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Abstract: Based on heuristics related to Cramér’s conjecture, this paper pro-
poses a suitable hypothesis and investigates its implications. The study encom-
passes prime gaps, Andrica’s conjecture, the mean of consecutive prime numbers,
and a detailed analysis of Oppermann’s conjecture.

1. Introduction

According to the prime number theorem, the number of primes less than n
is asymptotic to n/nlogn, and the average gap between primes less than n is
logn. Therefore, nth prime is asymptotic to nlogn; that is

lim
n→∞

pn
nlogn

= 1

which can be recast as pn ∼ nlogn. In other words, nlogn approximates pn in the
sense that the relative error of this approximation approaches 0 as n approaches
infinity. So, we have

pn+1 + pn ∼ (n+ 1)log(n+ 1) + nlogn

because

lim
n→∞

pn+1 + pn
(n+ 1)log(n+ 1) + nlogn

= lim
n→∞

(
1

(n+1)log(n+1)
pn+1

+ nlogn
pn+1

+
1

(n+1)log(n+1)
pn

+ nlogn
pn

)

= lim
n→∞

(
1

1 + 1
+

1

1 + 1
) = 1

This result shows it is possible to add pn ∼ nlogn and pn+1 ∼ (n+1)log(n+1).
However, subtraction is not possible; that is,

pn − pn+1 ≁ (n+ 1)log(n+ 1)− nlogn (1)
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Rather, it holds that

lim sup
n→∞

pn+1 − pn
(n+ 1)log(n+ 1)− nlogn

= ∞

lim inf
n→∞

pn+1 − pn
(n+ 1)log(n+ 1)− nlogn

= 0

proof. Note that

lim sup
n→∞

pn+1 − pn
logpn

= ∞, lim inf
n→∞

pn+1 − pn
logpn

= 0 (2)

E. Westzynthius proved the former in 19311,2, Daniel Goldston, János Pintz
and Cem Yıldırım proved the latter in 20053. First, we claim

lim
n→∞

log(nlogn)

logpn
= 1 (3)

For every 2 ≤ n ∈ N,
log(nlogn)

logpn
= logpn

(nlogn)

put k(n) = logpn
(nlogn). Then, we obtain p

k(n)
n = nlogn which yields

nlogn

p
k(n)
n

= 1

Knowing that pn ∼ nlogn, we consider the limit of p
1−k(n)
n ;

lim
n→∞

p1−k(n)
n = lim

n→∞

pn

p
k(n)
n

= lim
n→∞

pn
nlogn

nlogn

p
k(n)
n

= 1× 1 = 1

Therefore, limn→∞ k(n) = 1 as claimed. We also claim that

lim
n→∞

log(nlogn)

(n+ 1)log(n+ 1)− nlogn
= 1 (4)

By the L’Hôpital’s rule,

lim
n→∞

log(nlogn)

(n+ 1)log(n+ 1)− nlogn

= lim
n→∞

logn+ log(logn)

(n+ 1)log(n+ 1)− nlogn

L′H
= lim

n→∞

1/n+ 1/nlogn

log(n+ 1)− logn

= lim
n→∞

logn+ 1

nlogn(log(n+ 1)− logn)

= lim
n→∞

logn+ 1

lognlog(1 + 1/n)n

= lim
n→∞

logn+ 1

logn

= 1
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Now, put

F (n) =
logpn

log(nlogn)

log(nlogn)

(n+ 1)log(n+ 1)− nlogn
=

logpn
(n+ 1)log(n+ 1)− nlogn

then, because of (3),(4), we have limn→∞ F (n) = 1 and thus, for sufficiently
large M ,

1

2
< F (n) <

3

2

where n > M . Multipling by (pn+1 − pn)/logpn leads us to

1

2

pn+1 − pn
logpn

<
pn+1 − pn
logpn

F (n) <
3

2

pn+1 − pn
logpn

By the Squeeze Theorem and (2), we obtain

lim sup
n→∞

pn+1 − pn
logpn

F (n) = ∞

lim inf
n→∞

pn+1 − pn
logpn

F (n) = 0
(5)

Knowing that

pn+1 − pn
logpn

F (n) =
pn+1 − pn

(n+ 1)log(n+ 1)− nlogn

so, we can represent (5) as

lim sup
n→∞

pn+1 − pn
(n+ 1)log(n+ 1)− nlogn

= ∞

lim inf
n→∞

pn+1 − pn
(n+ 1)log(n+ 1)− nlogn

= 0

Therefore, we need another method to find the approximate expression of
pn+1 − pn. (n + 1)log(n + 1) − nlogn is not appropriate although pn ∼ nlogn.
In this paper, instead of finding a solution, We will approach this problem in a
different way. ■

