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Abstract— We show the scalar field defined in the vectoral
form of Maxwell’s equations is found to break the Lorentz
Gauge in the case of massive photons. Using the biquaternion
form of Maxwell’s equations, the differential forms of the scalar
field is shown to have relation to photon mass. We show both
the scalar field gradient and photon mass are related to the
displacement current using the Proca equations, and propose
a means to determine the spatial geometric structure of the
massive photon based on its intrinsic capacitance.

Index Terms— Biquaternion Electrodynamics, Proca Equa-
tions, Photon Mass, Displacement Current, Quantum Optics

The current upper bound for photon mass is given as
9.52×10−46 kg [2]. The significance of non-zero photon
mass is in the reformulation of Maxwell equations, Quan-
tum Electrodynamics (QED), and Quantum Field theory
(QFT). As we will show, non-zero photon mass suggests
the Lorentz gauge to no longer hold. The current form
of Maxwell equations have been formulated by Heaviside
[1], using vector notation [3] as

∇×E =−∂B

∂t
(1)

∇×B =µ0 J +µ0ϵ0
∂E

∂t
(2)

∇·E = ρv

ϵ0
(3)

∇·B = 0 (4)

The scalar potential in electrodynamics is interpreted
as the volt and the vector potential as the magnetic
vector potential, these are defined by Maxwell as electric
potential and electromagnetic momentum respectively in
[4], in modern notation in terms of E and B as

E =−∇φ− ∂A

∂t
(5)

B =∇× A (6)

We now apply these definitions of E and B in terms of
the scalar and vector potentials to (2) and (3) in which
1

c2
∂2φ

∂t 2 − 1
c2

∂2φ

∂t 2 is added to (8)

1

c2

∂2 A

∂t 2 −∇2 A+∇(∇· A+ 1

c2

∂φ

∂t
) =µ0 J (7)

1

c2

∂2φ

∂t 2 −∇2φ− ∂

∂t
(∇· A+ 1

c2

∂φ

∂t
) = ρv

ϵ0
(8)

In the Lorentz gauge (∇· A + 1
c2

∂φ
∂t ) = 0. We shall assign

S to be equal to this scalar field

S =∇· A+ 1

c2

∂φ

∂t
(9)

S satisfies the homogeneous wave equation given the
Lorentz gauge. Performing the divergence of (7) and the
scaled ( 1

c2 ) time differential of (8) and adding the results,

we determine the continuity of charge in which ∇·J+ ∂ρv
∂t =

0, related to this homogeneous wave equation of S as

−∇2S + 1

c2

∂2

∂t 2 S =∇· J + ∂ρv

∂t
(10)

It has been shown in the Aharonov-Bohm effect, the
physical significance of scalar and vector potential [5].
In the case of massive photons, the scalar field becomes
related to photon mass, scalar and vector potentials. The
Proca equations (11,12,13,14) [6] describe the original
Maxwell equations (1,2,3,4) including the additional pho-
ton mass term µγ

∇×E =−∂B

∂t
(11)

∇×B =µ0 J +µ0ϵ0
∂E

∂t
−µ2

γA (12)

∇·E = ρv

ϵ0
−µ2

γφ (13)

∇·B = 0 (14)

The photon mass appears in the equations describing
Ampere’s circuital law and Gauss’ law. This hints at the
longitudinal nature of the magnetic vector potential. One
aspect of the Proca equations is, a zero photon mass
results in the original Maxwell equations of classical
electrodynamics. In our interest to determine the relation
between S and µγ, we will turn to the biquaternion form
of electromagnetics in order to determine the form of
∇A, in which A is the biquaternion containing the scalar
and vector potentials [8]. The biquaternion defines a four
dimensional Minkowski space as

X = it ct + i⃗ · x⃗

In which i⃗ = (i , j ,k) and (it t , x⃗) represent the complex
scalar and complex vector quantities and it it = i i = j j =



kk = i j k =−1, and it is the imaginary unit describing the
Wick rotation of time [9] and ∇ is defined as

∇= (
it

c

∂

∂t
+ i⃗ · ∇⃗)

Which performs a time derivative of the scalar component
and differentiation from the quaternion product of nabla
with of the vector component of the biquaternion, and ∇⃗
is the vector calculus equivalent. Next we define A as the
biquaternion containing the scalar and vector potential
(it

φ
c , A⃗)

A = it
φ

c
+ i⃗ · A⃗ (15)

