Recueil d'Exercices et de Problèmes avec les Corrigés :

Topographie, Astronomie, Géodésie et la Théorie des Moindres Carrés

- Partie I -

Abdelmajid BEN HADJ SALEM Ingénieur Général Géographe Ancien Ingénieur Général de l'Office de Topographie et du Cadastre de Tunisie

VERSION 4AI., MARS 2025

Abstract: This booklet includes in the first part the corrections of the exercises and problems of the following three chapters: topography, astronomy and curves and the theory of surfaces.

ABDELMAJID BEN HADJ SALEM

Résidence Bousten 8, Bloc B, Mosquée Er-Raoudha, 1181 Soukra Er-Raoudha Tunisia.

E-mail: abenhadjsalem@gmail.com

 \odot 2025 Abdelmajid BEN HADJ SALEM

A mes chers parents, à ma femme, à mes enfants.

A la Mémoire de mes Collègues et Amis Dr.Rached Boussemma, Dr. Chedly Fezzani, Noureddine Yangui, Jamel Zaiem, Abdelkader Sellal, Jalel Zid et Noureddine Hourrigue.

A la Mémoire des éminents mathématiciens Professeurs Abbas Bahri (1956-2016), Micheal Atiyah (1929-2019) et des éminents géodésiens Professeurs Helmut Moritz (1933-2022) et Eric Wilhelm Grafarend (1939-2020).

Préface

J'ai souvent réçu des étudiants en géomatique des requêtes me demandant de leurs fournir la correction des exercices et des problèmes que j'ai publiés à travers mes différentes publications de géodésie, de topographie, d'astronomie ou encore concernant l'application de la théorie des moindres carrés. Aussi, je viens par ce premier fascicule répondre à leurs souhaits par la publication des corrigés des exercices et des problèmes de 3 chapitres. Le reste sera prochainement publié.

Les trois chapitres concernés sont :

- 1 La Topographie.
- 2 L'Astronomie.
- 3 Les courbes et la théorie des surfaces.

La première partie du fascicule contient les énnocés des exercices et des problèms, la deuxième partie concerne les corrections. Une bibliographie riche est ajoutée à la fin du document.

Enfin, pour signaler toute correction à cette publication, prière de nous écrire à l'adresse : abenhadjsalem@gmail.com, et je vous remercie d'avance.

Tunis, Mars 2025 Abdelmajid Ben Hadj Salem, Dipl.-Ing. Ingénieur Général Géographe

Table des matières

I	RECUEIL DES EXERCICES ET DES PROBLÈMES	1
1	Topographie	2
2	Astronomie	4
	2.1 Trigonométrie Sphérique	4
	2.2 Astronomie de Position	6
3	Courbes et Théorie des Surfaces	8
	3.1 Courbes	8
	3.2 Théorie des surfaces	9
4	Ellipse et Ellipsoïde de révolution	15
	4.1 L'Ellipse et l'ellipsoïde de révolution	15
5	Les Systèmes Géodésiques	23
6	Réductions des Distances	28
7	Les Représentations Planes	30
	7.1 Les Représentations Planes	30
	7.2 La Représentation Lambert	35
	7.3 La Représentation UTM	37
8	Les Transformations de Passage entre Les Systèmes Géodésiques	39
	8.1 Les Transformations 2D de passage entre les Systèmes Géodé-	
	siques	39
	8.2 Les Transformations 3D de passage entre les Systèmes Géodé-	
	signes	39

	TABLE DES MATIÈRES	iii
9	Géodésie Spatiale 9.1 Notions sur le Mouvement d'un Satellite Artificiel de la Terre	41 41
10	Modèles Linéaires de Compensation	43
11	Modèles Non-Linéaires de Compensation	51
II	225 COMMENTONS	53
	Topographie	54
13	Astronomie	56
	13.1 Trigonométrie Sphérique	56
	13.2 Astronomie de Position	60
14	Courbes et Théorie des Surfaces	66
	14.1 Courbes	66
	14.2 Théorie des surfaces	69
15	Bibliographie	85

Première partie

RECUEIL DES EXERCICES ET DES PROBLÈMES

Topographie

Exercice 1.1. On veut calculer:

a - les coordonnées X, Y et l'altitude Z de la base d'une antenne de radio.

b - la hauteur H de cette antenne, construite au sommet d'une colline (Fig.1.1). D'un point A, on a obtenu un angle zénithal de $88.3333 \, gr$ avec une hauteur d'appareil de $1.37 \, m$ en visant le sommet de l'antenne et d'un point B un angle zénithal de $91.1111 \, gr$ et une hauteur de l'appareil de $1.52 \, m$ en visant la base de l'antenne. On a les données suivantes :

$$A(X_A = 30.48 m, Y_A = 1219.20 m, Z_A = 131.49 m)$$

 $B(X_B = 259.08 m, Y_B = 457.20 m, Z_B = 108.77 m)$
 $\hat{A} = 73.3333 gr \quad \hat{B} = 96.6667 gr$

Exercice 1.2. Vous travaillez avec un théodolite qui fournit les angles mesurés une seule fois avec une erreur moyenne quadratique $\sigma_{\alpha} = 12 \, dmgr$.

- 1. On mesure une distance D de $100\,m$ en mode parallactique avec une stadia de longueur $l=2\,m$, en mesurant l'angle parallactique α 4 fois. Quelle est l'erreur qudratique σ_{α_m} de la moyenne en fonction de σ_{α} .
- 2. Démontrer que l'erreur moyenne quadratique sur la distance est donnée par :

$$\sigma_D = \frac{l}{2} \left(1 + \cot g^2 \frac{\alpha_m}{2} \right) \sigma_{\alpha_m}$$

3. Exprimer σ_D en fonction de D,l et σ_{α_m} . Sachant que D est égale à $101.53\,m$, calculer la valeur de σ_D .

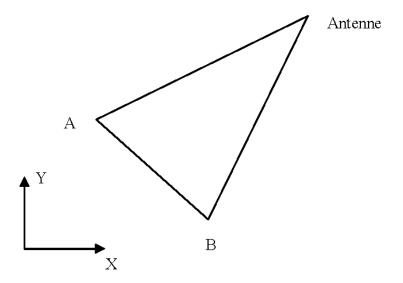


Figure 1.1 – Détermination de la hauteur de l'antenne

Astronomie

2.1 Trigonométrie Sphérique

Exercice 2.1. Calculer l'azimut d'une étoile A de déclinaison $\delta = +5^{\circ}$ quand sa distance zénithale est de 80° pour un observateur situé à la latitude $\varphi = 56^{\circ}$.

Exercice 2.2. En appliquant au triangle de position les formules de trigonométrie sphérique, montrer que l'on peut calculer l'angle horaire AH_c du coucher d'un astre A par : $cosAH_c = -tg\varphi.tg\delta$.

Exercice 2.3. Soit un triangle sphérique ABC. On donne les éléments suivants :

- $-\hat{A} = 80.16433 gr,$
- $-\hat{B} = 55.7735 \, 1 \, gr,$
- $-\hat{C} = 64.06261 gr,$
- $-AC = 20.1357 \, km$
- $-AB = 22.1435 \, km.$
- 1. Calculer $\alpha = \hat{A} + \hat{B} + \hat{C}$.
- 2. Déterminer ϵ l'excès sphérique de ce triangle.
- 3. Calculer la fermeture du triangle ABC, donnée par :

$$f = \alpha - 200.00000 gr - \epsilon$$

Exercice 2.4. Soit (\mathbb{S}^2) une sphère de rayon égal à 1. Soit un carré sphérique ABCD de côté a (arc de grand cercle). On note $\alpha = \hat{A} = \hat{B} = \hat{C} = \hat{D}$.

1. Montrer que:

$$\cos a = \cot g^2 \frac{\alpha}{2}$$

2. Donner l'expression de la diagonale d = l'arc BD.

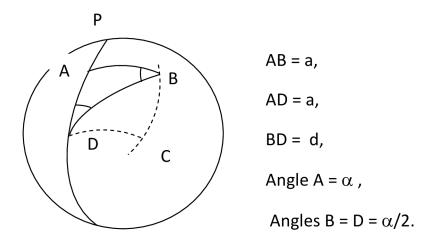


FIGURE 2.1 – Le carré sphérique

Problème 2.5. Soit (\mathbb{S}^2) une sphère de rayon égal à 1 et de centre le point Ω . Un point M de (\mathbb{S}^2) a pour coordonnées (φ , λ). On appelle les coordonnées de Cassini-Soldner \mathbb{S}^1 de M les angles (Fig.13.4) :

- $-L=\Omega\widehat{O,\Omega}H,$
- $H = \Omega \widehat{H}, \Omega M$.
- 1. Déterminer les relations liant L, H à φ, λ .
- 2. Inversement, donner les relations liant φ , λ à L, H.

Problème 2.6. Au lieu M de latitude $\varphi = 38^{\circ}$ Nord, on observe l'étoile polaire A de déclinaison $\delta = +89^{\circ}$ et d'ascension droite $\alpha = +2 h 13 mn 52.90 s$.

- 1. Donner sur un graphique, les éléments du triangle sphérique PAM où P est le pôle Nord.
- 2. Sachant que l'heure sidérale locale *HSL* est égale au moment de l'observation à 6 h 37 mn 19.72 s, calculer l'angle horaire *AH*.
- 3. En appliquant la formule des cotangentes, montrer que l'azimut Az de l'étoile est donné par la formule :

$$tgAz = \frac{sinAH}{cosAHsin\varphi - cos\varphi tg\delta}$$

- 4. Calculer alors l'azimut *Az*.
- 5. Calculer la distance zénithale z de l'étoile.
 - 1. César-François Cassini (1714-1784) : Astronome et géodésien français.
 - 2. Dr Johann Georg von Soldner (1776-1833) : Mathématicien et astronome bavarois.

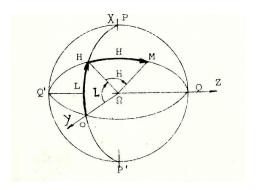


FIGURE 2.2 – Les coordonnées de Cassini-Soldner

2.2 Astronomie de Position

Exercice 2.7. Au lieu de latitude $\varphi = 36^{\circ}54'$ Nord, on veut calculer les hauteurs h_1 et h_2 de l'étoile polaire de déclinaison $\delta = +89^{\circ}$ respectivement à son passage supérieur et à son passage inférieur au méridien du lieu.

1 Déterminer h_1 et h_2 .

Problème 2.8. 1. En un lieu de latitude φ quelles sont les étoiles :

- qui ne se couchent pas (qui sont toujours visibles),
- qui ne sont jamais visibles.

Traiter le cas : lieu dans l'hémisphère nord.

- 2. Quelle est la condition pour qu'une étoile culmine au zénith?
- 3. Cas particulier du soleil : la déclinaison du soleil varie de -23°27′ à +23°27′ au cours de l'année. On appelle jour le moment pendant lequel le soleil est au-dessus de l'horizon, nuit lorsque le soleil est au-dessous de l'horizon, midi l'instant de la culmination, minuit l'instant du passage inférieur.
- a) Montrer qu'au moment des équinoxes le jour et la nuit sont d'égale durée quel que soit le lieu.
- b) Montrer qu'à l'équateur, quelle que soit la date le jour et la nuit sont d'égale durée.

Problème 2.9. Une station astronomique est située en un lieu de coordonnées géographiques : $\varphi = +45^{\circ} 00'$; $\lambda = +7 h 20 mn$.

En ce lieu, on observe une étoile A de coordonnées équatoriales :

$$\alpha = +11 \, h \, 13 \, mn; \, \delta = 30^{\circ} \, 00'.$$

L'observation se fait le jour de l'équinoxe de printemps le 21 mars à 0 heure TU. L'heure sidérale de Greenwich est 11 h 52 mn.

- 1. Calculer l'heure sidérale locale du lever et du coucher de l'étoile A au lieu considéré.
- 2. En déduire l'heure TU du lever et du coucher de l'étoile au lieu considéré. Remarque : on choisira le coucher qui a lieu après le lever.

Problème 2.10. En un lieu de latitude 43°, 521 et de longitude +0 h 20 mn 57 s, on cherche à pointer la galaxie d'Andromède de coordonnées équatoriales $\alpha = 0 h 40 mn$, $\delta = 41^{\circ} 00'$ le 31 juillet 1992 à 21 h T U.

On donne l'heure sidérale de Greenwich à $0\,h\,TU$ le 31/07/1992 : $HS\,G_{0hTU}=20\,h\,35\,mn\,28\,s$.

- 1. Calculer l'heure sidérale locale à 21 h TU.
- 2. En déduire l'angle horaire de la galaxie.
- 3. Calculer la distance zénithale de la galaxie à 21 h TU.
- 4. Calculer son azimut à cette même heure.

Courbes et Théorie des Surfaces

3.1 **COURBES**

Exercice 3.1. Soit l'hélice circulaire Γ paramétrée par :

$$\begin{cases} x = acost \\ y = asint \\ z = bt \end{cases}$$

où a, b deux constantes positives.

- 1. Exprimer les composantes des vecteurs T, N, B du repère de Frenêt. 2. Montrer que la courbure vaut $\frac{a}{a^2 + b^2}$.
- 3. Montrer que la torsion vaut $\frac{v}{a^2 + b^2}$

Exercice 3.2. Soit la courbe (*C*) définie par les formules :

$$M \begin{cases} x = at^2 \\ y = at^3 \\ z = \frac{9}{16}at^4 \text{ avec } a > 0 \end{cases}$$

- 1. Calculer l'abscisse curviligne s d'un point M quelconque de cette courbe lorsqu'on prend pour origine des arcs l'origine des coordonnées et qu'on prend pour sens des arcs croissants celui des y croissants.
- 2. Déterminer au point *M* les vecteurs unitaires du trièdre de Frenêt.
- 3. Calculer le rayon de courbure et les coordonnées du centre de courbure.
- 4. Evaluer la torsion en *M*.

3.2 Théorie des surfaces

Exercice 3.3. Soit (Γ) la surface paramétrée par (u, v) dans \mathbb{R}^2 telle que :

$$M(u,v) \begin{cases} X = u(1 - u^2)cosv \\ Y = u(1 - u^2)sinv \\ Z = 1 - u^2 \end{cases}$$

- 1. Calculer l'expression de ds^2 .
- 2. Montrer que l'équation cartésienne de (Γ) est :

$$x^2 + y^2 = (1 - z)z^2$$

Exercice 3.4. Soit la surface d'Enneper:

$$M(u,v) \begin{cases} X = u - \frac{u^3}{3} + uv^2 \\ Y = v - \frac{v^3}{3} + vu^2 \\ Z = u^2 - v^2 \end{cases}$$

1. Montrer que:

$$ds^2 = (1 + u^2 + v^2)^2 . (du^2 + dv^2)$$

- 2. Calculer un vecteur unitaire normal à la surface.
- 3. Montrer que la surface d'Enneper est de courbure moyenne nulle en chaque point.

Exercice 3.5. On suppose que la métrique d'une surface donnée est :

$$ds^2 = A^2 du^2 + B^2 dv^2$$
, $A = A(u, v)$, $B = B(u, v)$

1. Montrer alors que l'expression de la courbure totale est :

$$K = -\frac{1}{AB} \left[\left(\frac{A'_v}{B} \right)'_v + \left(\frac{B'_u}{A} \right)'_u \right]$$

Problème 3.6. On définit une surface (S) par les équations :

$$M(u,v) \left\{ \begin{array}{l} X = u^2 + v \\ Y = u + v^2 \\ Z = uv \end{array} \right.$$

1. Calculer les composantes des vecteurs OM'_u et OM'_v .

^{&#}x27; désigne la dérivation partielle.

- 2. Calculer les coefficients E, F, G de la première forme fondamentale de la surface (S).
- 3. En déduire l'expression de ds^2 .
- 4. Les coordonnées (u, v) sont-elles orthogonales? symétriques?
- 5. Calculer un vecteur normal de (S).

Problème 3.7. On définit une surface (Σ) par les équations :

$$M(u,v) \begin{cases} X = a.cosu.cosv \\ Y = a.cosu.sinv \\ Z = b.sinu \end{cases}$$

avec a, b deux constantes positives.

- 1. Calculer les composantes des vecteurs OM'_{u} et OM'_{v} .
- 2. Calculer les coefficients E, F, G de la première forme fondamentale de la surface (Σ) .
- 3. En déduire l'expression de ds^2 .
- 4. Les coordonnées (u, v) sont-elles orthogonales? symétriques?
- 5. Calculer un vecteur unitaire normal n de (Σ) .
- 6. Calculer les vecteurs :

$$OM''_{uu}$$
, OM''_{uv} , OM''_{vv}

On pose:

$$L = \mathbf{n.OM''}_{uu}, \quad M = \mathbf{n.OM''}_{uv}, \quad N = \mathbf{n.OM''}_{vv}$$

7. Calculer les coefficients L, M et N.

Problème 3.8. On considère la surface (Γ) définie par les équations :

$$M(u,v) \begin{cases} X = sinu.cosv \\ Y = sinu.sinv \\ Z = cosu + Logtg\frac{u}{2} + \psi(v) \end{cases}$$

avec $\psi(v)$ est une fonction définie de classe C^1 de v.