Cramer conjecture is a conjecture regerding the gaps between prime num-
bers. The conjecture states that

gn := pn+1 − pn = O((logpn)
2)

holds where O is a big O notation. And sometimes the following formulation is
called Cramer’s conjecture;

lim sup
n→∞

pn+1 − pn
(logpn)2

= 1

which is stronger than former. This conjecture is based on the Cramér random
model, a model for the distribution of primes. In this model, the probability
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that a positive integer n ≥ 3 is a prime is approximately 1/logn.

But Maier’s theorem shows that the Cramér random model does not ade-
quately describe the distribution of primes on short intervals, and a refinement
of Cramér’s model taking into account divisibility by small primes suggests that

lim sup
n→∞

pn+1 − pn
(logpn)2

≥ 2 exp(−γ) ≈ 1.1229 · · ·

These conjecture say that the limit superior of gn/(logpn)
2 converges. (But

János Pintz suggested that it may diverge4.) It is supported that there exists
m such that the superior of gn/(logpn)

m converges by the preceding several
heuristics. So, Let µ be the smallest m that satisfies the following conditions:

m ∈ N, lim
n→∞

gn
(logpn)m

= 0

which implies that

lim
n→∞

gn
(log(nlogn))µ

= 0 (6)

because

lim
n→∞

gn
(log(nlogn))µ

= lim
n→∞

gn
(logpn)µ

(
logpn

log(nlogn)
)µ = 0× 1 = 0

(See (3)). To avoid the possibility of suchm not having a minimum, µ is assumed
to be a natural number for convenience. Nevertheless, µ may not exist as such
m doesn’t exist, but in this paper, it is assumed to exist, and we will examine
what conclusion we can reach.

2. Prime gap

Remark 1. For every k > 0,

lim
n→∞

pkn
(nlogn)k

= lim
n→∞

(
pn

nlogn
)k = 1 (7)

Lemma 1. For every k > 0,

lim
n→∞

(log(nlogn))µ

(nlogn)k
= 0 (8)

proof. Let x = nlogn, then by L’Hôpital’s rule,

lim
n→∞

(log(nlogn))µ

(nlogn)k
= lim

x→∞

(logx)µ

xk

L′H
= lim

x→∞

µ(logx)µ−1

kxk

L′H
= · · ·

L′H
= lim

x→∞

µ!

kµxk
= 0 ■
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(6) and (7) allow us to conclude that for every k > 0,

lim
n→∞

pn+1 − pn
pkn

(nlogn)k

(log(nlogn))µ
= lim

n→∞

pn+1 − pn
(log(nlogn))µ

(nlogn)k

pkn
= 0× 1 = 0 (9)

Hence, we have

lim
n→∞

pn+1 − pn
pkn

= (8)× (9) = 0 (10)

or

lim
n→∞

pkn
pn+1 − pn

= ∞

By epsilon-delta argument, we now obtain

∀k > 0, ∃N ∈ N s.t. n ≥ N ⇒ gn := pn+1 − pn < pkn

⇒ pn < pn+1 < pn + pkn
(11)

3. About Andrica’s conjecture

Andrica’s conjecture is a conjecture regarding the gaps between prime num-
bers. The conjecture states that the inequality

√
pn+1 −

√
pn < 1

holds for all n∈ N. And a strong version of Andrica conjecture is as follows;
Except for pn ∈ {3, 7, 13, 23, 31, 113}, that is n ∈ {2, 4, 6, 9, 11, 30}, one has

√
pn+1 −

√
pn <

1

2
; equivalently gn := pn+1 − pn < p1/2n +

1

4

In this chapter, we prove that

lim
n→∞

(
√
pn+1 −

√
pn) = 0

proof. Let ϵ > 0, k ∈ (0,
1

2
), Then, clearly

lim
n→∞

pkn
(
√
pn + ϵ)2 − pn

= lim
n→∞

pkn
2ϵ
√
pn + ϵ2

= 0

Thus,

∀ϵ > 0, ∀k ∈ (0,
1

2
), ∃N1 ∈ N s.t. n > N1 ⇒ pkn < (

√
pn + ϵ)2 − pn

⇒ pn + pkn < (
√
pn + ϵ)2
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Meanwhile,