Then calculate ∇A

∇A =
(

it

c

∂

∂t
+ i⃗ · ∇⃗

)(
it
φ

c
+ i⃗ · A⃗

)
=− 1

c2

∂φ

∂t
+ it

c

∂(⃗i · A⃗)

∂t
+ i⃗ · it

c
∇⃗φ+ (⃗i · ∇⃗)(⃗i · A⃗)

In which (⃗i · ∇⃗)(⃗i · A) is simplified using the quaternion
product as −∇⃗·A+i⃗ ·(⃗∇×A). Grouping the scalar and vector
components and simplifying:

∇A =−(
1

c2

∂φ

∂t
+∇⃗ · A)+ i⃗ · ((⃗∇× A)+ it

c
(
∂(A)

∂t
+∇⃗φ)) (16)

Which exemplifies the choice of biquaternions, the scalar
field S defined in the vector representation of Maxwell’s
equations is found as the scalar component of the differ-
entiated scalar and vector potentials in biquaternion form.
More over, we apply the definition of E and B in terms
of potentials from (5) and (6) with the definition of S in
(9) to write (16) in terms of E , B and S

∇A =−S + i⃗ · (B − it

c
E) (17)

We will now reproduce the scalar and vector potential
form of Maxwell equations (7) and (8) through the quater-
nion product of the negative conjugate of nabla −∇∗ =
− it

c
∂
∂t + i⃗ · ∇⃗ with ∇A+S

(−∇∗)(∇A+S) = (− it

c

∂

∂t
+ i⃗ · ∇⃗)(⃗i · (B − it

c
E))

=− it

c

∂

∂t
(⃗i ·B)− 1

c2

∂

∂t
(⃗i ·E)− (⃗∇· (B − it

c
E))

+ i⃗ · (⃗∇× (B − it

c
E))

=−∇⃗ ·B + it

c
∇⃗ ·E

+ i⃗ · (⃗∇×B − 1

c2

∂

∂t
E − it

c
(
∂

∂t
B +∇⃗×E))

By applying the relations (4, 3) we find the scalar portion
of this biquaternion is analogous to (8), and the vector
portion is analogous to (7) by applying (1) and (2), in
other words

(−∇∗)(∇A+S) = it

c

ρv

ϵ0
+ i⃗ · (µ0 J ) (18)

As mentioned earlier, S is known as the Lorentz Gauge
and is set to zero. We now assume the Lorentz Gauge

no longer holds, and S is non-zero. If S is not zero,
gauge transformation invariance of the scalar and vector
potentials indicates the biquaternion potential will be
invariant. Equation (18) is equivalently calculated using
the d’Alembert operator where □ = −∇∇∗ = 1

c2
∂2

∂t 2 −∇⃗ · ∇⃗.
With non-zero S, we recalculate (17) as −∇∗∇A where ∇A
is defined in (17).

(−∇∗)(∇A) = (− it

c

∂

∂t
+ i⃗ · ∇⃗)(−S + i⃗ · (B − it

c
E))

=−∇⃗ ·B + it

c
∇⃗ ·E

+ i⃗ · (⃗∇×B − 1

c2

∂

∂t
E − it

c
(
∂

∂t
B +∇⃗×E)

+ it

c

∂

∂t
S − i⃗ · (⃗∇S)

Such that it
c
∂
∂t S − i⃗ · (⃗∇S) is the additional term in the

expansion. We may now choose to group these terms
with their electromagnetic vector and scalar counterparts,
using (3) and (2), given (1) and (4) and the equality of (18)
unchanged

∇⃗ ·E + ∂

∂t
S = ρv

ϵ0
(19)

∇⃗×B − 1

c2

∂

∂t
E −∇⃗S =µ0 J (20)

Examination of (19) and (20) with their Proca-Maxwell
counterparts (13) and (12) respectively show the following
relation

∂

∂t
S =µ2

γφ (21)

∇⃗S =−µ2
γA (22)

Of the scalar field S with the photon mass. These equa-
tions (21, 22) show the Lorentz gauge as invalid in the
case of non-zero photon mass, that is S ̸= 0 [7]. Using this
relation in the homogeneous wave equation (10) shows
the following

−∇2S =−∇⃗ · ∇⃗S = ∇⃗ ·µ2
γA

1

c2

∂2

∂t 2 S = 1

c2

∂

∂t
µ2
γφ

Which in the wave equation shows

∇⃗ ·µ2
γA+ 1

c2

∂

∂t
µ2
γφ=∇· J + ∂ρv

∂t
= 0 (23)