- 1. Donner le domaine de définition de la surface (Γ) .
- 2. Montrer que les courbes coordonnées v = constante constituent une famille de courbes planes de (Γ) et que leur plan coupe (Γ) sous un angle constant.
- 3. Calculer les composantes des vecteurs OM'_u et OM'_v .
- 4. Calculer les coefficients E, F, G de la première forme fondamentale de la surface (Γ) .
- 5. En déduire l'expression de ds^2 .
- 6. Les coordonnées (u, v) sont-elles orthogonales? symétriques?

- 7. On suppose pour la suite que $\psi(v) = 0$, calculer un vecteur unitaire normal n de Γ .
- 8. Calculer les vecteurs:

$$OM''_{uu}$$
, OM''_{uv} , OM''_{vv}

On pose:

$$L = \mathbf{n}.\mathbf{O}\mathbf{M}''_{uu}, \quad M = \mathbf{n}.\mathbf{O}\mathbf{M}''_{uv}, \quad N = \mathbf{n}.\mathbf{O}\mathbf{M}''_{vv}$$

- 9. Calculer les coefficients L, M et N.
- 10. En déduire l'expression des courbures moyenne et totale.

Problème 3.9. Soit la surface (Γ) définie paramétriquement par :

$$M(u,v) \begin{cases} X = thu.cosv \\ Y = thu.sinv \\ Z = \frac{1}{chu} + Logth\frac{u}{2} \end{cases}$$

avec *chu* et *thu* sont respectivement le cosinus et la tangente hyperboliques définies par :

$$chu = \frac{e^{u} + e^{-u}}{2}, \quad thu = \frac{e^{u} + e^{-u}}{e^{u} - e^{-u}}$$

- 1. Donner le domaine de définition de la surface (Γ) .
- 2. Calculer les composantes des vecteurs OM'_u et OM'_v .
- 3. Calculer les coefficients E, F, G de la première forme fondamentale de la surface (Γ) .
- 4. En déduire l'expression de ds^2 .
- 5. Les coordonnées (u, v) sont-elles orthogonales? symétriques?
- 6. Calculer un vecteur unitaire normal n de (Γ) .
- 7. Calculer les vecteurs :

$$OM''_{uu}$$
, OM''_{uv} , OM''_{vv}

On pose:

$$L = n.OM''_{uu}, \quad M = n.OM''_{uv}, \quad N = n.OM''_{vv}$$

- 8. Calculer les coefficients *L*, *M* et *N*.
- 9. Déterminer les coubures moyenne et totale.

Problème 3.10. 1. Montrer que les courbures totale K et moyenne H en un point M(x, y, z) d'une surface paramétrée par z = f(x, y), où f est une fonction lisse, sont données par :

$$K = \frac{f_{xx}^{"}f_{yy}^{"} - f_{xy}^{"^2}}{(1 + f_x^{'2} + f_y^{'2})^2}$$

et:

$$H = \frac{(1+f_x^{\prime 2})f_{xx}^{\prime\prime\prime} - 2f_x^{\prime}f_y^{\prime}f_{xy}^{\prime\prime\prime} + (1+f_x^{\prime 2})f_{yy}^{\prime\prime\prime}}{(1+f_x^{\prime 2}+f_y^{\prime 2})^{\frac{3}{2}}}$$

Problème 3.11. Soit (Σ) une surface de \mathbb{R}^3 paramétrée par OM(u,v) telle que sa première forme fondamentale s'écrit : $ds^2 = Edu^2 + 2Fdudv + Gdv^2$

1. Montrer que les conditions suivantes sont équivalentes :

i) -
$$\frac{\partial \dot{E}}{\partial v} = \frac{\partial G}{\partial u} = 0$$
,

i) - $\frac{\partial E}{\partial v} = \frac{\partial G}{\partial u} = 0$, ii) - Le vecteur $\frac{\partial^2 OM}{\partial u \partial v}$ est parallèle au vecteur normal N à la surface,

iii) - Les côtés opposés de tout quadrilatère curviligne formés par les courbes coordonnées (u, v) ont même longueurs.

2. Quand ces conditions sont satisfaites, on dit que les courbes coordonnées de (Σ) forment un réseau de *Tchebychev*. ¹ Montrer que dans ce cas, on peut paramétrer la surface par (\tilde{u}, \tilde{v}) telle que ds^2 s'écrit :

$$ds^2 = d\tilde{u}^2 + 2\cos\theta d\tilde{u}d\tilde{v} + d\tilde{v}^2$$

où θ est une fonction de (\tilde{u}, \tilde{v}) . Montrer que θ est l'angle entre les courbes coordonnées \tilde{u}, \tilde{v} .

3. On pose les deux déterminants ci-dessous :

$$A = \begin{vmatrix} -\frac{1}{2}E_{vv} + F_{uv} - \frac{1}{2}G_{uu} & \frac{1}{2}E_{u} & F_{u} - \frac{1}{2}E_{v} \\ F_{v} - \frac{1}{2}G_{u} & E & F \\ \frac{1}{2}G_{v} & F & G \end{vmatrix}$$

$$B = \begin{vmatrix} 0 & \frac{1}{2}E_{v} & \frac{1}{2}G_{u} \\ -\frac{1}{2}E_{v} & E & F \\ \frac{1}{2}G_{u} & F & G \end{vmatrix}$$

En plus de la formule de K utilisée dans des problèmes précédents, on montre que la courbure totale *K* est donnée par cette formule (A. Pressley, 2010) :

$$K = \frac{A - B}{(EG - F^2)^2}$$

Montrer que:

$$K = -\frac{1}{\sin\theta} \cdot \frac{\partial^2 \theta}{\partial \tilde{u} \partial \tilde{v}}$$

4. On pose:

$$\hat{u} = \tilde{u} + \tilde{v}$$

$$\hat{v} = \tilde{u} - \tilde{v}$$

^{1.} Pafnouti Tchebychev (1821 - 1894): Mathématicien russe.

Montrer que ds^2 s'écrit avec les nouvelles variables (\hat{u}, \hat{v}) :

$$ds^2 = \cos^2 \omega d\hat{u}^2 + \sin^2 \omega d\hat{v}^2$$

avec $\omega = \theta/2$. (A.N. Pressley, 2010)

Problème 3.12. Soit (\mathcal{F}) une surface définie dans \mathbb{R}^3 , paramétrée par la fonction vectorielle OM = S(u, v) telle que :

$$S(u,v) \begin{vmatrix} x = f(u,v) \\ y = g(u,v) \\ z = h(u,v) \end{vmatrix}$$

S est dite une paramétrisation conforme de (\mathcal{F}) si on a les deux conditions suivantes:

$$\frac{\partial S}{\partial u}.\frac{\partial S}{\partial u} = \frac{\partial S}{\partial v}.\frac{\partial S}{\partial v} = e^{\varPhi(u,v)} \quad et \quad \frac{\partial S}{\partial u}.\frac{\partial S}{\partial v} = 0$$

- 1. Ecrire la première forme fondamentale de (F).
- 2. Soit *n* Le vecteur normal unitaire.

$$n = \frac{\frac{\partial S}{\partial u} \wedge \frac{\partial S}{\partial v}}{\left\| \frac{\partial S}{\partial u} \wedge \frac{\partial S}{\partial v} \right\|}$$

Quand le point M varie sur la surface (\mathcal{F}) , le repère $(\frac{\partial S}{\partial u}, \frac{\partial S}{\partial v}, n)$ est un repère mobile. La deuxième forme fondamentale de (\mathcal{F}) est définie par :

$$n \cdot d^2S = I \cdot du^2 + 2M \cdot du \cdot dv + N \cdot dv^2$$

Si cette deuxième forme fondamentale s'écrit sous la forme :

$$-n.d^2S = e^{\Phi(u,v)} \left(\frac{du^2}{\rho_1} + \frac{dv^2}{\rho_2} \right)$$

Donnez l'expression de $\Phi(u, v)$. Alors, la paramétrisation de (\mathcal{F}) est dite isotherme. Dans ce cas, ρ_1, ρ_2 sont les rayons de courbure principaux de la surface (\mathcal{F}). Une surface qui admet des coordonnées isothermes est dite isotherme.

On considère que
$$(\mathcal{F})$$
 est la sphère définie par $:S = \begin{vmatrix} x = R\cos\varphi\cos\lambda \\ y = R\cos\varphi\sin\lambda & R > 0 \\ z = R\sin\varphi \end{vmatrix}$
Soit \mathcal{L}_M la variable de Mercator. Montrer que la sphère paramétrée par (\mathcal{L}_M, λ)

est une surface isotherme.

3. On considère \mathcal{B} la base du repère mobile $(\frac{\partial S}{\partial \mathcal{L}_M}, \frac{\partial S}{\partial \lambda}, n)$. On prendra $u = \mathcal{L}_M, v =$

 λ). Montrer par le calcul que les vecteurs de la base \mathcal{B} ($\frac{\partial S}{\partial \mathcal{L}_M}$, $\frac{\partial S}{\partial \lambda}$, n) vérifient les deux équations matricielles ci-dessous. Ces deux expressions sont appellées les équations de Gauss-Weingarten :

$$\frac{\partial}{\partial u} \begin{pmatrix} S'_u \\ S'_v \\ n \end{pmatrix} = \begin{pmatrix} \frac{\Phi'_u}{2} & -\frac{\Phi'_v}{2} & -\frac{e^{\Phi}}{\rho_1} \\ \frac{\Phi'_v}{2} & \frac{\Phi'_u}{2} & 0 \\ \frac{1}{\rho_1} & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} S'_u \\ S'_v \\ n \end{pmatrix}$$

et:

$$\frac{\partial}{\partial v} \begin{pmatrix} S'_u \\ S'_v \\ n \end{pmatrix} = \begin{pmatrix} \frac{\Phi'_v}{2} & \frac{\Phi'_u}{2} & 0 \\ -\frac{\Phi'_u}{2} & \frac{\Phi'_v}{2} & -\frac{e^{\Phi}}{\rho_2} \\ 0 & \frac{1}{\rho_2} & 0 \end{pmatrix} \cdot \begin{pmatrix} S'_u \\ S'_v \\ n \end{pmatrix}$$

2

^{2.} Julius Weingarten (1836 - 1910): mathématicien allemand.

Ellipse et Ellipsoïde de révolution

4.1 L'Ellipse et l'ellipsoïde de révolution

Exercice 4.1. 1. Calculer les composantes du vecteur normal extérieur à l'ellipsoïde, en déduire les relations (dans les deux sens) entre les lignes trigonométriques de φ et celles de ψ .

- 2. Donner les équations paramétriques de l'ellipse et de l'ellipsoïde en fonction, repectivement, de φ et de λ et φ .
- 3. Etablir une relation différentielle entre ψ et φ .
- 4. Calculer la différentielle $d\beta$ de l'arc d'ellipse en fonction de φ , puis la première forme quadratique de l'ellipsoïde.
- 5. Calculer les courbures principales de l'ellipsoïde de révolution.
- 6. Trouver la coordonnée curviligne de l'ellipsoïde de révolution qui forme avec la longitude un couple de coordonnées symétriques et qui s'annulle le long de l'équateur.

Exercice 4.2. Soit à calculer :

$$W_{2p} = \int_0^\Omega \sin^{2p} \omega d\omega$$

On pose:

$$I_{p-2}(\Omega) = \int_0^{\Omega} \sin^{p-2}\omega \cos^2\omega d\omega$$

1. Etablir les formules suivantes :

$$\begin{split} W_p &= W_{p-2} - I_{p-2} \\ (p-1)I_{p-2} &= sin^{p-1}\Omega cos\Omega + W_p \\ W_p &= \frac{p-1}{p}W_{p-2} - \frac{1}{p}sin^{p-1}\Omega cos\Omega \end{split}$$

2. Préciser la valeur de W_0 , et proposer un programme (en Matlab) de calcul de W_{2p} .

Exercice 4.3. On a:

$$\beta(\varphi) = \int_0^{\varphi} \rho d\varphi$$

avec:

$$\rho = \frac{a(1 - e^2)}{w^3}, \quad w^2 = 1 - e^2 \sin^2 \varphi$$

- 1. Développer w^{-3} suivant les puissances croissantes de $e \sin \varphi$.
- 2. Calculer $\beta(\varphi)$ en fonction des $W_{2p}(\varphi)$.
- 3. Majorer l'erreur de calcul, lorsqu'on arrête le développement au terme e^{2n} . Calculer n si l'on recherche la précision du millimètre sur β , quelle que soit la latitude φ entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$.
- 4. Proposer un organigramme de calcul.
- 5. Envisager la solution du problème inverse : calcul de φ connaissant β .

Problème 4.4. Soit l'ellipse (*E*) définie par les équations paramétriques :

$$M \begin{cases} x = acosu \\ y = bsinu \\ avec \quad a > b > 0 \end{cases}$$

On pose:

$$e^2 = \frac{a^2 - b^2}{a^2}; \quad e'^2 = \frac{a^2 - b^2}{b^2}$$

- 1. Calculer la position sur l'axe des abscisses des deux points F et F' appelés foyers tels que MF + MF' = 2a.
- 2. Montrer que le produit des distances des foyers à la tangente à l'ellipse en M est indépendant de u.
- 3. Donner l'expression de *ds*.
- 4. Déterminer les expressions des vecteurs unitaires T et N et en déduire le rayon de coubure de l'ellipse.
- 5. Montrer qu'il passe par M deux cercles tangents en ce point à la courbe et centrés sur Ox, Oy respectivement (appelés cercles surosculateurs).
- 6. Que deviennent ces cercles lorsque *M* est un sommet de l'ellipse.

Exercice 4.5. 1. A partir de la définition géométrique de l'ellipse donnée par :

$$MF + MF' = constante = 2a$$

retrouver l'expression de l'équation cartésienne de l'ellipse.

Exercice 4.6. 1. Montrer la formule très utilisée en géodésie :

$$\frac{d(N\cos\varphi)}{d\varphi} = -\rho\sin\varphi$$

avec N et ρ les deux rayons de courbures principaux de l'ellipsoïde de révolution donnés respectivement par :

$$N = \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi}}$$

et:

$$\rho = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \varphi)\sqrt{1 - e^2 \sin^2 \varphi}}$$

Problème 4.7. A partir des équations de l'ellipsoïde de révolution :

$$M = \begin{cases} X = N\cos\varphi\cos\lambda \\ Y = N\cos\varphi\sin\lambda \\ Z = N(1 - e^2)\sin\varphi \end{cases}$$

1. Calculer les vecteurs:

$$\frac{\partial M}{\partial \lambda}, \frac{\partial M}{\partial \varphi}$$

2. Calculer les coefficients :

$$E = \frac{\partial \mathbf{M}}{\partial \lambda} \cdot \frac{\partial \mathbf{M}}{\partial \lambda}, \quad F = \frac{\partial \mathbf{M}}{\partial \lambda} \cdot \frac{\partial \mathbf{M}}{\partial \varphi}, \quad G = \frac{\partial \mathbf{M}}{\partial \varphi} \cdot \frac{\partial \mathbf{M}}{\partial \varphi}$$

3. Démontrer que l'expression de la première forme fondamentale s'écrit :

$$ds^2 = \rho^2 d\varphi^2 + N^2 \cos^2 \varphi d\lambda^2$$

4. Calculer le vecteur normal *n* :

$$\boldsymbol{n} = \frac{\partial \boldsymbol{M}}{\partial \lambda} \wedge \frac{\partial \boldsymbol{M}}{\partial \varphi} \frac{1}{\left\| \frac{\partial \boldsymbol{M}}{\partial \lambda} \wedge \frac{\partial \boldsymbol{M}}{\partial \varphi} \right\|}$$

5. Calculer les vecteurs :

$$\frac{\partial^2 \mathbf{M}}{\partial \lambda^2}$$
, $\frac{\partial^2 \mathbf{M}}{\partial \lambda \partial \varphi}$, $\frac{\partial^2 \mathbf{M}}{\partial \varphi^2}$

6. Déterminer les coefficients :

$$L = n \cdot \frac{\partial^2 \mathbf{M}}{\partial \lambda^2}, \quad \mathbf{M} = n \cdot \frac{\partial^2 \mathbf{M}}{\partial \lambda \partial \varphi}, \quad \mathbf{N} = n \cdot \frac{\partial^2 \mathbf{M}}{\partial^2 \varphi}$$

- 7. Ecrire la deuxième forme fondamentale $\Phi(\lambda, \varphi)$.
- 8. En appliquant la formule du cours, Montrer que :

$$N(\varphi) = \frac{a}{\sqrt{1 - e^2 sin^2 \varphi}}$$

est le rayon de courbure de la section normale au point M perpendiculaire au plan de la méridienne de l'ellipsoïde de révolution.