∀k ∈ (0,
1

2
), ∃N2 ∈ N, s.t. n > N2 ⇒ pn+1 < pn + pkn (∵ (11))

Put N=max(N1, N2), Then we obtain

n > N ⇒ pn+1 < (
√
pn + ϵ)2

which can be represented as, for n > N ,

√
pn+1 −

√
pn < ϵ

Since this inequation holds for every ϵ > 0, the epsilon-delta argument allow us
to conclude

lim
n→∞

(
√
pn+1 −

√
pn) = 0 ■ (12)

Furthermore, let y > 1, x < y−1
y , then, since ∀L > 0, ∃M ∈ N s.t. n > M

⇒ p
1/y
n > L, the generalized binomial theorem allow us to obatain

lim
n→∞

pxn

(p
1/y
n + ϵ)y − pn

= lim
n→∞

pxn

(pn +
(
y
1

)
p
(y−1)/y
n ϵ+

(
y
2

)
p
(y−2)/y
n ϵ2 + · · · )− pn

= lim
n→∞

pxn

(
(
y
1

)
p
(y−1)/y
n ϵ+

(
y
2

)
p
(y−2)/y
n ϵ2 + · · · )

= 0 (∵ x <
y − 1

y
)

In the same method as the proof of (12),

∀y > 1, lim
n→∞

(p
1/y
n+1 − p1/yn ) = 0

3-1. The arithmetic mean, the geometric mean
and the harmonic mean of primes

The relation between the arithmetic mean and the geometric mean of nth
prime and (n+ 1)th prime is as follows:

pn+1 + pn
2

∼ √
pn+1pn

proof.

lim
n→∞

(
√
pn+1 −

√
pn) = 0

⇒ lim
n→∞

(
√
pn+1 −

√
pn)

2 = 0

⇒ lim
n→∞

(pn+1 + pn − 2
√
pn+1pn) = 0 (13)
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Thus,

lim
n→∞

pn+1 + pn
2
√
pn+1pn

= lim
n→∞

(
pn+1 + pn − 2

√
pn+1pn

2
√
pn+1pn

+ 1) = 1 ■ (14)

Furthermore,

lim
n→∞

(
pn+1 + pn

2
−√

pn+1pn) = 0

trivially holds by (13). And similarly, the relation between the arithmetic mean
and the harmonic mean of nth prime and (n+ 1)th prime is as follows:

pn+1 + pn
2

∼ 2pn+1pn
pn+1 + pn

proof. By (14)

lim
n→∞

2pn+1pn
pn+1 + pn

2

pn+1 + pn
= lim

n→∞
(
2
√
pn+1pn

pn+1 + pn
)2 = 1 ■

In a similar manner to before, it is also true that

lim
n→∞

(
pn+1 + pn

2
− 2pn+1pn

pn+1 + pn
) = 0

proof.

lim
n→∞

(
pn+1 + pn

2
− 2pn+1pn

pn+1 + pn
)

= lim
n→∞

(pn+1 + pn)
2 − 4pn+1pn

2(pn+1 + pn)
= lim

n→∞

(pn+1 − pn)
2

2(pn+1 + pn)

≤ lim
n→∞

(pn+1 − pn)
2

4pn
= lim

n→∞
(
pn+1 − pn
2
√
pn

)2 = 0 (∵ (10))

By the relation between the arithmethic mean and the harmonic mean,

lim
n→∞

(
pn+1 + pn

2
− 2pn+1pn

pn+1 + pn
) = 0 ■

Hence,
pn+1 + pn

2
∼ √

pn+1pn ∼ 2pn+1pn
pn+1 + pn

Therefore, the arithmetic mean, geometric mean, and harmonic mean of nth
and (n+ 1)th primes are asymptotically equal as n approaches infinity.