Where J and pv are zero in free space, describing a
homogeneous wave equation in terms of variation of
photon mass and potential. This of course assumes a
particular velocity as c, which is not determined as in the
scalar field case. Additional experimentation is necessary
to validate the claims presented in this equation.
Rearranging (20) shows, the contribution of the negative
gradient −∇⃗S in the displacement current, which is equal
to µ2

γA. Furthermore, (21) and (22) show the time variation
of the scalar field resulting in non-zero photon mass,
scalar and vector potentials. In other words, time variation



of the quantum medium results in the production of pho-
ton mass and electromagnetism. To further understand
the relation presented, we integrate (22), applying Stokes’
theorem and equate this with (21)

S =−µ2
γ

∫
B ·dS⃗ =−φmµ

2
γ

−∂φm

∂t
=φ

Which is Faraday’s law of induction. It can be shown
a time integral of (21) produces the same result . In
the condition where photon mass is zero, the Lorentz
gauge holds and electromotive force is no longer derived
from the scalar field as shown. When the vector and
scalar potentials are taken to be the principal quantities
in electromagnetism, this leads one to hold that photon
mass therefore exists, however negligible its quantity be
in macroscopic measurements. Let us take equation (20)
in free space, such that J = 0, rearranging terms

1

c2

∂

∂t
E =−∇⃗S +∇⃗×B =µ2

γA+∇⃗×B (24)

Where at the center of the displacement current, in which
B = 0, analogous to the condition at the center of a
cylindrical conductor, we determine the mass to be in
proportion to the time variation of the electric field, and
equivalently, the negative gradient in the scalar field. We
will now determine the known properties of particles
in the equivalent class as the photon, to discern its
relation to the scalar and vector potentials. In particle
physics, photons are considered to be Spin-1 bosons with
zero mass, and only transverse states of polarization.
Massive photons therefore have qualities similar to other
massive spin-1 particles. This includes the longitudinal
polarization. In the context of the displacement current,
the electric field is longitudinal, in the direction of power
flow in the circuit. We assume the real photon, that is to
say, not the virtual photon, as the mediator of this energy
transfer, and given a finite mass, interaction involving the
transverse and longitudinal polarization state and mass
of the photon. The direction of momentum in the photon
is related to the Poynting vector, p = 〈E×H〉

c which means
by definition the longitudinal electric field is transverse
to the photon, and electromagnetic energy transfer is
in the photon’s longitudinal direction. Therefore, in this
model, time variation of the transverse electric field with
respect to the photon momentum direction results in time
variation of photon mass, as indicated in (24). The energy
of the photon is given from the relation

E = hν (25)

In which h describes the quanta of energy relating the
photon’s energy with frequency. The time varying electric
field constitutes both a longitudinal displacement current
and transverse electromagnetic field of equal frequency.
Due to the relativistic energy relations being based on mo-
mentum, we must turn to electromagnetic quantities for

further calculation. The photon energy is shared between
the electric and magnetic fields, where the electric field’s
energy density is based on its capacitance at that location
in space [10]. In other words, Ec = hν

2 The capacitance of
two parallel plates of area A separated by distance d with
permittivity ϵ0 is defined as

C = ϵ0 A

d
(26)

Next we consider the spatial geometry for the photon to
store this energy capacitively. Using the relation Ec = hν

2 =
1
2CV 2 with the energy determined in (25) and the voltage
determined from the scalar potential ∆φ=φ(x +d)−φ(x)
we get the following relation

hν

∆φ2ϵ0
= A

d
(27)

Which relates the spatial geometry of the massive photon
to the energy, potential and permittivity to capacitively
store its electrical energy. This relates only the ratio of
area to distance, therefore even at the smallest scales,
capacitance of a photon with volume ≈ Ad is possible.
Since this ratio depends on the energy and scalar po-
tential in the system, we imagine the massive photon
volume varying with scalar potential and frequency, where
frequency determines the energy and with potential, the
required volume and geometry. The possibility of time
varying permittivity with photon volume is indicated as
well. With the mass and energy related with E = mc2 we
may assume a massive photon changes both its volume
and mass as energy is capacitively stored. Similar state-
ments can be made with regards to inductance and the
magnetic field in which the fields are related with E = cB .
The geometric relation in determining the intrinsic capac-
itance and inductance provides the quantitative means to
determine the underlying structure of the massive pho-
ton, and additionally provide insight into the underlying
geometric structure of the mass, the variations of which,
create the principal quantities through which the classical
electrodynamic relations are derived.
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