9. En posant:

$$d\mathcal{L} = \frac{\rho d\varphi}{N cos\varphi}$$

En déduire que ds^2 s'écrit :

$$ds^2 = N^2 cos^2 \varphi (d\mathcal{L}^2 + d\lambda^2)$$

10. Montrer que ${\mathcal L}$ est donnée par :

$$\mathcal{L}(\varphi) = Log\left(tg(\frac{\pi}{4} + \frac{\varphi}{2})\right) - \frac{e}{2}Log\left(\frac{1 + esin\varphi}{1 - esin\varphi}\right)$$

Problème 4.8. Sur l'ellipsoïde, on note φ la latitude géodésique et ψ la latitude réduite.

- 1. Calculer ρ le rayon de courbure de l'ellipse méridienne en fonction de ψ .
- 2. Exprimer l'aplatissement de l'ellipsoïde en fonction des valeurs de ρ au pôle et à l'équateur.
- 3. On mesure la longueur d'un arc de méridien d'un degré à la fois au pôle et à l'équateur. On trouve respectivement $111\,695\,m$ et $110\,573\,m$. En déduire l'aplatissement.

Problème 4.9. On donne les coordonnées tridimensionnelles suivantes d'un point *M* :

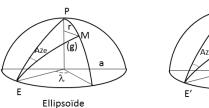
$$M = (X, Y, Z) = (4\,300\,244.860\,m, 1\,062\,094.681\,m, 4\,574\,775.629\,m)$$

Les paramètres de l'ellipsoïde de référence sont $a = 6378137.00 \, m$, $e^2 = 0.00669438$.

- 1. Calculer le demi-petit axe *b*.
- 2. Calculer l'aplatissement.
- 3. Calculer les coordonnées géodésiques (φ, λ, he) du point M. φ et λ seront calculées en grades avec cinq chiffres après la virgule.

Problème 4.10. Soit $\mathcal{E}(a,e)$ un ellipsoïde de révolution où a,e sont respectivement le demi-grand axe et la première excentricité. (g) une géodésique partant d'un point $E(\varphi=0,\lambda_E)$ sur l'équateur et d'azimut Az_E . A cette géodésique, on lui

fait correspondre une géodésique (g') sur la sphère S^2 dite de Jacobi ¹ de rayon a, ayant le même azimut Az_E au point $E'(\varphi'=0,\lambda_E)$. De même au point $M(\varphi,\lambda)$ de la géodésique (g) de l'ellipsoïde, on lui fait correspondre le point $M'(\varphi',\lambda')$ de (g') de S^2 tel qu'il y a conservation des azimuts.



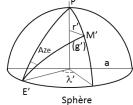


FIGURE 4.1 – La Correspondance de la sphère de Jacobi

- 1. Ecrire l'équation de Clairaut pour la géodésique (g).
- 2. On note r' le rayon du parallèle passant par M' de la géodésique (g'). Ecrire de même l'équation de Clairaut pour la géodésique (g').
- 3. Montrer que φ et φ' vérifient :

$$N\cos\varphi = a\cos\varphi'$$

et en déduire que φ' est la latitude paramétrique de M.

- 4. Ecrire les expressions de $tgAz_q$ et $tgAz_{q'}$ respectivement sur (g) et (g').
- 5. Montrer que:

$$d\lambda = \frac{\rho d\varphi}{ad\varphi'} d\lambda'$$

En déduire que :

$$d\lambda = \sqrt{1 - e^2 \cos^2 \varphi'} d\lambda'$$

6. En intégrant l'équation précédente, montrer qu'on obtient :

$$\lambda - \lambda_E = \int_{\lambda_E}^{\lambda' + \lambda_E} \sqrt{1 - e^2 cos^2 \varphi'} d\lambda'$$

avec $\lambda > \lambda_E$ et λ' est comptée à partir de λ_E .

- 7. En écrivant $\sqrt{1 e^2 cos^2 \varphi'} = 1 \frac{e^2}{2} cos^2 \varphi' + o(e^4)$ où $o(e^4)$ est un infiniment petit d'ordre 4 en e dont on néglige, écrire l'intégrale précédente entre λ_E et $\lambda_E + \lambda$.
- 8. Comme (g') est une géodésique de la sphère, on démontre que :

$$\cos^2\varphi'd\lambda' = \frac{\sin\!Az_E}{a}ds'$$

^{1.} Carl Gustav Jacob Jacobi (1804-1851): Mathématicien allemand.

où ds' est l'élément différentiel de l'abscisse curviligne sur la géodésique (un grand cercle). Alors en posant s'=0 au point E', montrer que l'équation précédente s'écrit sous la forme :

$$\lambda = \lambda_E + \lambda' - \frac{e^2 \sin A z_e}{2a} \int_0^{s'} ds'$$

9. On suppose que la géodésique (g') coupe une première fois le plan de l'équateur en un point F', montrer qu'on obtient :

$$\lambda_F' = \pi$$

$$s' = \pi a$$

$$\lambda_F = \lambda_E + \pi - \frac{e^2 \pi sinAz_E}{2}$$

10. La géodésique (g') partant de F' a pour azimut $\pi - Az_E$, elle coupe une deuxième fois l'équateur au point E', mais la géodésique (g) sur l'ellipsoïde coupe une deuxième fois le plan de l'équateur au point correspondant à H dont la longitude est λ_H . Montrer que λ_H est donnée par :

$$\lambda_H = \lambda_E + 2\pi - \frac{e^2\pi sinAz_E}{2} - \frac{e^2\pi sin(\pi - Az_E)}{2} = \lambda_E + 2\pi - e^2\pi sinAz_E$$

Quelle conclusion a-t-on sur les lignes géodésiques de l'ellipsoïde de révolution.

Problème 4.11. Un point M de la surface d'une sphère (S) de rayon R, a pour coordonnées (X, Y, Z) dans un repère orthonormé :

$$M = (X, Y, Z) = (R\cos\varphi.\cos\lambda, R\cos\varphi.\sin\lambda, R\sin\varphi)$$

1. Montrer qu'un vecteur normal unitaire n à (S) en M est :

$$n = (\cos\varphi.\cos\lambda, \cos\varphi.\sin\lambda, \sin\varphi)^T$$

2. Soit (C) le grand cercle passant par le point A(R, 0, 0) et d'azimut Az_E . Le point M peut être décrit par son abscisse curviligne s mesurant l'arc s. On note par s représente l'angle au centre de l'arc s. Utilisant la trigonométrie sphérique, montrer que :

$$cos\varphi.sin\lambda = sin\omega.sinAz_E$$

3. En utilisant la formule fondamentale de la trigonométrie sphérique dans le triangle APM, montrer qu'on a les deux relations :

$$cos\omega = cos\varphi.cos\lambda$$
$$sin\varphi = sin\omega.cosAz_{F}$$

4. En déduire que les coordonnées de M s'écrivent en fonction de s comme suit :

$$M \begin{cases} X = R.cos(s/R) \\ Y = RsinAz_E sin(s/R) \\ Z = RcosAz_E sin(s/R) \end{cases}$$

- 5. Calculer les vecteurs T et N du repère de Frenêt. En déduire les composantes de N en fonction de ω .
- 6. Montrer que les vecteurs N et n sont parallèles.
- 7. Justifier que les géodésiques de la sphère sont les grands cercles.

Problème 4.12. Soit le tore \mathbb{T} défini par les équations suivantes :

$$M(\varphi, \lambda) = \begin{cases} x = (a + R\cos\varphi)\cos\lambda \\ y = (a + R\cos\varphi)\sin\lambda \\ z = R\sin\varphi \end{cases}$$

où a, R deux constantes positives avec a > R, $(\varphi, \lambda) \in [0, 2\pi] \times [0, 2\pi]$.

- 1. Calculer la première forme fondamentale ds^2 .
- 2. Avec les notations usuelles, on pose :

$$\frac{\partial E}{\partial \varphi} = E'_{\varphi}, \quad \frac{\partial E}{\partial \lambda} = E'_{\lambda}, \quad \frac{\partial F}{\partial \varphi} = F'_{\varphi}$$

$$\frac{\partial F}{\partial \lambda} = F'_{\lambda}, \quad \frac{\partial G}{\partial \varphi} = G'_{\varphi}, \quad \frac{\partial G}{\partial \lambda} = G'_{\lambda}$$
(4.1)

Utilisant les équations des géodésiques du cours, montrer que les équations des géodésiques du tore sont :

$$-2R\sin\varphi(a+R\cos\varphi)\frac{d\varphi}{ds}\frac{d\lambda}{ds} + (a+R\cos\varphi)^2\frac{d^2\lambda}{ds^2} = 0$$

$$R\sin\varphi(a+R\cos\varphi)\left(\frac{d\lambda}{ds}\right)^2 + R^2\frac{d^2\varphi}{ds^2} = 0$$

3. Montrer que la première équation ci-dessus donne :

$$(a + R\cos\varphi)^2 \frac{d\lambda}{ds} = C = cte$$

Montrer qu'on retrouve l'équation de Clairaut avec C=(a+R)sinAze où Aze est l'azimut de départ au point $M_0(\varphi=0,\lambda_0)$.

4. On suppose au point M_0 , la géodésique a pour azimut Aze tel que :

$$0 < Aze < \frac{\pi}{2}$$

Montrer que la deuxième équation des géodésiques s'écrit en utilisant le résultat précédent :

$$\frac{d^2\varphi}{ds^2} = -\frac{C^2}{R} \frac{\sin\varphi}{(a + R\cos\varphi)^3}$$

5. Montrer qu'on arrive à :

$$\left(\frac{d\varphi}{ds}\right)^2 = l - \frac{C^2}{R^2(a + R\cos\varphi)^2} \ge 0$$

où l est une constante d'intégration.

Les Systèmes Géodésiques

Exercice 5.1. On donne les coordonnées tridimensionnelles suivantes d'un point *A* :

$$X = 5102603.85 m$$

 $Y = 916806.87 m$
 $Z = 3703034.99 m$

L'ellipsoïde de référence est l'ellipsoïde GRS80 dont les paramètres sont :

$$a = 6378137.00 m$$

 $e^2 = 0066943800229$

- 1. Calculer le demi-petit axe *b*.
- 2. Déterminer les coordonnées géodésiques (φ, λ, h) du point A. φ et λ seront calculées en grades avec cinq chiffres après la virgule.

Exercice 5.2. 1. Donner l'expression des composantes du gradient en coordonnées cylindriques.

Exercice 5.3. On donne l'expression scalaire d'une fonction V(x, y, z) par :

$$V(x, y, z) = \frac{ax^2 + y^2}{z^2} + \frac{1}{2}\omega^2(x^2 + y^2)$$

1. Calculer les composantes du vecteur *gradV* dans un domaine de \mathbb{R}^3 où $z \neq 0$.

Problème 5.4. Soit un point $A(\varphi, \lambda)$ sur un ellipsoïde de révolution associé à un référentiel géocentrique donné \Re . On considère le repère orthonormé local en A $(e_{\lambda}, e_{\varphi}, e_n)$ défini dans la base orthonormée (i, j, k) de \Re où e_{λ} est tangent au parallèle passant par A et dirigé vers l'Est, e_{φ} tangent à la méridienne, dirigé vers le nord et e_n porté par la normale à l'ellipsoïde dirigé vers le zénith.

- 1. Exprimer les vecteurs de la base $(e_{\lambda}, e_{\varphi}, e_n)$ dans la base (i, j, k) de \Re .
- 2. Exprimer les vecteurs i, j et k dans la base $(e_{\lambda}, e_{\varphi}, e_n)$.
- 3. Calculer de_{λ} , de_{ω} et de_n dans la base (i, j, k).
- 4. En adoptant une écriture matricielle, montrer que :

$$\begin{pmatrix} de_{\lambda} \\ de_{\varphi} \\ de_{n} \end{pmatrix} = \begin{pmatrix} 0 & sin\varphi d\lambda & -cos\varphi d\lambda \\ -sin\varphi d\lambda & 0 & -d\varphi \\ cos\varphi d\lambda & d\varphi & 0 \end{pmatrix} \begin{pmatrix} e_{\lambda} \\ e_{\varphi} \\ e_{n} \end{pmatrix}$$

Problème 5.5. On considère les notations du précédent problème. Soit un point M. On pose :

$$\Delta X = (X_M - X_A, Y_M - Y_A, Z_M - Z_A)^T, \Delta x = (x_M, y_M, z_M)^T$$

où X et x sont respectivement les composantes du vecteur AM dans les repère \mathcal{R} et le repère local en A.

- 1. Montrer qu'on a la relation : $\Delta X = J.\Delta x$ avec J une matrice orthogonale ($J^{-1} = J^T$) qu'on déterminera.
- 2. On suppose maintenant que \mathcal{R} est le repère GPS et que le passage du repère \mathcal{R} vers le repère terrestre est donné par le modèle dit à 7 paramètres :

$$\begin{pmatrix} X' \\ Y' \\ Z' \end{pmatrix} = F(X) = \begin{pmatrix} Tx \\ Ty \\ Tz \end{pmatrix} + (1+m).R. \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$
$$= \begin{pmatrix} Tx \\ Ty \\ Tz \end{pmatrix} + (1+m). \begin{pmatrix} 1 & rz & -ry \\ -rz & 1 & rx \\ ry & -rx & 1 \end{pmatrix}. \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

On note : $\delta X = F(\Delta X) - \Delta X$, que représente δX . Montrer qu'au premier ordre que :

$$\delta X \cong m \Delta X + (R - I) \Delta X$$

3. On appelle $\omega = (rx, ry, rz)^T$, montrer que :

$$||\delta X|| = (m^2 + \omega^2 \sin^2 \theta)^{\frac{1}{2}} ||\Delta X||$$

où θ est l'angle entre les vecteurs ΔX et ω .

4. En déduire que :

$$|m|.||\Delta X|| \le ||\delta x|| \le (m^2 + \omega^2)^{\frac{1}{2}}||\Delta X||$$

5. En utilisant la relation liant ΔX et Δx ; montrer que :

$$\delta x = m \Delta x + J^{T} (R - I) J \Delta x$$

Problème 5.6. On définit dans \mathbb{R}^3 un point M par ses coordonnées ellipsoïdiques de Jacobi (ϕ, λ, u) comme suit :

$$M \begin{cases} x = \sqrt{u^2 + \epsilon^2}.cos\phi cos\lambda \\ y = \sqrt{u^2 + \epsilon^2}.cos\phi sin\lambda \\ z = u.sin\phi \end{cases}$$

avec : $\epsilon^2 = \sqrt{a^2 - b^2}$, $\phi \in [-\pi/2, \pi/2]$, $\lambda \in [0, 2\pi]$ et $u \in]0, +\infty[$, a, b deux constantes réelles que a > b > 0.

- 1. Montrer que le point M appartient à un ellipsoïde de révolution en précisant ses demi-axes.
- 2. Calculer ds^2 et montrer qu'il s'écrit sous la forme :

$$ds^{2} = (d\phi, d\lambda, du).G. \begin{pmatrix} d\phi \\ d\lambda \\ du \end{pmatrix}$$

avec G donnée par :

$$G = (g_{ij}) = \begin{pmatrix} u^2 + \epsilon^2 \sin^2 \phi & 0 & 0 \\ 0 & (u^2 + \epsilon^2)\cos^2 \phi & 0 \\ 0 & 0 & \frac{u^2 + \epsilon^2 \sin^2 \phi}{u^2 + \epsilon^2} \end{pmatrix}$$

3. Sachant que l'expression du laplacien d'une fonction scalaire V en coordonnées de Jacobi est exprimée par :

où g est le déterminant de la matrice G, donner l'expression de ΔV .

4. Calculer ΔV sachant que V est donnée par :

$$V(\phi, u) = \frac{GM}{\epsilon} Arctg \frac{\epsilon}{u} + \frac{1}{3}a^2 \omega^2 \frac{q}{q_0} \left(1 - \frac{3}{2}cos^2 \phi \right) + \frac{1}{2}\omega^2 (u^2 + \epsilon^2)cos^2 \phi$$

avec G, M et ω des constantes et :

$$q = q(u) = \frac{1}{2} \left[\left(1 + 3\frac{u^2}{\epsilon^2} \right) Arctg \frac{\epsilon}{u} - 3\frac{u}{\epsilon} \right]$$
$$q_0 = q(u = b) = \frac{1}{2} \left[\left(1 + 3\frac{b^2}{\epsilon^2} \right) Arctg \frac{\epsilon}{b} - 3\frac{b}{\epsilon} \right]$$

Problème 5.7. Avec les notations usuelles, un potentiel est donné avec les constantes (GM, a, J_2, ω) de GRS80 par :

$$W(r,\theta,\lambda) = \frac{GM}{r} \left(1 - J_2 \frac{a^2}{r^2} P_2(cos\theta) \right) + \frac{\omega^2}{2} r^2 sin^2 \theta$$

où (r, θ, λ) sont les coordonnées sphériques du point de calcul et :

- -a = 6378137.00 m, b = 6356752.31 m;
- $-GM = 3986005 \times 10^8 \, m^3 s^{-2}$;
- $-\omega = 7292115 \times 10^{-11} rad.s^{-1}$;
- $-J_2 = 108263 \times 10^{-8}$.
- 1. Calculer le potentiel W aux points suivants situés sur l'ellipsoïde GRS80 :
 - * le Pôle Nord;
 - * sur l'equateur;
 - * au point A sur l'ellipsoïde avec $\theta_A = 34^{\circ}$.
- 2. Calculer les variations de W entre les 3 points.
- 3. Exprimer le potentiel W en coordonnées cartésiennes (X, Y, Z).