4. About Oppermann conjecture

Oppermann conjecture is a conjecture regarding the distribution of prime
numbers. It is closely related to but stronger than Legendre conjecture, Andrica
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conjecture, and Brocard conjecture. The conjecture states that for every integer
n ≥ 1,

π(n2 − n) < π(n2) < π(n2 + n)

Notation 1. Let p̂(x) is the largest prime number less than x, P̂ (x) is the
smallest prime number greater than x.

e.g. p̂(10) = 7, P̂ (10) = 11

Lemma 2. Let f : R → R is an increasing function and m is constant, then

∀n ≥ M, pn < pn+1 < f(pn) ⇒ ∀x ≥ pM , ∃p ∈ P s.t. x < p < f(x)

proof. Suppose for contradiction that there exists an x ≥ pM such that an open
inteval (x, f(x)) doesn’t contain any prime number. Then we have P̂ (x) > f(x).
Knowing that, by the definition, p̂(x) ≤ x and P̂ (x) is the next prime number
after p̂(x), we can conclude

p̂(x) < P̂ (x) < f(p̂(x))

But, because f is an increasing function, p̂(x) ≤ x implies f(p̂(x)) ≤ f(x) <
P̂ (x). It’s a contradiction. ■

Lemma 3. By Lemma 2 and (11) implies that

∀k > 0, ∃M1 ∈ R s.t. ∃p ∈ P with x < p < x+ xk for x ≥ M1 (15)

Lemma 4.

∀k > 0, ∃M2 ∈ R, s.t. ∃p ∈ P with x− xk < p < x for x ≥ M2 (16)

proof. In the Lemma 3, let x = m +mk and x ≥ M2 where M2 = M1 +Mk
1 ,

then there is a prime number in the open interval (m,x). Also, since x > m, we
have (m,x) ⊂ (x−xk, x). Hence, there is a prime in the open interval (x−xk, x).
■

We now prove that for every k > 0, there exists M ∈ R such that

x ≥ M ⇒ π(xk − x) < π(x) < π(xk + x) (17)

proof. By (15) and (16),

∀k > 0, ∃M2 ∈ R s.t. ∃p, q ∈ P with x−xk < p < x < q < x+xk for x ≥ M2

Substitute x = tm where m =
1

k
, then

∀m > 0, ∃M ′ ∈ R s.t. ∃p, q ∈ P with tm−t < p < tm < q < tm+t for t ≥ M ′

(c.f. x = tm yields M2 = (M ′)m) which implies that

∀m > 0, ∃M ′ ∈ R s.t. t ≥ M ′ ⇒ π(tm − t) < π(tm) < π(tm + t) ■
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Furthermore, how many primes exist in (xk, xk + x)? In other words, what
is the result of lim

x→∞
(π(xk + x)− π(xk))?

Remark 2. Note that

f1 ∼ g1 ∧ f2 ∼ g2 → f1 − f2 ∼ g1 − g2

doesn’t always hold. (1) is a counterexample. So,

lim
x→∞

π(xm + x)− π(xm)

(xm + x)/log(xm + x)− xm/log(xm)
= 1

may not hold. It is necessary for us to explore alternative methods.

Lemma 5. Let functions f and g be increasing and satisfy that ∀x ∈
R, g(x) > f(x) > 0. If lim

x→∞
(g(x) − f(x)) = ∞ and there exists k ∈ (0, 1)

such that g(x)k < g(x)− f(x) for sufficiently large x, then

lim
x→∞

(π(g(x))− π(f(x))) = ∞

proof. Because of (16),

∀j ∈ (0, k), ∃N ∈ R s.t. x ≥ N ⇒ ∃p ∈ P with g(x)− g(x)j < p < g(x)

⇒ ∃p ∈ P with f(x) < p < g(x)

Let an be a sequence defined by a1 = g(x) and an+1 = an−ajn, then there exists
a prime number in the open interval (an − ajn, an) = (an+1, an) and for every
n ∈ N, a1 ≥ an. We consider an m such that f(x) < am, f(x) > am+1 which
forces π(g(x))− π(f(x)) ≥ m− 1. (Such m must exist since an → 0 as n → ∞,
and depend on x.) Therefore, for sufficiently large x,

g(x)− f(x) <

m∑
n=1

(an − an+1) =

m∑
n=1

ajn ≤
m∑

n=1

aj1 = maj1

and thus, we obtain

m >
g(x)− f(x)

aj1
=

g(x)− f(x)

g(x)j
>

g(x)k

g(x)j

Note that

lim
x→∞

g(x)k

g(x)j
= ∞ (∵ j ∈ (0, k))

Hence,
lim
x→∞

(π(g(x))− π(f(x))) = ∞ ■

Since ∀x ∈ R, (x+xm) > xm > 0 and for every m > 0, there exists k ∈ (0, 1)
such that (xm + x)k < (xm + x)− xm = x for sufficiently large x,

∀m > 0, lim
x→∞

(π(xm + x)− π(xm)) = ∞
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