1Pn 00 2\/Pn+1Pn

Furthermore,

lim (pinﬂ + Pn

n—00 2

-V anrlpn) =0

trivially holds by (13). And similarly, the relation between the arithmetic mean
and the harmonic mean of nth prime and (n + 1)th prime is as follows:

Pnt1+Pn  2Pnt1Pn
2 Pn+1 + Pn

proof. By (14)

2 2 2,/
lim Pn+1Pn lim Pn+1Pn o -1 m

n—=00 Ppi1 + Pn Pnt1 T Pn N0 Ppii +Dp
In a similar manner to before, it is also true that

n n 2n n
lim (P +1+Pn  2Pnt1p —0

n—oo 2 Pn+1 + Pn
proof.
n n 2 n n
lim (P +1 1T Pn 2Pni1P
n—00 2 Pn+1 + Pn
— lim (pn—i-l +pn)2 — 4pny1Pn — lim (pn+1 _pn)2
n—00 2(pny1 +pn) n—00 2(Ppy1 + Pn)
i (anrl _pn)2 . Pn+1 — Pny2
< lim —————— = lim (——)*=0 (.- (10
Jim PPl g (PP - 10)

By the relation between the arithmethic mean and the harmonic mean,

Pn+1 + Pn 2pn+1pn

lim . =0n
n—)oo( 2 Pn+1 + Pn )
Hence,
Pn+1 + Pn 2pn+1pn
5 "~ APntiPn Y
2 b pn+1 + Pn

Therefore, the arithmetic mean, geometric mean, and harmonic mean of nth
and (n + 1)th primes are asymptotically equal as n approaches infinity.

4. About Oppermann conjecture

Oppermann conjecture is a conjecture regarding the distribution of prime
numbers. It is closely related to but stronger than Legendre conjecture, Andrica



conjecture, and Brocard conjecture. The conjecture states that for every integer

n>1,

m(n? —n) < 7(n?) < ©(n® +n)

Notation 1. Let p(z) is the largest prime number less than z, P(z) is the
smallest prime number greater than x.

e.g. p(10) =7, P(10) =11
Lemma 2. Let f: R — R is an increasing function and m is constant, then
Vn > M, pp <pny1 < f(pn) = VYo >pu, peP st x<p< f(z)

proof. Suppose for contradiction that there exists an = > pjp; such that an open
inteval (z, f(z)) doesn’t contain any prime number. Then we have P(z) > f(z).
Knowing that, by the definition, p(z) < x and P(z) is the next prime number
after p(z), we can conclude

px) < P(z) < f(p(x))
But, because f is an increasing function, p(r) < z implies f(p(z)) < f(z) <
P(z). It’s a contradiction. B
Lemma 3. By Lemma 2 and (11) implies that
Vk>0,3M, eR st. IpeP with e <p<xz+z* forz>DM (15)
Lemma 4.

Vk>0, IMy e R, st. IpeP with x—z* <p<ax forxz> M (16)

proof. In the Lemma 3, let # = m +m"* and 2 > M, where My = M; + MF,
then there is a prime number in the open interval (m,x). Also, since x > m, we

have (m,z) C (z—2*, ). Hence, there is a prime in the open interval (z —2*, r).

We now prove that for every k& > 0, there exists M € R such that
t>M = n(z* —z) <7(x) <7w(2" +2) (17)
proof. By (15) and (16),

Vk>0,3M; €R s.t. Ip,q € P with x—2* <p<z<q<az+z® forz> M,
1
Substitute x = t™ where m = o then

Ym >0, IM' €R s.t. Ip,q € P with t"—t<p<t™ <q<t"™+t fort>M'
(c.f. & =t™ yields My = (M’)™) which implies that

Ym >0, IM eR st. t>M = 7t —t) <a({t™) <w(t™+t) R



Furthermore, how many primes exist in (ank7 xzk + 2)? In other words, what
is the result of lim (7(z* + z) — w(a*))?
Tr—r0o0

Remark 2. Note that
Jirg AN farvge = fi—far g — 92
doesn’t always hold. (1) is a counterexample. So,

lim (@™ + 2) — m(2™) -1
z—oo (2™ + x)/log(z™ + x) — a™ [log(z™)

may not hold. It is necessary for us to explore alternative methods.

Lemma 5. Let functions f and g be increasing and satisfy that Vz €
R, g(z) > f(z) > 0. If li_>m (9(z) — f(z)) = oo and there exists k& € (0,1)
x (oo}

such that g(z)* < g(x) — f(x) for sufficiently large x, then
lim (m(g(z)) — 7(f(z))) = oo

T—r00

proof. Because of (16),

Vj € (0,k), INER st. >N = TpeP with gx) —g(x)! <p < g(x)
= IpeP with f(z)<p<gx)

Let a,, be a sequence defined by a1 = g(z) and a,,+1 = an, —a%, then there exists

a prime number in the open interval (a,, — a’,,a,) = (an41,a,) and for every

n € N, a; > a,. We consider an m such that f(z) < am,, f(x) > am41 which

forces m(g(x)) — 7(f(x)) > m — 1. (Such m must exist since a,, — 0 as n — 00,
and depend on z.) Therefore, for sufficiently large z,

g(l‘) - f(m) < Z(an _anJrl) = ZCL% S Zajl = ma{
n=1 n=1

n=1

and thus, we obtain

m > = - >
al g(z)? g(z)!
Note that ()"
. g\r)” L
mlirrgo o@) oo (7€ (0,k))
Hence,

Tim (n(g(x)) — 7(f(x)) = oo W

Since Vo € R, (z+2™) > 2™ > 0 and for every m > 0, there exists k € (0, 1)
such that (2™ + x)¥ < (2™ 4 1) — 2™ = z for sufficiently large z,

Ym > 0, li_>m (m(z™ +x) —7(2™)) = 00
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