On rappelle :
$$P_2(\cos\theta) = \frac{1}{2}(3\cos^2\theta - 1)$$
.

Problème 5.8. On considère deux points *A* et *B* de coordonnées géodésiques dans le système géodésique *WGS* 84 du GPS :

$$\begin{array}{l} A: (\varphi_A' = 36.6306\,gr; \lambda_A' = 10.7896\,gr; h_A' = 137.50\,m) \\ B: (\varphi_B' = 36.6317\,gr; \lambda_B' = 10.7915\,gr; h_B' = 171.33\,m) \end{array}$$

- 1. Calculer les coordonnées tridimensionnelles $(X', Y', Z')_A$, $(X', Y', Z')_B$ des points A et B dans le système géodésique WGS 84. Les paramètres de l'ellipsoïde WGS 84 sont : $a = 6\,378\,137.00m$, $e^2 = 0.00669438$.
- 2. On pose : $\Delta X' = X'_B X'_A$; $\Delta Y' = Y'_B Y'_A$; $\Delta Z' = Z'_B Z'_A$. Calculer les coefficients $\Delta X'$, $\Delta Y'$ et $\Delta Z'$. Sachant que l'azimut géodésique de la direction AB est donné par la formule :

$$tg(Az'_g) = \frac{-\Delta X' \sin \lambda'_A + \Delta Y' \cos \lambda'_A}{\Delta Z' \cos \varphi'_A - \sin \varphi'_A (\Delta X' \cos \lambda'_A + \Delta Y' \sin \lambda'_A)}$$
 (5.1)

calculer la valeur numérique de Az'_{q} .

3. On considère que le passage du système GPS au système géodésique terrestre national est donné par la formule :

$$X = T + X'$$

où $\mathbf{X} = (X, Y, Z)^T$ représentant la position d'un point M dans le système géodésique terrestre national, $\mathbf{X}' = (X', Y', Z')^T$ celle dans le système GPS et $\mathbf{T} = (X', Y', Z')^T$

 $(Tx, Ty, Tz)^T$ le vecteur translation entre les deux systèmes, dont les composantes sont :

$$\mathbf{T} = (+263.3 \, m, -14.4 \, m, -434.1 \, m)^T$$

Calculer les coordonnées géodésiques tridimensionnelles $(X, Y, Z)_A$ et $(X, Y, Z)_B$ de A et B dans le système géodésique terrestre national.

- 4. Calculer les coordonnées géodésiques (φ, λ) du point A dans le système géodésique terrestre national. On déterminera (φ, λ) à cinq chiffres après la virgule en gr. On donne les paramètres de l'ellipsoïde de référence du système géodésique terrestre national : $(a = 6378249.20 \, m, e^2 = 0.006803487)$.
- 5. On pose $\Delta X = X_B X_A$; $\Delta Y = Y_B Y_A$; $\Delta Z = Z_B Z_A$.
 - a- Calculer les coefficients ΔX , ΔY et ΔZ .
- b- Déterminer en utilisant la formule (5.1) l'azimut géodésique Az_g de la direction AB en utilisant les coordonnées dans le système géodésique terrestre national.

$$tg(Az_g) = \frac{-\varDelta X sin \lambda + \varDelta Y cos \lambda}{\varDelta Z cos \varphi - sin \varphi (\varDelta X cos \lambda + \varDelta Y sin \lambda)}$$

6. Calculer la valeur numérique de $Az'_q - Az_q$. Que pensez-vous.

Réductions des Distances

Exercice 6.1. On a mesuré une distance suivant la pente $D_P = 20130.858 m$ entre deux points A et B avec $H_A = 235.07 m$, $H_B = 507.75 m$, on prendra comme rayon terrestre R = 6378 km.

- 1. Calculer la distance suivant l'ellipsoïde :
 - en utilisant les différentes corrections,
 - en utilisant la formule rigoureuse.
- 2. En prenant la valeur de la formule rigoureuse et sachant que le module linéaire *m* vaut 0.999 850 371, calculer la distance réduite au plan de la représentation plane utilisée.

Exercice 6.2. Entre 2 points A ($H_A = 128.26 m$) et B ($H_B = 231.84 m$), la distance D_P suivant la pente est égale à 15 498.823 m. Soit D_0 la distance corde au niveau de la surface de référence. L'angle de site observé en A en direction de B est i = 0.3523 gr.

- 1. Calculer la valeur de \mathcal{D}_0 en utilisant la formule rigoureuse.
- 2. Calculer D_0 par les corrections.
- 3. En adoptant la moyenne des deux méthodes, calculer la distance D_e réduite à la surface de référence.
- 4. Le module linéaire de la représentation plane Lambert Sud utilisée est de 0.999648744. calculer alors la distance D_r réduite au plan de la représentation.

Problème 6.3. On a mesuré une distance suivant la pente entre les points $A(H_A = 1319.79 m)$ et $B(H_B = 1025.34 m)$ avec $D_P = 16483.873 m$.

- 1. Calculer la distance D_e distance réduite à l'ellipsoïde de référence par la formule rigoureuse, on prendra le rayon de la Terre $R=6378\,km$.
- 2. Calculer la distance D_r réduite à la représentation plane Lambert si l'altération linéaire de la zone est de $-14 \, cm/km$.

- 3. La direction AB a un azimut géodésique Azg = 297.56225 gr. Donner l'expression du gisement G de AB en fonction de Azg, γ la convergence des méridiens et dvla correction de la corde, sachant que la représentation plane utilisée est le Lambert Sud Tunisie et que le point A est au nord du parallèle origine.
- 4. On donne $dv = -13.7 \, dmgr$ et $\lambda = 9.3474734 \, gr$ la longitude de A, calculer G.
- 5. En déduire les coordonnés (X_B, Y_B) de B si $X_A = 363\,044.79\,m$ et $Y_A = 407\,020.09\,m$. 6. Déterminer les coordonnées géographiques (φ, λ) de B.

Les Représentations Planes

LES REPRÉSENTATIONS PLANES

Exercice 7.1. Soit \mathbb{S}^2 la sphère de rayon R. Au point $P(\varphi, \lambda)$ de \mathbb{S}^2 on lui fait correspondre le point p(X,Y) du plan OXY par la représentation plane suivante définie par les formules :

$$p(X,Y) \begin{cases} X = R.cos\lambda \\ Y = R.sin\varphi \end{cases}$$

- 1. Cette représentation est-elle cylindrique ou conique ? Justifier votre réponse ?
- 2. Soit dS la longueur infinitésimale correspondante sur le plan, donner l'expression de $(dS)^2$ en fonction de φ , λ , $d\varphi$, $d\lambda$ et R.
- 3. Soit m le module linéaire, montrer que $m^2 = \frac{\cos^2\varphi d\varphi^2 + \sin^2\lambda d\lambda^2}{d\varphi^2 + \cos^2\varphi d\lambda^2}$. 4. En déduire les modules linéaires m_1 le long du méridien (λ = constante) et m_2
- le long du parallèle (φ = constante).
- 5. Cette représentation est-elle conforme? Par quoi est représentée l'indicatrice de Tissot?

Problème 7.2. Soit \mathbb{S}^2 la sphère de rayon R, au point $P(\varphi, \lambda)$ on lui fait correspondre le point p(X, Y) du plan OXY par la représentation plane suivante définie par les formules :

$$p(X,Y) = \begin{cases} X = 2R.tg(\frac{\pi}{4} - \frac{\varphi}{2}).sin\lambda \\ Y = -2R.tg(\frac{\pi}{4} - \frac{\varphi}{2}).cos\lambda \end{cases}$$

1. Montrer que l'image d'un méridien (λ = constante) est une droite dont on donne l'équation.

- 2. Montrer que l'image d'un parallèle (φ = constante) est un cercle dont on précise l'équation.
- 3. En utilisant le lemme de Tissot, déterminer les directions principales.
- 4. Soit dS la longueur infinitésimale correspondante sur le plan, calculer dS.
- 5. Sachant que sur la sphère $ds^2 = R^2 d\varphi^2 + R^2 cos^2 \varphi . d\lambda^2$, calculer le module linéaire m.
- 6. En déduire le module linéaire m_1 le long du méridien.
- 7. En déduire le module linéaire m_2 le long d'un parallèle.
- 8. Comparer m_1 et m_2 . Conclure sur la conformité ou la non conformité de la représentation plane.

Problème 7.3. Soit Σ la sphère de rayon R, au point $P(\varphi, \lambda)$ on lui fait correspondre le point p(X, Y) du plan OXY par la représentation plane suivante définie par les formules :

$$p(X,Y) = \begin{cases} X = R.\lambda \\ Y = R.Logtg(\frac{\pi}{4} + \frac{\varphi}{2}) \end{cases}$$

où Loq désigne le logarithme népérien.

- 1. Quelles sont les images des méridiens (λ = constante) et des parallèles (φ = constante).
- 2. Soit dS la longueur infinitésimale correspondante sur le plan, calculer dS en fonction de φ et de λ et calculer le module linéaire m.
- 3. En déduire les modules linéaires m_1 le long du méridien et m_2 le long du parallèle.
- 4. Comparer m_1 et m_2 et conclure sur la conformité ou la non conformité de la représentation plane.
- 5. On suppose que P décrit sur la surface Σ une courbe (γ) telle que φ et λ sont liées par la relation : $tg\varphi = sin\lambda$. Pour $\varphi = 0$ gr, 2 gr, 4 gr, 6 gr, 8 gr et 10 gr, dresser un tableau donnant les valeurs de λ correspondantes.
- 6. Sachant que $R=1000\,m$, calculer les coordonnées (X,Y) de la représentation plane donnée ci-dessus pour les valeurs de φ et λ de la question 5.
- 7. Rapporter à l'échelle 1/100 sur le plan OXY, les positions (X, Y) des points. Que pensez-vous de l'image de la courbe (γ) .

Problème 7.4. Sur une sphère de rayon unité, modèle de la terre, on désigne :

- par p le pôle nord,
- par (C) un grand cercle qui coupe l'équateur au point i de longitude nulle,
- par q le pôle de ce grand cercle, de latitude φ_0 positive,
- par ω et h respectivement les points d'intersection de (C) et du méridien de q et du grand cercle issu de q, passant par le point $a(\varphi, \lambda)$.

On pose : $\omega h = x$, ha = y

1. q est le pivot d'une représentation cylindrique conforme oblique tangente, dont (C) est le "pseudo-équateur". Le plan est rapporté aux axes $\Omega X, \Omega Y$ images respectives de (C) et du grand cercle ωpq . Exprimer en fonction de φ, λ et φ_0 les coordonnées X, Y du point A image de a (vérifier que pour $\varphi_0 = 0$, on retrouve les expressions de X, Y d'une représentation transverse).

2. Montrer que l'équation de l'image plane du parallèle de latitude φ_0 peut s'écrire :

$$e^{Y} cos X = t g \varphi_0$$

Indications : b désignant un point de latitude φ_0 , le triangle pqb est isocèle, décomposer ce triangle en deux triangles rectangles égaux. Etudier qualitativement les images des autres parallèles.

3. Montrer que l'image plan de l'équateur a pour équation :

$$cosX + tg\varphi_0.shY = 0$$

Ecrire d'une manière analogue, l'équation de l'image du méridien $\lambda = 0$.

4. Exprimer le gisement du méridien en fonction de φ , λ et φ_0 . Déterminer la valeur du module linéaire, en particulier en p, en un point de l'équateur, en un point du méridien origine.

Problème 7.5. Pour une représentation plane, on dit qu'elle est **équivalente** si le produit des modules linéaires m_1 et m_2 suivant les directions principales vérifient :

$$m_1.m_2 = 1$$

Soit le modèle terrestre représenté par la sphère de rayon R qu'on note \mathbb{S}^2 . Au point $P(\varphi, \lambda)$ on lui fait correspondre le point p(X, Y) du plan OXY par la représentation plane suivante définie par les formules :

$$p(X,Y) \begin{cases} X = 2R.\sin\left(\frac{\pi}{4} - \frac{\varphi}{2}\right).\cos\lambda \\ Y = 2R.\sin\left(\frac{\pi}{4} - \frac{\varphi}{2}\right).\sin\lambda \end{cases}$$
 (7.1)

- 1. Qu'elle est l'image du pôle nord P_N ?
- 2. Montrer que l'image d'un méridien ($\lambda = \lambda_0$ =constante) est une droite dont on donne l'équation.
- 3. Montrer que l'image d'un parallèle ($\varphi=\varphi_0=$ constante) est un cercle dont on précise l'équation.
- 4. En utilisant le lemme de Tissot, déterminer les directions principales.
- 5. Soit ds la longueur infinitésimale correspondante sur la sphère, donner l'expression de ds^2 .

6. Soit dS la longueur infinitésimale correspondante sur le plan. Montrer que :

$$dS^{2} = R^{2}cos^{2}\left(\frac{\pi}{4} - \frac{\varphi}{2}\right)d\varphi^{2} + 4R^{2}sin^{2}\left(\frac{\pi}{4} - \frac{\varphi}{2}\right).d\lambda^{2}$$

- 7. En déduire le carré du module linéaire m^2 .
- 8. Calculer le module linéaire m_1 le long du parallèle.
- 9. Calculer le module linéaire m_2 le long du méridien.
- 10. La représentation plane définie par (7.1) est-elle équivalente. Justifier votre réponse.

Problème 7.6. Etude de la représentation conforme d'une sphère de rayon unité dite représentation de Littrow ¹ définie par :

$$Z = sinz$$

avec $z = \lambda + iL$ et Z = X + iY.

- 1. Préciser le canevas, les images des méridiens et celle de l'équateur.
- 2. Vérifier que les points f et $f'(\varphi = 0, \lambda = \pm \pi/2)$ sont des points singuliers.
- 3. Etudier les images plans des cercles de diamètre ff' et des petits cercles orthogonaux.
- 4. Soit s le point ($\varphi = \varphi_0$, $\lambda = 0$). On appelle segment capable sphérique l'ensemble des points b tels que l'angle \widehat{bp} , $\widehat{bs} = \alpha$. Quelle est l'image plane de cette courbe dans cette représentation plane.

Problème 7.7. Soit l'application $F(u, v) : \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \setminus (0, 0, 1)$ définie par :

$$OM(u,v) = F(u,v) \begin{cases} x = \frac{2u}{u^2 + v^2 + 1} \\ y = \frac{2v}{u^2 + v^2 + 1} \\ z = \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \end{cases}$$

- 1. Calculer la forme fondamentale ds^2 .
- 2. Montrer que OM(u, v) appartient à la sphère \mathbb{S}^2 d'équation $x^2 + y^2 + z^2 = 1$.
- 3. Calculer u, v en fonction de x, y et z.
- 4. Soit le point N(0,0,1) de \mathbb{S}^2 , calculer les coordonnées (X,Y) du point p intersection de la droite NM avec la plan z=0 en fonction de x,y et z.
- 5. Soit σ l'application $\mathbb{R}^3 \setminus (0,0,1) \longrightarrow \mathbb{R}^2 : (x,y,z) \longrightarrow (X,Y) = (X(x,y,z),Y(x,y,z))$. Montrer que $(\sigma \circ F)(u,v) = \sigma(F(u,v)) = (u,v)$. En déduire que $F = \sigma^{-1}$.
 - 1. En hommage à Joseph Johann Littrow (1781-1840) astronome autrichien.

Problème 7.8. Soit un ellipsoïde de révolution E(a, e) avec a et e respectivement le demi-grand axe de l'ellipsoïde de révolution et e la première excentricité. Soit S^2 une sphère de rayon R. On veut étudier le passage suivant :

$$p(\varphi, \lambda)$$
 de l'ellipsoïde $E \Rightarrow P(\psi, \Lambda)$ de la sphère \mathbb{S}^2

- 1. Exprimer m le module linéaire de cette représentation.
- 2. On pose:

$$z = \mathcal{L} + i\lambda$$
, $Z = L + i\Lambda$

 \mathcal{L} est la latitude isométrique de l'ellipsoïde de révolution et L la latitude de Mercator. Une transformation conforme entre E et \mathbb{S}^2 est donnée par Z = f(z) où f est une fonction analytique. On propose le cas le plus simple à savoir :

$$Z = \alpha z + \beta$$

$$avec \begin{cases} \alpha = c_1 + ic_2 \\ \beta = b_1 + ib_2 \end{cases}$$

les c_1, c_2, b_1, b_2 sont des constantes réelles. Donner les expressions de L et Λ en fonction de \mathcal{L} et λ .

- 3. On veut que repésentation transforme les méridiens et les parallèles de l'ellipsoïde respectivement en méridiens et parallèles de la sphère et que l'image du méridien origine $\lambda=0$ soit le méridien origine de la sphère $\Lambda=0$. Montrer que $c_2=b_2=0$ et $L=c_1\mathcal{L}+b_1$, $\Lambda=c_1\lambda$.
- 4. Pour avoir la même orientation en longitude, on prendra $c_1 > 0$. On cherchera la transformation à déformation minimale autour d'un parallèle $\varphi = \varphi_0$ tel que le parallèle $\varphi = \varphi_0$ est automécoique et le module linéaire m est stationnaire pour

 $\varphi = \varphi_0$, c'est-à-dire $m(\varphi_0) = 1$ et $\left(\frac{dm}{d\varphi}\right)\Big|_{\varphi = \varphi_0} = 0$, en plus on considère aussi la condition :

$$\left. \left(\frac{d^2 m}{d\varphi^2} \right) \right|_{\varphi = \varphi_0} = 0$$

Pour faciliter les notations, on prendra $b=b_1, c=c_1$. Montrer que la relation liant φ_0 et Ψ_0 est :

$$tg\psi_0 = tg\varphi_0 \sqrt{\frac{1 - e^2}{1 - e^2 sin^2 \varphi_0}}$$

- 5. Déterminer les constantes b, c et R en fonction de φ_0 et Ψ_0 telles que les conditions ci-dessus soient vérifiées.
- 6. Montrer que l'expression du développement limité de $m(\varphi)$ de part et d'autre du parallèle φ_0 est donnée par :

$$m(\varphi) = 1 - \frac{2e^2(1 - e^2)\sin\varphi_0\cos\varphi_0}{3(1 - e^2\sin^2\varphi_0)^2}(\varphi - \varphi_0)^3 + o((\varphi - \varphi_0)^4)$$

7. On fait intervenir la deuxième excentricite e', Montrer que $m(\varphi)$ s'écrit :

$$m(\varphi) = 1 - \frac{2e'^2 \sin\varphi_0 \cos\varphi_0}{3(1 + e'^2 \cos^2\varphi_0)^2} (\varphi - \varphi_0)^3 + o((\varphi - \varphi_0)^4)$$

Problème 7.9. Soit $\mathcal{E}(a,b)$ un ellipsoïde de référence de paramètres a et e respectivement le demi-grand axe et la première excentricité. On considère une représentation plane \mathcal{P} de \mathcal{E} vers le plan (O,X,Y). On pose :

$$z = \lambda + i\mathcal{L}$$
$$Z = X + iY = Z(z)$$

avec \mathcal{L} la latitude isoparamétrique.

- 1. Ecrire les expressions du carré des éléments infinitésimaux de longueur sur l'ellipsoïde et le plan. En déduire le module linéaire *m*.
- 2. On pose $\zeta = \frac{\partial Z}{\partial z}$. Si γ est le gisement de l'image du méridien passant par le point $z = (\lambda, \mathcal{L})$, montrer que $arg(\zeta) = \frac{\pi}{2} \gamma$.
- 3. On cherche une représentation plane du type $Z = \alpha + \beta z + \varpi z^2$ où α, β et ϖ des constantes complexes. On impose les conditions suivantes :
 - pour z = 0, Z = 0,
 - l'axe des Y coincide avec le méridien à l'origine.

Montrer que $\Re e(\beta) = 0$.

4. En déduire que Z s'écrit :

$$Z = i\beta_1 z + (\varpi_1 + i\varpi_2)z^2$$

avec β_1 , ϖ_1 , ϖ_2 sont des réels.

7.2 La Représentation Lambert

Exercice 7.10. En un point A de coordonnées géodésiques $\varphi = 40.9193 \, gr$ et $\lambda = 11.9656 \, gr$ à l'Est de Greenwich, on vise un point B.

- 1. Dans quelle zone de Lambert Tunisie se trouve le point A? Calculer ses coordonnées planes (X, Y).
- 2. L'azimut géodésique de la direction AB est Azg = 55.7631 gr. Sachant que Dv = 1.52 dmgr, calculer G le gisement de la direction AB.
- 3. La distance AB réduite à l'ellipsoïde de référence est $D_e = 5421.32\,m$. Sachant que l'altération linéaire dans la région des points A et B vaut $-9\,cm/km$, calculer la distance AB réduite au plan.

Exercice 7.11. D'après les coordonnées de deux points A et B vous trouvez la distance $AB = 5427.380 \, m$. On a les données suivantes :

- a l'altération linéaire de la représentation dans la région de AB vaut $+8.10^{-5}$,
- b les altitudes des points A et B sont : $H_A = 1000.00 \, m$ et $H_B = 1200.00 \, m$.
- 1. Calculer la distance suivant la pente D_P entre les points A et B matérialisés sur le terrain.

Problème 7.12. On a mesuré une distance suivant la pente $D_P = 20\,130.858\,m$ entre deux points A et B avec $H_A = 235.07\,m$, $H_B = 507.75\,m$, on prendra comme rayon terrestre $R = 6378\,km$.

- 1. Calculer la distance D_e suivant l'ellipsoïde en utilisant la formule rigoureuse.
- 2. Sachant que le module linéaire m vaut 0.999 850 371, calculer la distance D_r réduite au plan de la représentation plane utilisée.
- 3. Les coordonnées géodésiques du point A sont : $\varphi = 10.7245 \ 3 \ gr$, $\lambda = 41.4490 \ 3 \ gr$. Par des observations astronomiques, on a déterminé les coordonnées astronomiques $\varphi_a = 10.7257 \ 4 \ gr$ et $\lambda_a = 41.4505 \ 2 \ gr$ du point A et l'azimut astronomique de la direction AB soit $Aza = 89.6849 \ 9 \ gr$. Transformer l'azimut astronomique de la direction AB en azimut géodésique en utilisant l'équation de Laplace donnée par :

$$Azg = Aza + (\lambda - \lambda_a).sin\varphi$$

- 4. Calculer le gisement G de la direction AB sachant que $Dv = 0.00188 \, qr$.
- 5. Les coordonnées Lambert Nord Tunisie de A sont $X = 478\,022.43\,m$ et $Y = 444\,702.22\,m$. Déterminer alors les coordonnées de B.
- 6. Calculer l'azimut de B vers A sachant qu'on néglige la correction de la corde de la direction BA et que $\lambda_B = 10.92884 \, gr$.

Problème 7.13. On a mesuré une distance suivant la pente entre les points $A(H_A = 1319.79 m)$ et $B(H_B = 1025.34 m)$ avec $D_P = 16483.873 m$.

- 1. Calculer la distance D_e distance réduite à l'ellipsoïde de référence par la formule rigoureuse, on prendra le rayon de la Terre $R = 6378 \, km$.
- 2. Calculer la distance D_r réduite à la représentation plane Lambert si l'altération linéaire de la zone est de $-14 \, cm/km$.
- 3. La direction AB a un azimut géodésique Azg = 297.56225 gr. Donner l'expression du gisement G de AB en fonction de Azg, γ la convergence des méridiens et Dv la correction de la corde, sachant que la représentation plane utilisée est le Lambert Sud Tunisie et que le point A est au nord du parallèle origine.
- 4. On donne $Dv = -13.7 \, dmgr$ et $\lambda = 9.3474734 \, gr$ la longitude de A, calculer G.
- 5. En déduire les coordonnées (X_B, Y_B) de B si $X_A = 363\,044.79\,m$ et $Y_A = 407\,020.09\,m$.
- 6. Déterminer les coordonnées géographiques (φ, λ) de B. On rappelle que : a = 6378249.20 m et $e^2 = 0.0068034877$.

Problème 7.14. On donne deux points *A* et *B* dont les coordonnées géodésiques dans le système géodésique Tunisien sont :

$$A \begin{cases} \varphi = 40.4549830 \, gr \\ \lambda = 9.59542429 \, gr \\ h = 742.40 \, m \end{cases} B \begin{cases} \varphi' = 40.3385861 \, gr \\ \lambda' = 9.45483610 \, gr \\ h' = 987.00 \, m \end{cases}$$
(7.2)

On a mesuré la distance D_P suivant la pente entre A et B soit $D_P = 16\,259.249 \, m$.

- 1. Calculer la distance D_e réduite à la surface de l'ellipsoïde de référence.
- 2. Rappeler l'expression du module linéaire *m* de la représentation Lambert Nord Tunisie.
- 3. Calculer le module linéaire moyen des modules linéaires calculés en A et B.
- 4. Calculer alors D_r la distance réduite au plan de la représentation Plane Lambert Nord Tunisie.
- 5. En A, on déterminé l'azimut géodésique Azg de A vers B. En négligeant dv la correction de la corde, calculer le gisement G de la direction AB.
- 6. Calculer (X, Y) les coordonnées Lambert Nord Tunisie du point A. En déduire alors (X', Y') les coordonnées Lambert Nord Tunisie du point B à partir de celles de A.
- 7. Calculer directement les coordonnées (X", Y") de B. Comparer les avec celles de la question précédente ?

(On donne $a = 6378249.20 \, m, e^2 = 0.0068034877, k_N = 0.999625544,$ rayon moyen de la Terre $R = 6378000 \, m$)

7.3 La Représentation UTM

Exercice 7.15. Dans cet exercice, on voudrait justifier l'arrêt à l'ordre 8 de l'expression de Y(UTM) en fonction de λ . On donne : $\varphi = 40.00 \, gr$ et $a = 6\,378\,249.20 \, m$, $e^2 = 0.006\,803\,4877$.

- 1. Calculer numériquement e'^2 , η^2 , $t^2 = tg^2\varphi$ et $N(\varphi)$.
- 2. Calculer numériquement le coefficient a_8 :

$$a_8 = \frac{1}{40320} N \cos^7 \varphi \sin \varphi (165 - 61t^2 + 537t^4 + 9679\eta^2 - 23278t^2\eta^2 + 9244\eta^4 + 358t^4\eta^2 - 19788t^2\eta^4)$$

3. On donne $\lambda = 1.23546 \, gr$, calculer $a_8 \lambda^8$ et conclure.

Problème 7.16. Soit le point A de coordonnées géodésiques : $\varphi = 40.9193 \, gr$ et $\lambda = 11.9656 \, gr$ à l'Est de Greenwich. On considère la représentation plane UTM tronquée suivante, de méridien central $\lambda_0 = 9^\circ$ définie par les formules :

$$\left\{ \begin{array}{l} X=a_1.(\lambda-\lambda_0)+a_3.(\lambda-\lambda_0)^3 \\ Y=g(\varphi)+a_2.(\lambda-\lambda_0)^2 \end{array} \right.$$

où φ , λ et λ_0 sont exprimées en rd, avec :

$$a_1 = N(\varphi).cos\varphi$$

$$a_2 = \frac{a_1}{2}.sin\varphi$$

$$a_3 = \frac{a_1cos^2\varphi}{6}(1 - tg^2\varphi + e'^2.cos^2\varphi)$$

$$N(\varphi) = \frac{a}{\sqrt{1 - e^2.sin^2\varphi}}$$

$$g(\varphi) = a(1 - e^2)(1.0051353.\varphi - 0.0025731sin2\varphi)$$

$$a = 6378249.20 m, e^2 = 0.0068034877, e'^2 = \frac{e^2}{1 - e^2}$$

- 1. Montrer que les coordonnées du point A sont : $X = 157\,833.48\,m$, $Y = 4\,078\,512.97\,m$, on justifie les résultats.
- 2. Soit le point *B* de coordonnées ($X = 160595.98 \, m$; $Y = 4078564.53 \, m$). Sachant que *B* est situé sur le même parallèle que *A*, calculer la longitude λ' de *B*.
- 3. Calculer le gisement G et la distance AB.
- 4. Sachant que la convergence des méridiens γ est donnée par $tg\gamma = (\lambda \lambda_0)sin\varphi$ et qu'on néglige le Dv, calculer l'azimut de la direction AB.
- 5. Calculer l'azimut de *B* vers *A* en négligeant le *Dv* de *B* vers *A*.
- 6. En calculant les coordonnées UTM de A et B, on trouve respectivement $X_A = 657\,770.34\,m$, $Y_A = 4\,076\,891.20\,m$; $X_B = 660\,531.74\,m$, $Y_B = 4\,076\,942.76\,m$. Calculer la distance AB par les coordonnées UTM. En déduire l'erreur relative sur la distance en utilisant les coordonnées de l'UTM tronquée.

Les Transformations de Passage entre Les Systèmes Géodésiques

8.1 LES TRANSFORMATIONS 2D DE PASSAGE ENTRE LES SYSTÈMES GÉODÉSIQUES

Exercice 8.1. On donne le modèle bidimensionnel suivant, de transformation entre deux systèmes géodésiques, défini par :

$$\begin{pmatrix} X_2 \\ Y_2 \end{pmatrix} = \begin{pmatrix} -21.662 \ m \\ -627.748 \ m \end{pmatrix} + \begin{pmatrix} 0.999 \ 988 \ 149 & -0.000 \ 025 \ 928 \\ -0.000 \ 025 \ 928 & 0.999 \ 988 \ 149 \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}$$

- 1. S'agit-il du modèle bidimensionnel de Helmert? Justifier.
- 2. Donner les valeurs numériques respectivement du facteur d'échelle et de l'angle de la rotation entre les deux systèmes.

8.2 LES TRANSFORMATIONS 3D DE PASSAGE ENTRE LES SYSTÈMES GÉODÉSIQUES

Problème 8.2. Soient les trois tableaux ci-dessous des coordonnées 3D respectivement dans les systèmes *S* 1 et *S* 2 et à transformer dans le système *S* 2 :

Nom	X(m)	Y(m)	Z(m)
1	4 300 244.860	1 062 094.681	4 574 775.629
2	4 277 737.502	1 115 558.251	4 582 961.996
3	4 276 816.431	1 081 197.897	4 591 886.356
4	4 315 183.431	1 135 854.241	4 542 857.520
5	4 285 934.717	1 110 917.314	4 576 361.689
6	4 217 271.349	1 193 915.699	4618635.464
7	4 292 630.700	1 079 310.256	4 579 117.105

Nom	X(m)	Y(m)	Z(m)
1	4 300 245.018	1 062 094.592	4 574 775.510
2	4 277 737.661	1 115 558.164	4 582 961.878
3	4 276 816.590	1 081 197.809	4 591 886.238
4	4 315 183.590	1 135 854.153	4 542 857.402
5	4 285 934.876	1 110 917.227	4 576 361.571
6	4 217 271.512	1 193 915.612	4618635.348
7	4 292 630.858	1 079 310.168	4 579 116.986
Nom	X(m)	Y(m)	Z(m)
\overline{A}	4 351 694.594	1 056 274.819	4 526 994.706
\boldsymbol{B}	4 319 956.455	1 095 408.043	4 548 544.867
\boldsymbol{C}	4 303 467.472	1 110 727.257	4 560 823.460
D	4 202 413.995	1 221 146.648	4 625 014.614

- 1. Déterminer les paramètres du modèle de Burša-Wolf à 7 paramètres.
- 2. Calculer les coordonnées 3D des points du troisième tableau dans le système *S* 2.

Géodésie Spatiale

9.1 Notions sur le Mouvement d'un Satellite Artificiel de la Terre

Exercice 9.1. 1. Montrer que : r = a(1 - ecosE).

2. Démontrer à partir des formules du cours la relation :

$$tg\frac{v}{2} = \sqrt{\frac{1+e}{1-2}}tg\frac{E}{2}$$

Aide : exprimer tg(v/2) en fonction de tgv.

Exercice 9.2. 1. A partir de l'expression de X_C , monter que X_C vérifie l'équation du mouvement non perturbé pour la composante X, soit :

$$\ddot{X}_C + \frac{\mu}{r^3} X_C = 0$$

Problème 9.3. La Terre est supposée sphérique, homogène de rayon $R = 6\,371\,000\,m$. Le produit de la constante universelle de gravitation terrestre G par la masse M de la Terre soit $GM = 3.986\,005\,10^{14}\,m^3\,s^{-2}$. Un satellite géodésique a une trajectoire telle que son altitude maximale est $1\,100\,km$ et son altitude minimale $800\,km$.

- 1. Donner la période du mouvement de ce satellite.
- 2. Quelle est l'excentricité de sa trajectoire?
- 3. On mesure la distance du satellite à une station au sol de latitude 43° , 5 et d'altitude nulle, lors du passage du satellite à la verticale de la station, soit $D = 812\,000\,m$.
- a Quelle est l'anomalie vraie du satellite à cet instant, sachant qu'il vient de passer au périgée.
 - b Combien de temps s'est écoulé depuis le passage au périgée ?

Problème 9.4. Une comète décrit autour du Soleil une ellipse d'excentricité e de demi-grand axe a et de demi-petit axe b où le Soleil occupe un des foyers. L'équation de l'orbite de la comète en coordonnées polaires est donnée par :

$$r = \frac{a(1 - e^2)}{1 + ecos\upsilon}$$

avec r la distance Soleil- comète. 1. Déterminer les distances r_A et r_P lorsque la comète est à l'apogée et au périgée en fonction de a et e.

- 2. La comète de Halley a une orbite fortement excentrique : son apogée est à 0.53 *UA* du Soleil et sa périgée est à 35.1 *UA*. Calculer *e*.
- 3. En utilisant la loi des aires et la troisième loi de Kepler, montrer que la constante des aires C est exprimée par :

$$C^2 = \frac{b^2}{a}G.M$$

où G, M désignent respectivement la constante de la gravitation universelle et la masse du Soleil.

4. On pose : $u = \frac{1}{r}$. Donner l'expression du carré de la vitesse v^2 de la comète en fonction de u et $\frac{du}{dv}$. Montrer que v^2 peut s'écrire sous la forme :

$$v^2 = G.M\left(\frac{2}{r} - \frac{1}{a}\right)$$

- 5. Déterminer l'expression du rapport des vitesses à l'apogée et au périgée $\frac{v_A}{v_P}$ en fonction de e
- 6. Calculer numériquement ce rapport pour le cas de la comète de Halley.

On donne:

- -1 UA = 149597870 km
- $-G = 6.672 \times 10^{-11} \, m^3 . kg^{-1} . s^{-2},$
- $-M = 1.9891 \times 10^{30} \, kg.$

Modèles Linéaires de Compensation

Exercice 10.1. Soient U un ouvert convexe d'un espace de Banach ¹ réel E c'està-dire un espace vectoriel normé complet sur \mathbb{R} et f une fonction à valeurs réelles, différentiable et convexe dans U.

1. Montrer que si $f'(x_0) = 0$ en un point $x_0 \in U$, alors f a un minimum absolu en x_0 .

Exercice 10.2. 1. En utiliser l'identité remarquable :

$$\|\alpha x + (1 - \alpha)y\|^2 = \alpha \|x\|^2 + (1 - \alpha)\|y\|^2 - \alpha(1 - \alpha)\|x - y\|^2$$

Montrer que dans un espace de Banach réel E, la fonction $f = \|.\|^2$ est strictement convexe, c'est-à-dire, $\forall \alpha \in]0, 1[, f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$, pour tout couple $(x, y) \in E^2$.

Exercice 10.3. On note F une surface de \mathbb{R}^3 définie par la représentation paramétrique :

$$\mathbf{OM} = (a_1(u, v), a_2(u, v), a_3(u, v))^T$$

où u et v sont deux paramètres réels. On se donne un point $P(x, y, z) \in \mathbb{R}^3$.

1. Donner une condition géométrique portant sur le plan tangent à F au point $M_0(u_0, v_0)$ pour que la différentielle de la fonction $(u, v) \longrightarrow \varphi(u, v) = \|\mathbf{OP} - \mathbf{OM}(u, v)\|^2$ soit nulle en $M_0(u_0, v_0)$.

Exercice 10.4. Soient U un ouvert convexe d'un espace de Banach réel E et f une application différentielle de U dans \mathbb{R} .

1. Montrer que f est convexe dans U si et seulement si :

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

1. Stefan Banach (1892-1945): mathématicien polonais.

pour tout couple de points $x, x_0 \in U$.

2. On suppose $E = \mathbb{R}^n$ et f de classe C^2 soit deux fois différentiable et f" continue; pour $x \in U$, soit φ_x la forme quadratique définie par :

$$\varphi_x(h) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_i h_j, \qquad h = (h_1, h_2, ..., h_n) \in \mathbb{R}^n$$

Montrer que f est convexe dans U si et seulement si φ_x est positive pour tout $x \in U$ soit $\varphi_x(h) \ge 0$ pour $x \in U$ et $h \in \mathbb{R}^n$.

Exercice 10.5. Soit un triangle ABC, on observe les angles \hat{A} , \hat{B} , \hat{C} et les côtés BC = a, AC = b et AB = c:

$$\begin{cases} \hat{A} = 43.77160 \, gr & \sigma_{\hat{A}} = 3.1 \, dmgr \\ \hat{B} = 98.39043 \, gr & \sigma_{\hat{B}} = 3.1 \, dmgr \\ \hat{C} = 57.83858 \, gr & \sigma_{\hat{C}} = 3.1 \, dmgr \\ a = 333.841 \, m, & \sigma_a = 0.005 \, m \\ b = 525.847 \, m, & \sigma_b = 0.010 \, m \\ c = 414.815 \, m, & \sigma_c = 0.005 \, m \end{cases}$$

- 1. Calculer les angles et les côtés compensés.
- 2. Calculer les poids de l'angle \hat{A} et du côté a.
- 3. Déterminer une estimation du facteur de variance unitaire.

Problème 10.6. Les directions suivantes sont observées respectivement aux stations A, B, C et D d'un quadrilatère ABDC comme suit :

$$S \ tation \ A = \begin{cases} vers \ B: \ 0.000000gr \\ vers \ C: 74.16667gr \end{cases}$$

$$S \ tation \ B = \begin{cases} vers \ D: \ 0.000000gr \\ vers \ C: 82.46080gr \\ vers \ A: 170.62531gr \end{cases}$$

$$S \ tation \ C = \begin{cases} vers \ A: \ 0.000000gr \\ vers \ B: 37.67099gr \\ vers \ D: 85.08302gr \end{cases}$$

$$S \ tation \ D = \begin{cases} vers \ C: \ 0.000000gr \\ vers \ B: 70.12809gr \end{cases}$$

Les observations sont non corrélées. L'écart quadratique moyen de ces observations est identique et vaut $\sigma_d = 6.2 \, dmgr$.

- 1. Compenser les directions et calculer leurs poids et celui de l'angle CBA.
- 2. Calculer l'estimateur s^2 du facteur de variance unitaire et celui de $\frac{s^2}{\sigma^2}$.

3. Des observations de nivellement ont été effectuées sur les lignes *ABC* et *BCD*. Les différences d'altitudes observées sont les suivantes :

$$H_A - H_B = 0.509 m$$

 $H_B - H_D = 1.058 m$
 $H_A - H_C = 3.362 m$
 $H_D - H_C = 1.783 m$
 $H_B - H_C = 2.829 m$

Les observations sont non corrélées et de précision identique. Compenser les observations ci-dessus et calculer un estimateur du facteur de variance unitaire.

Problème 10.7. 1. Montrer que dans un cheminement altimétrique de précision, le poids de l'observation entre deux repères est inversement proportionnel de leur distance en supposant l'égalité des portées et que les observations sont non corrélées.

2. Une polygonale *ABCD* (voir **Fig. 10.1**) a été observée par le nivellement de précision. L'instrument utilisé a une précision de 2 *mm* par *km*. Les observations considérées non corrélées sont les suivantes :

$$H_C - H_A = 1.878 \, m, \qquad AC = 6.44 \, km$$

 $H_D - H_A = 3.831 \, m, \qquad AD = 3.22 \, km$
 $H_D - H_C = 1.954 \, m, \qquad CD = 3.22 \, km$
 $H_B - H_A = 0.332 \, m, \qquad AB = 6.44 \, km$
 $H_D - H_B = 3.530 \, m, \qquad BD = 3.22 \, km$
 $H_C - H_B = 1.545 \, m, \qquad BC = 6.44 \, km$

L'altitude du repère A est de 3.048 m et non entachée d'erreurs. Calculer par compensation des observations les altitudes des repères B, C et D et leurs écarts-types.

- 3. Calculer l'écart-type de la différence d'altitudes entre les repères C et D.
- 4. Donner une estimation de la précision par km du nivellement effectué.

Problème 10.8. On veut étalonner un anéroide, appareil donnant la pression de l'air, par la formule :

$$D = d + \alpha t + \gamma$$

où α, γ sont deux constantes, t la température en degrés centigrades. Les paramètres d et D sont lus respectivement de l'anéroide et à partir d'un baromètre en mercure, et exprimés en mm Hg.

Pour déterminer α et γ , des lectures ont été prises à différentes températures (voir tableau 10.1). Ces observations sont non corrélées. L'écart-type de la lecture

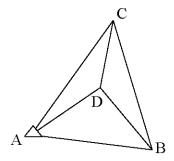


Figure 10.1 – La polygonale observée

t	d	D
° Centigrade	mm Hg	mm Hg
6.0	761.3	762.3
10.0	759.1	759.5
14.0	758.4	758.7
18.0	763.1	763.0

Table 10.1 – Table des observations

de d est de $0.14 \, mm \, Hg$; t et D sont supposées sans erreurs.

- 1. Calculer par la méthode des moindres carrés les constantes α et γ .
- 2. Estimer le facteur de variance unitaire.
- 3. Déterminer la variance et la covariance de α et γ .

Problème 10.9. En statistiques, la loi normale est une famille de distributions de probabilités caractérisées par la fonction de densité :

$$p(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

où μ est la moyenne et σ^2 la variance. On note par $l(x, \mu, \sigma) = Logp(x, \mu, \sigma)$, soit :

$$l(x, \mu, \sigma) = -Log\sigma - \frac{(x - \mu)^2}{2\sigma^2}$$

Soit X une variable aléatoire ayant comme fonction de densité $p(x, \mu, \sigma)$. On rappelle les opérateurs suivants espérance mathématique ou moyenne et variance :

$$E[f(X)] = \int_{-\infty}^{+\infty} f(x)p(x,\mu,\sigma)dx$$
$$V(f(X)) = E[(E[f(X)] - f(X))^{2}]$$

On donne la formule : $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}.$

1. Montrer que:

$$E(X) = \int_{-\infty}^{+\infty} p(x, \mu, \sigma) dx = \mu$$

$$\sigma^{2}(X) = Var(X) = Cov(X, X) = \int_{-\infty}^{+\infty} (x - \mu)^{2} p(x, \mu, \sigma) dx = \sigma^{2}$$

2. Montrer que:

$$\int_{-\infty}^{+\infty} u^4 e^{-u^2} du = \frac{3\sqrt{\pi}}{4}$$

- 3. Calculer $\frac{\partial l}{\partial \mu} \frac{\partial l}{\partial \sigma}$.
- 4. On pose $\theta = (\mu, \sigma)$. Soit T_{θ} l'espace engendré par $(\frac{\partial l}{\partial \mu}, \frac{\partial l}{\partial \sigma})$. On définit sur T_{θ} l'opérateur $< .,. >: T_{\theta} \times T_{\theta} \longrightarrow \mathbb{R}$ à A, B deux variables aléatoires $\in T_{\theta}$:

$$\langle A, B \rangle = E[A(x)B(x)]$$

Justifier qu'on peut écrire :

$$E[A(x)B(x)] = Cov(A(x), B(x)) = E[(E[A(x)] - A(x))(E[B(x)] - B(x))]$$

- 5. Montrer que < .,. > définit un produit scalaire sur T_{θ} .
- 6. On pose : $e_1 = \frac{\partial l}{\partial u}$ et $e_2 = \frac{\partial l}{\partial \sigma}$. On définit le tenseur métrique sur T_θ par :

$$g_{ij} = \langle e_i, e_j \rangle$$

Montrer que la matrice $g = (g_{ij})$ est donnée par :

$$g = \frac{1}{\sigma^2} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

et que la première forme fondamentale sur T_{θ} s'écrit :

$$ds^2 = \frac{1}{\sigma^2}(d\mu^2 + 2d\sigma^2)$$

Problème 10.10. Soit un triangle de côtés a,b,c et d'angles A,B et C. On se propose :

- d'estimer \dot{a},\dot{b} et $\dot{c},$ et les variances de ces déterminations. Les observations sont :

$$\begin{cases}
a = 96.48 \, mm \\
b = 115.50 \, mm \\
A = 63.042 \, gr \\
B = 99.802 \, gr \\
C = 37.008 \, gr
\end{cases}$$
(10.1)

On choisit ici comme <u>unités normalisées</u> le décimillimètre $(0.1 \, mm)$ pour les mesures de distances, et le décimilligrade $(0.1 \, gr)$ pour les angles.

On prend les poids égaux aux inverses des carrés des emq de chaque observation. On donne la matrice des poids P:

$$P = \begin{pmatrix} 0.277 & 0 & 0 & 0 & 0 \\ 0 & 0.160 & 0 & 0 & 0 \\ 0 & 0 & 1.524 & 0 & 0 \\ 0 & 0 & 0 & 1.524 & 0 \\ 0 & 0 & 0 & 0 & 1.524 \end{pmatrix}$$

On prendra comme valeurs approchées des inconnues $a_0=a; b_0=b; c_0=a\frac{\sin C}{\sin A}$.

- 1. Ecrire les paramètres observées et les valeurs observées des inconnues dans les nouvelles unités.
- 2. Soit X = (a, b, c) le vecteur des inconnues. On adopte le système suivant liant les inconnues aux observables :

$$\begin{cases} \dot{a} = \dot{a} \\ \dot{b} = \dot{b} \\ Arccos \frac{\dot{b}^2 + \dot{c}^2 - \dot{a}^2}{2\dot{b}\dot{c}} = \dot{A} \\ Arccos \frac{\dot{c}^2 + \dot{a}^2 - \dot{b}^2}{2\dot{c}\dot{a}} = \dot{B} \\ Arccos \frac{\dot{a}^2 + \dot{b}^2 - \dot{c}^2}{2\dot{a}\dot{b}} = \dot{C} \end{cases}$$
(10.2)

Ceci étant, on posera pour les grandeurs à déterminer :

$$\dot{a} = a_0 + da = a + da$$
$$\dot{b} = b_0 + db = b + db$$
$$\dot{c} = c_0 + dc$$

et pour les grandeurs observées :

$$\begin{split} \dot{a} &= a + v_a \\ \dot{b} &= b + v_b \\ \dot{A} &= A + v_A \\ \dot{B} &= B + v_B \\ \dot{C} &= C + v_C \end{split}$$

En linearisant la troisième équation de (10.2), montrer que l'équation d'observation s'écrit :

$$\frac{1}{\sin\!A}\frac{a_0}{b_0c_0}\frac{2000}{\pi}da - \frac{1}{\sin\!A}\frac{a_0^2 + b_0^2 - c_0^2}{2b_0^2c_0}\frac{2000}{\pi}db - \frac{1}{\sin\!A}\frac{a_0^2 + c_0^2 - b_0^2}{2b_0c_0^2}\frac{2000}{\pi}dc = -k_A\frac{2000}{\pi} + v_A$$
 où :
$$k_A = \frac{b_0^2 + c_0^2 - a_0^2 - 2b_0c_0cosA}{2b_0c_0\sin\!A}$$

(étant entendu qu'on exprime v_A en dcgr).

3. Montrer que le système des moindres carrés AX = L + V s'écrit :

$$\begin{pmatrix} 1. & 0. & 0. \\ 0. & 1. & 0. \\ 1.00375 & -0.83924 & 0.00143 \\ -1.00571 & 1.20285 & -0.66128 \\ 0.00094 & -0.36239 & 0.65918 \end{pmatrix} . \begin{pmatrix} da \\ db \\ dc \end{pmatrix} = \begin{pmatrix} 0. \\ 0. \\ 0.97981 \\ -2.88449 \\ 0.42396 \end{pmatrix} + \begin{pmatrix} v_a \\ v_b \\ v_A \\ v_B \\ v_C \end{pmatrix}$$

4. Résoudre le système précédent par la méthode des moindres carrés et montrer que la matrice normale $N = A^T P A$ est donnée par :

$$N = \begin{pmatrix} 3.35605 & -3.13044 & 1.01750 \\ - & 3.64132 & -1.57937 \\ - & - & 1.32971 \end{pmatrix}$$

5. Montrer que:

$$X = \begin{pmatrix} +0.62971 \\ -0.90962 \\ 0.9482 \end{pmatrix}$$

6. Déterminer les variances des inconnues σ_a^2 , σ_b^2 et σ_c^2 .

Problème 10.11. On considère $(u, v) \in \mathbb{R}^2$ et on définit la fonction par :

$$f(u, v) = u^4 + 6uv + 1.5v^2 + 36v + 405$$

- 1. Chercher les points critiques réels de f.
- 2. Montrer que le point $x^* = (u, v) = (3, -18)$ est un point minimum de f.
- 3. Montrer que le Hessien de f est une matrice définie positive si $u^2 > 1$ et indéfinie si $u^2 < 1$.
- 4. Montrer que la formule de récurrence de Newton s'écrit avec $J = 1.5(u_k^2 1)$:

$$u_{k+1} = \frac{u_k^3 + 9}{I}, \quad v_{k+1} = -\frac{2u_k^3 + 18u_k^2}{I}$$

Problème 10.12. Soient le plan (P) et la sphère (\mathbb{S}^2) d'équations respectivement : x + y + z = 1 et $x^2 + y^2 + z^2 = 1$. On veut chercher le point $M \in (\mathbb{S}^2)$ tel que sa distance au plan (P) soit maximale.

1. Montrer que la distance d'un point M(X, Y, Z) au plan (P) est donnée par :

$$d = |X + Y + Z - 1|/\sqrt{3}$$

- 2. Pour répondre à la question posée ci-dessus, on considère la fonction : $E(x, y, z, \lambda) = -(x + y + z 1)^2 \lambda(x^2 + y^2 + z^2 1)$. Ecrire le système d'équations donnant les points critiques de E qu'on note par (1).
- 3. Montrer que si $\lambda = -1$, on arrive à une contradiction. On suppose que $\lambda \neq -1$. Que représente le cas $\lambda = 0$.
- 4. On suppose que $\lambda \notin \{-3, -1, 0\}$. Résoudre le système (1). Soit le point M_2 tel que ses coordonnées sont négatives.
- 5. Montrer que la matrice hessienne de E pour M_2 s'écrit sous la forme :

$$H = \begin{pmatrix} \mu^2 & -2 & -2 \\ -2 & \mu^2 & -2 \\ -2 & -2 & \mu^2 \end{pmatrix} \quad avec \ \mu = 1 + \sqrt{3}$$

- 6. Si on pose $U = (X, Y, Z)^T \in (\mathbb{S}^2)$. Montrer que $U^T.H.U = 2\left[3 + \sqrt{3} (X + Y + Z)^2\right]$. En déduire que $U^T.H.U > 0$ pour tout $U \neq 0 \in (\mathbb{S}^2)$.
- 7. Montrer que pour le point M_2 , on obtient un minimum strict de E. A-t-on répondu à la question du problème.

Modèles Non-Linéaires de Compensation

Problème 11.1. Dans le plan affine \mathcal{P} , on a mesuré trois distances planes entre un point inconnu $P(X_1, X_2)$ vers trois points connus $P_i(a_i, b_i)_{i=1,3}$ dans trois directions différentes. On considère le modèle non linéaire de Gauss-Markov défini par :

$$\zeta(X) = L - e, \quad e \in \mathcal{N}(0, \Gamma)$$

avec:

- L: le vecteur des observations $(3 \times 1) = (L_1, L_2, L_3)^T$; - X: le vecteur des inconnues $(2 \times 1) = (X_1, X_2)^T$;

- e: le vecteur des erreurs $(3 \times 1) = (e_1, e_2, e_3)^T$ suit la loi normale $\mathcal{N}(0, \Gamma)$ avec E(e) = 0 et $\Gamma = E(ee^T)$ la matrice de dispersion ou variance, on prendra $\Gamma = \sigma_0^2 P^{-1}$, P est la matrice des poids égale à la matrice unité I_3 , σ_0 une constante positive;

- ζ : est une fonction donnée injective d'un ouvert $U\subset\mathbb{R}^2\to\mathbb{R}^3$ définie par :

$$\zeta(X) = \zeta(X_1, X_2) = \begin{pmatrix} \frac{1}{2} \left[(X_1 - a_1)^2 + (X_2 - b_1)^2 \right] \\ \frac{1}{2} \left[(X_1 - a_2)^2 + (X_2 - b_2)^2 \right] \\ (X_1 - a_3)^2 + (X_2 - b_3)^2 \end{pmatrix}$$

On prendra comme composante L_i du vecteur observation la quantité $L_i = \frac{D_{iobserv\acute{e}e}^2}{2}$

1. Montrer que les vecteurs $\frac{\partial \zeta}{\partial X_1}$, $\frac{\partial \zeta}{\partial X_2}$ sont linéairement indépendants en chaque point $X \in U$.

2. Montrer que les fonctions $\frac{\partial^2 \zeta}{\partial X_i \partial X_j}$ sont continues sur U pour $i, j \in \{1, 2\}$.

- 3. On pose : $J = ||L \zeta(X)||^2$. Calculer les coefficients de la matrice $(\frac{\partial^2 J}{\partial X_i \partial X_j})$, $i, j \in \{1, 2\}$.
- 4. Soit la matrice carrée définie par :

$$g(X) = (g_{ij})$$
 avec $g_{ij} = \langle \frac{\partial \zeta(X)}{\partial X_i}, \frac{\partial \zeta(X)}{\partial X_j} \rangle$
$$\begin{cases} i = 1, 2 \\ j = 1, 2 \end{cases}$$

Calculer les coefficients g_{ij} .

5. Introduisons la matrice B définie par :

$$B(X,L) = (B_{ij}) \quad \text{avec} \ \ B_{ij} = g_{ij} - < L - \zeta(X), \\ \frac{\partial^2 \zeta}{\partial X_i \partial X_j} > \quad \left\{ \begin{array}{l} i = 1,2 \\ j = 1,2 \end{array} \right.$$

Calculer les éléments de la matrice B et montrer qu'elle est définie positive.

Deuxième partie Les Corrections

Topographie

Correction 12.1. Appelons C le point central de l'antenne. D'après les données, on obtient par calcul les éléments suivants :

a1. Distance
$$AB = \sqrt{(X_A - X_B)^2 + (Y_A - Y_B)^2} = 795.55 \, m$$
,

a2. Gisement
$$AB = G_{AB} = 100 \, gr + Arctg \frac{Y_A - Y_B}{X_B - X_A} = 100.0000 + 81.4453 = 181.4453 \, gr,$$

a3. Gisement
$$AC = G_{AB} - \widehat{A} = 181.4453 - 73.3333 = 108.1120 \,gr$$
,

a4. Gisement
$$BC = G_{BA} + \widehat{B} = 381.4453 + 96.6667 = 78.1120 \,gr$$
,

a5. Angle
$$\widehat{C} = 200.0000 \, qr - (\widehat{A} + \widehat{B}) = 30.0000 \, qr$$

Correction 12.2. 1. On a :

$$\alpha_{m} = \frac{\sum_{i=1}^{i=4} \alpha_{i}}{4} \Longrightarrow \sigma_{\alpha_{m}}^{2} = \frac{\sum_{i=1}^{i=4} \sigma_{\alpha_{i}}^{2}}{16} = \frac{4\sigma_{\alpha}^{2}}{16} = \frac{\sigma_{\alpha}^{2}}{4} \Longrightarrow$$
$$\sigma_{\alpha_{m}} = \frac{\sigma_{\alpha}}{2} = \frac{12}{2} = 6 \, dmgr$$

2. La distance D est donnée par :

$$tg(\alpha/2) = \frac{l/2}{D} \Longrightarrow D = \frac{l}{2}cotg\left(\frac{\alpha}{2}\right)$$

Calculons la différentielle dD en fonction de $d\alpha$, l la longueur de la stadia est sans erreur et $l=2\,m$:

$$dD = d\left(\frac{l}{2}cotg\frac{\alpha}{2}\right) = -\frac{l}{4}\frac{d\alpha}{\sin^{2}(\alpha/2)} \Longrightarrow$$

$$\sigma_{D}^{2} = \frac{l}{16}\frac{\sigma_{\alpha}^{2}}{\sin^{4}(\alpha/2)} \Longrightarrow \sigma_{D} = \frac{l}{4}\frac{\sigma_{\alpha}}{\sin^{2}(\alpha/2)} = \frac{l}{4}\frac{2\sigma_{\alpha_{m}}}{\sin^{2}(\alpha/2)} = \frac{l}{2}\frac{\sigma_{\alpha_{m}}}{\sin^{2}(\alpha/2)} \Longrightarrow$$

$$\sigma_{D} = \frac{l}{2}\left(1 + cotg^{2}\frac{\alpha_{m}}{2}\right)\sigma_{\alpha_{m}}$$

3. On obtient:

$$\sigma_D = \frac{l}{2} \left(1 + \cot g^2 \frac{\alpha_m}{2} \right) \sigma_{\alpha_m} = \frac{l}{2} \left(1 + \left(\frac{2D}{l} \right)^2 \right) \sigma_{\alpha_m} \implies$$

$$\sigma_D = (1 + 101.53^2) \times 3 \times 10^{-6}.\pi = 0.097 \, m = 9.7 \, cm$$

Astronomie

13.1 Trigonométrie Sphérique

Correction 13.1. On applique la formule fondamentale cosa = cosbcosc + sinbsinccosA, on obtient :

$$\cos\left(\frac{\pi}{2} - \delta\right) = \cos z \cos\left(\frac{\pi}{2} - \varphi\right) + \sin z \sin\left(\frac{\pi}{2} - \varphi\right) \cos Az \Longrightarrow$$

$$\cos Az = \frac{\sin \delta - \cos z \sin \varphi}{\sin z \cos \varphi} \Longrightarrow \boxed{Az = 20^{\circ} 20' 40'' .25}$$
(13.1)

Correction 13.2. On applique la formule fondamentale cosa = cosbcosc + sinbsinccosA, on obtient :

$$cosz = cos\left(\frac{\pi}{2} - \delta\right)cos\left(\frac{\pi}{2} - \varphi\right) + sin\left(\frac{\pi}{2} - \delta\right)sin\left(\frac{\pi}{2} - \varphi\right)cos(-AH) \Longrightarrow$$

$$0 = sin\varphi sin\delta + cos\varphi cos\delta cosAH \Longrightarrow \boxed{cosAH = -tg\varphi tg\delta} \quad (13.2)$$

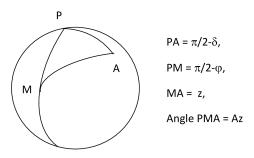


FIGURE 13.1 – Triangle sphérique

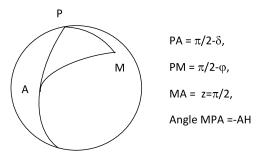


FIGURE 13.2 – Triangle de position

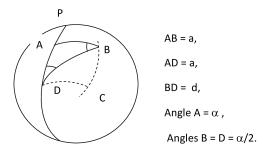


FIGURE 13.3 – Le carré sphérique

Correction 13.3. 1.
$$\alpha = \hat{A} + \hat{B} + \hat{C} = 200.00045 gr = 4.5 dmgr$$

2.
$$\epsilon^{rd}=\frac{\text{aire triangle ABC}}{R^2}$$
 où $R=6\,368\,km$ le rayon moyen de la Terre. D'où :

$$\epsilon^{rd} = \frac{\text{aire triangle ABC}}{R^2} = \frac{AB.AC.sinA}{2R^2} = 5.21654 \times 10^{-6} = \frac{5.21654 \times 2}{\pi} = 3.3 \, dmgr$$

3.

$$f = \alpha - 200.0000 \ 0 \ gr - \epsilon = 200.00045 - 200.0000 \ 0 - 200.0003 \ 3 \Longrightarrow \boxed{f = 1.2 \ dmgr}$$

Correction 13.4. 1. Soit *d* la diagonale liant les sommets B et D. C'est aussi une bissectrice, dans le triangle sphérique ABD, On va appliquer la formule en cotg soit :

$$sinA.cotgB = cotgb.sinc - cosc.cosA$$

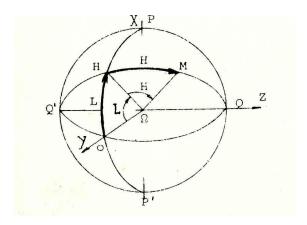


Figure 13.4 – Les coordonnées de Cassini-Soldner

ce qui donne :

$$sin\alpha.cotg\frac{\alpha}{2} = cotga.sina - cosa.cos\alpha \Longrightarrow$$

$$2cos^{2}\frac{\alpha}{2} = cosa - cosa.cos\alpha = cosa.(1 - cos\alpha) = 2cosa.sin^{2}\frac{\alpha}{2} \Longrightarrow$$

$$\boxed{cosa = cotg^{2}\frac{\alpha}{2}}$$
(13.3)

2. La formule des sinus donne :

$$\frac{\sin d}{\sin \alpha} = \frac{\sin a}{\sin \alpha/2} \Longrightarrow \boxed{\sin d = 2\sin a.\cos \frac{\alpha}{2} = 2\cos \frac{\alpha}{2}.\sqrt{1 - \cot g^4 \frac{\alpha}{2}}}$$

Correction 13.5. 1. Le triangle sphérique PMH est rectange en H. On appplique la régle de Neper. Soit :

$$\cos\left(\frac{\pi}{2} - H\right) = \sin\lambda . \sin\left(\frac{\pi}{2} - \varphi\right) \Longrightarrow$$

$$\sin H = \sin\lambda . \cos\varphi$$
(13.4)

On peut utiliser la formule des sinus :

$$\frac{\sin H}{\sin \lambda} = \frac{\sin\left(\frac{\pi}{2} - \varphi\right)}{\sin \pi/2} \Longrightarrow \boxed{\sin H = \sin \lambda . \cos \varphi}$$

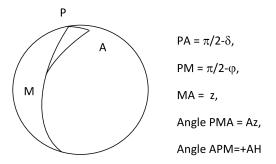


Figure 13.5 – Les éléments du triangle sphérique PAM.

Pour calculer L, On utilise la régle de Neper, d'où:

$$cos\lambda = cotgL.cotg\left(\frac{\pi}{2} - \varphi\right) \Longrightarrow \boxed{tgL = \frac{tg\varphi}{cos\lambda}}$$

2. Inversement, pour calculer φ , On utilise la régle de Neper, d'où :

$$cos\left(\frac{\pi}{2} - \varphi\right) = sinL.sin\left(\frac{\pi}{2} - H\right) \Longrightarrow sin\varphi = sinL.cosH$$

Quant à λ , on applique la formule en cotg soit sinA.cotgB = cotgb.sinc-cosc.cosA ce qui donne :

$$sin\frac{\pi}{2}.cotg\lambda = cotgH.sin\left(\frac{\pi}{2} - L\right) - cos\left(\frac{\pi}{2} - L\right)cos(\pi/2) \Longrightarrow \boxed{tg\lambda = \frac{tgH}{cosL}}$$

Correction 13.6. 1. Les éléments du triangle sphérique PAM sont donnés par la figure (13.5) ci-dessus.

2. L'angle horaire est obtenu à partir de la formule :

$$HSL = AH + \alpha \Longrightarrow AH = HSL - \alpha \Longrightarrow \boxed{AH = 4^h.4241\ 1667 = 4h\ 25mn\ 26.82\ s}$$

3. On applique la formule en cotg soit sinA.cotgB = cotgb.sinc - cosc.cosA. Comme AH est positif et inférieur à π , donc l'astre se trouve à gauche, par suite l'azimut s'écrit sous la forme $Az = 2\pi - Az'$ où Az' est un angle inférieur à π ce qui donne :

$$tgAz' = \frac{sinAH}{cos\varphi tg\delta - cosAHsin\varphi} \Rightarrow$$

$$tg(Az') = tg(2\pi - Az) = tg(\pi - Az) = -tg(Az) \Longrightarrow \boxed{tg(Az) = \frac{sinAH}{cosAHsin\varphi - cos\varphi tg\delta}}$$

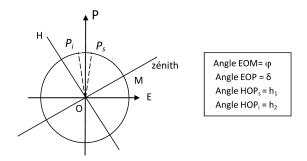


FIGURE 13.6 – Calcul des hauteurs h_1 et h_2 .

- 4. Numériquement, on a $Az = 358^{\circ}49'51.996$ "
- 5. A partir de la figure (13.5), la distance zénithale est donnée par le côté MA. On applique la formule fondamentale cosa = cosbcosc + sinbsinccosA, on obtient :

$$cosz = cos\left(\frac{\pi}{2} - \varphi\right)cos\left(\frac{\pi}{2} - \delta\right) + sin\left(\frac{\pi}{2} - \varphi\right)sin\left(\frac{\pi}{2} - \delta\right)cosAH \Rightarrow$$
$$cosz = sin\varphi sin\delta + cos\varphi cos\delta cosAH \Rightarrow \boxed{z = 51^{\circ}36'17".31}$$

13.2 **ASTRONOMIE DE POSITION**

Correction 13.7. On a les données suivantes :

- $\varphi = 36^{\circ}54' \text{ Nord},$
- $-\delta = +89^{\circ}$.

A partir de la figure (13.6), on obtient :

$$-h_1 = \varphi + \left(\frac{\pi}{2} - \delta\right) = \frac{\pi}{2} + \varphi - \delta \Rightarrow h_1 = 90^\circ + 36^\circ 54' - 89^\circ = 37^\circ 54'.$$

$$-h_2 = \varphi - \left(\frac{\pi}{2} - \delta\right) = \varphi + \delta - \frac{\pi}{2} + \delta \Rightarrow h_2 = 36^\circ 54' + 89^\circ - 90^\circ = 35^\circ 54'.$$

Correction 13.8. On traite le cas : lieu dans l'hémisphère nord.

- 1. Le lieu des étoiles qui sont toujours visibles : à partir de la figure (13.7), les étoiles de déclinaison $\delta = \pi/2 \varphi$ sont toujours visibles au lieu de latitude φ .
- Les étoiles qui ne sont jamais visibles ont pour déclinaisons δ telles que : $-\pi/2 \le \delta \le -(\pi/2 \varphi)$ voir la figure (13.8).

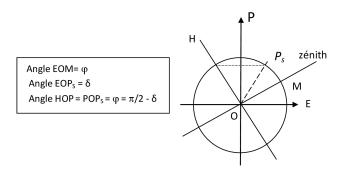


FIGURE 13.7 – Le lieu des étoiles toujours visibles

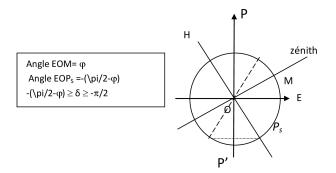


FIGURE 13.8 – Le lieu des étoiles toujours non visibles

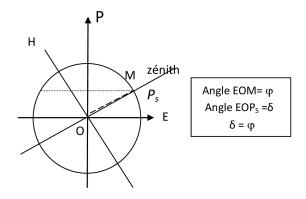


FIGURE 13.9 – La condition pour qu'une étoile culmine au zénith

2. La condition pour qu'une étoile culmine au zénith est donnée par : $\delta = \varphi$, voir la figure (13.9).

3a. Au moment des équinoxes, l'ecliptique coupe l'équateur donc $\delta = 0$, l'orbite du soleil est un grand cercle dans l'équateur et la trace de l'horizon d'un lieu quelconque coupe l'équateur en passant par le centre de la terre, par suite la durée du jour est égale à celle de la nuit, voir la figure (13.10).

3b. En un lieu M à l'équateur $\varphi = 0$. Quelle que soit la date, le soleil a pour déclinaison $-\epsilon \le \delta \le +\epsilon$, $\epsilon = -23^{\circ}27'$, par suite le jour et la nuit sont d'égale durée voir la figure (13.11).

Correction 13.9. 1a. Pour calculer l'heure sidérale locale du lever, on commence par calculer l'angle horaire de l'astre A au lever. Dans ce cas, on considère le triangle sphérique MPA, voir (**Fig. 13.12**). On obtient $z=\pi/2$ lors du lever et on part de la formule :

$$cosz = cos\varphi cos\left(\frac{\pi}{2} - \delta\right) + sin\varphi sin\left(\frac{\pi}{2} - \delta\right) . cosAH \Longrightarrow$$

$$cosz = 0 = cos\varphi sin\delta + sin\varphi cos\delta cosAH \Longrightarrow cosAH = -\frac{tg\delta}{tg\varphi} = -tg\delta \Longrightarrow$$

$$AH = 125^{\circ}.2653\,8968 = 8\,h\,21\,mn\,03.4535\,s$$

Par la formule fondamentale de l'astronomie de position, on a $HSL = AH + \alpha$. D'où $HSL_L = 8 h 21 mn 03.4535 s + 11 h 13 mn = 19 h 33 mn 03.4535 s.$

1b. L'heure sidérale locale du coucher de l'astre A est $HSL_C = AH' + \alpha = -AH + \alpha = +11 h 13 mn - 8 h 21 mn 03.4535 = 2 h 51 mn 56.5465, due à la sy-$

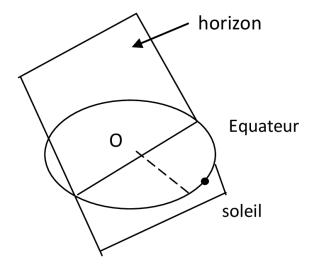


Figure 13.10 – Egalité du jour et de la nuit

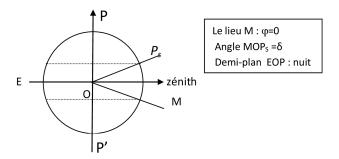


Figure 13.11 – Egalité du jour et de la nuit en tout lieu sur l'équateur

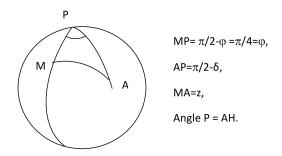


Figure 13.12 – Position de l'astre A lors du lever

métrie.

2a. Nous avons la formule:

$$HSL = HSG_{0hTU} + k.TU + \lambda, \quad k = \frac{366.2422}{265.2422}$$

On obtient alors TU:

$$TU = (HSL - HSG_{0hTU} - \lambda).\frac{365.2422}{366.2422}$$

Numériquement, on a l'heure TU_L du lever au lieu considéré :

$$TU_L = (HSL_L - HSG_{0hTU} - \lambda).\frac{365.2422}{366.2422} \Longrightarrow$$

$$TU_L = (19 h 33 mn 03.4535 s - 11 h 52 mn - 7 h 20 mn). \frac{365.2422}{366.2422} \Longrightarrow TU_L = (21 mn 03.4535 s). \frac{365.2422}{366.2422} = 21 mn 0.0037 s$$

2b. On obtient l'heure TU_C du coucher au lieu considéré :

$$TU_C = (2 h 51 mn 56.5465 s - 11 h 52 mn - 7 h 20 mn). \frac{365.2422}{366.2422} \Longrightarrow TU_C = (7 h 39 mn 56.5465 s). \frac{365.2422}{366.2422} = 7 h 38 mn 41.1960 s$$

Correction 13.10. 1. L'heure sidérale locale HSL est donnée par :

$$HSL = HSG_{0hTU} + k.TU + \lambda, \quad k = \frac{366.2422}{365.2422}$$

Soit:

$$HSL = 20 h 35 mn 28 s + 0 h 20 mn 57 s + 21.\frac{366.2422}{365.2422} \Longrightarrow$$

$$HSL = 20 h 56 mn 25 s + 21 h 03 mn 26.9859 s = 17 h 56 mn 51.9859 s$$

2. L'angle horaire de la galaxie AH est donné par :

$$HSL = AH + \alpha \Longrightarrow AH = HSL - \alpha = 17 h 56 mn 51.9859 s - 0 h 40 mn = 17 h 16 mn 51.9859 s$$

Comme AH > 12 h, on peut écrire $AH = -AH' = -6 h 43 mn 8.0141 s = -100^{\circ}.7833 9209$ avec AH' > 0, la position de la galaxie est représentée dans la figure (13.13).

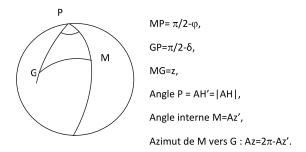


Figure 13.13 – Observation de la galaxie Andromède

3. La distance zénithale de la galaxie à 21 hTU est obtenue par la formule :

$$cosz = cos\left(\frac{\pi}{2} - \varphi\right)cos\left(\frac{\pi}{2} - \delta\right) + sin\left(\frac{\pi}{2} - \varphi\right)sin\left(\frac{\pi}{2} - \delta\right).cosAH' \Longrightarrow$$

$$cosz = sin\varphi sin\delta + cos\varphi cos\delta.cosAH' \Longrightarrow$$

$$cosz = 0.34938580 \Longrightarrow z = 69^{\circ}.55024748$$

4. On calcule l'angle Az' par la formule des sinus :

$$\frac{sinAH'}{sinz} = \frac{sinAz'}{sin\left(\frac{\pi}{2} - \varphi\right)} \Longrightarrow sinAz' = cos\varphi. \frac{sinAH'}{sinz} = 0.7602\,2783 \Longrightarrow Az' = 49^{\circ}.4842\,87$$

On obtient alors Az:

$$Az = 2\pi - Az' = 360^{\circ} - 49^{\circ}.4842\,87 = 310^{\circ}.5157\,13$$

Courbes et Théorie des Surfaces

14.1 Courbes

Correction 14.1. 1. Le vecteur T est défini par $T = \frac{dM}{ds} = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right)^t$. Calculons ds. On obtient facilement:

$$ds^{2} = a^{2}(\sin^{2}t + \cos^{2}t)dt^{2} + b^{2}dt^{2} = (a^{2} + b^{2})dt^{2} \Rightarrow ds = \sqrt{a^{2} + b^{2}}dt, dt > 0$$

d'où:

$$T = \frac{dM}{ds} = \begin{pmatrix} \frac{-a\sin t}{\sqrt{a^2 + b^2}} \\ \frac{a\cos t}{\sqrt{a^2 + b^2}} \\ \frac{b}{\sqrt{a^2 + b^2}} \end{pmatrix}$$

le calcul du vecteur N nécessite le calcul du vecteur dT/ds, on obtient :

$$\frac{dT}{ds} = \frac{dT}{dt}\frac{dt}{ds} = \begin{pmatrix} \frac{-a\cos t}{\sqrt{a^2 + b^2}} \cdot \frac{1}{\sqrt{a^2 + b^2}} \\ \frac{-a\sin t}{\sqrt{a^2 + b^2}} \cdot \frac{1}{\sqrt{a^2 + b^2}} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{-a\cos t}{a^2 + b^2} \\ \frac{-a\sin t}{a^2 + b^2} \\ 0 \end{pmatrix} \Rightarrow \left\| \frac{dT}{ds} \right\| = \frac{a}{a^2 + b^2} \Rightarrow N = \frac{\frac{dT}{ds}}{\left\| \frac{dT}{ds} \right\|}$$

Soit
$$N = \begin{pmatrix} -cost \\ -sint \\ 0 \end{pmatrix}$$
.

Courbes 67

Le vecteur *B* de la binormale est telle que $B = T \wedge N$. D'où :

$$B = \begin{pmatrix} \frac{-a\sin t}{\sqrt{a^2 + b^2}} \\ \frac{a\cos t}{\sqrt{a^2 + b^2}} \\ \frac{b}{\sqrt{a^2 + b^2}} \end{pmatrix} \wedge \begin{pmatrix} -\cos t \\ -\sin t \\ 0 \end{pmatrix} = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} b\sin t \\ -b\cos t \\ a \end{pmatrix}$$

2. La courbure 1/R est donnée par :

$$\frac{1}{R} = \left\| \frac{dT}{ds} \right\| = \frac{a}{a^2 + b^2} \Longrightarrow R = a \left(1 + \frac{b^2}{a^2} \right)$$

3. La torsion $\frac{1}{\tau}$ est telle que $\frac{dB}{ds} = -\frac{1}{\tau}N$. Calculons dB/ds. On obtient facilement :

$$\frac{dB}{ds} = \frac{-b}{a^2 + b^2} \begin{pmatrix} -cost \\ -sint \\ 0 \end{pmatrix} = -\frac{b}{a^2 + b^2} N = -\frac{1}{b\left(1 + \frac{a^2}{b^2}\right)} N \Longrightarrow \tau = \frac{b}{a^2 + b^2}$$

Correction 14.2. Soit la courbe (*C*) définie par les formules :

$$M \begin{cases} x = at^2 \\ y = at^3 \\ z = \frac{9}{16}at^4 \text{ avec } a > 0 \end{cases}$$

1. On prend $t \ge 0 \implies y \ge 0$ ainsi la condition demandée est vérifiée. On a $ds^2 = dx^2 + dy^2 + dz^2$ d'où :

$$\left(\frac{ds}{dt}\right)^{2} = x'^{2} + y'^{2} + z'^{2} = 4a^{2}t^{2} + 9a^{2}t^{4} + \frac{9^{2}}{4^{2}}a^{2}t^{6} = a^{2}t^{2}\left(2 + \frac{9}{4}t^{2}\right)^{2} \Rightarrow$$

$$\frac{ds}{dt} = at\left(2 + \frac{9}{4}t^{2}\right) \quad t \ge 0 \Longrightarrow s = a\int_{0}^{t} (2u + \frac{9}{4}u^{3})du = a\left[u^{2} + \frac{9}{16}u^{4}\right]_{0}^{t} = a\left(t^{2} + \frac{9}{16}t^{4}\right) \Rightarrow$$

$$s = at^{2}\left(1 + \frac{9}{16}t^{2}\right)$$

2. - Le calcul du vecteur T:

$$T = \frac{dM}{ds} = \frac{dM}{dt}\frac{dt}{ds} = \frac{4}{at(8+9t^2)} \begin{pmatrix} 2at \\ 3at^2 \\ \frac{9}{4}at^3 \end{pmatrix} = \frac{1}{8+9t^2} \begin{pmatrix} 8 \\ 12t \\ 9t^2 \end{pmatrix}$$

Courbes 68

- Le calcul du vecteur N. Commençons par calculer le vecteur dT/dt. On obtient avec t > 0, $2t^2 + 8 > 0$:

$$\frac{dT}{dt} = \frac{1}{(9t^2 + 8)^2} \begin{pmatrix} -2^4 \times 3^2 t \\ -2^2 \times 3^3 t^2 + 2^5 \times 3 \end{pmatrix}, \quad \frac{dt}{ds} = \frac{4}{at(9t^2 + 8)} \Longrightarrow
\frac{dT}{ds} = \frac{4}{at(9t^2 + 8)^3} \begin{pmatrix} -2^4 \times 3^2 t \\ -2^2 \times 3^3 t^2 + 2^5 \times 3 \end{pmatrix} \Longrightarrow \left\| \frac{dT}{ds} \right\| = \frac{3 \times 4^2}{at(9t^2 + 8)^2} (14.1)
N = \frac{\frac{dT}{ds}}{\left\| \frac{dT}{ds} \right\|} = \frac{4}{at(9t^2 + 8)^3} \cdot \frac{at(9t^2 + 8)^2}{3 \times 4^2} \begin{pmatrix} -2^4 \times 3^2 t \\ -2^2 \times 3^3 t^2 + 2^5 \times 3 \end{pmatrix} \Longrightarrow
N = \frac{1}{9t^2 + 8} \cdot \begin{pmatrix} -12t \\ -9t^2 + 8 \\ 12t \end{pmatrix}$$

- Le vecteur B de la binormale est telle que $B = T \wedge N$. D'où :

$$B = T \wedge N = \frac{1}{8 + 9t^2} \begin{pmatrix} 8 \\ 12t \\ 9t^2 \end{pmatrix} \wedge \frac{1}{9t^2 + 8} \cdot \begin{pmatrix} -12t \\ -9t^2 + 8 \\ 12t \end{pmatrix} = \frac{1}{9t^2 + 8} \begin{pmatrix} 9t^2 \\ -12t \\ 8 \end{pmatrix}$$

3. Le rayon de courbure R est défini par $\frac{1}{R} = \left\| \frac{dT}{ds} \right\|$. Cette dernière expression est donnée par l'équation (14.1) ci-dessus, d'où :

$$R = \frac{at}{48(9t^2 + 8)^2}$$

Soit O le centre de courbure, ses coordonnées sont données par :

$$OO' = OM + MO' = OM + R.N \Longrightarrow \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} at^2 \\ at^3 \\ \frac{9}{16}at^4 \end{pmatrix} + \frac{at}{48(9t^2 + 8)^3} \cdot \begin{pmatrix} -12t \\ -9t^2 + 8 \\ 12t \end{pmatrix}$$

4. La torsion en M est obtenue par $\frac{dB}{ds} = -\frac{1}{\tau}N$. Calculons dB/ds. On obtient

facilement:

$$B = \frac{1}{9t^2 + 8} \begin{pmatrix} 9t^2 \\ -12t \\ 8 \end{pmatrix} \Longrightarrow \frac{dB}{dt} = \frac{12}{(9t^2 + 8)^2} \begin{pmatrix} 12t \\ 9t^2 - 8 \\ -12t \end{pmatrix} \Longrightarrow$$

$$\frac{dB}{ds} = \frac{dB}{dt} \cdot \frac{dt}{ds} = \frac{4}{at(9t^2 + 8)} \cdot \frac{12}{(9t^2 + 8)^2} \begin{pmatrix} 12t \\ 9t^2 - 8 \\ -12t \end{pmatrix} = \frac{-48}{at(9t^2 + 8)^3} \cdot \begin{pmatrix} -12t \\ -9t^2 + 8 \end{pmatrix} \Longrightarrow$$

$$\frac{dB}{dt} = -\frac{1}{at(9t^2 + 8)^2} \cdot N \Longrightarrow \tau = \frac{at(9t^2 + 8)^2}{48}$$

14.2 Théorie des surfaces

Correction 14.3. Soit (Γ) la surface paramétrée par (u,v) dans \mathbb{R}^2 telle que :

$$M(u,v) \begin{cases} X = u(1 - u^2)cosv \\ Y = u(1 - u^2)sinv \\ Z = 1 - u^2 \end{cases}$$

1. Calculons les différentielles dX, dY et dZ, d'où :

$$dM \begin{cases} dX = (1 - 3u^2)cosv.du - u(1 - u^2)sinv.dv \\ dY = (1 - 3u^2)sinv.du + u(1 - u^2)cosv.dv \implies ds^2 = dX^2 + dY^2 + dZ^2 \Longrightarrow dX = -2u.du \end{cases}$$

$$ds^{2} = \left[(1 - 3u^{2})^{2} + 4u^{2} \right] du^{2} + u^{2} (1 - u^{2})^{2} dv^{2} \Longrightarrow ds^{2} = (9u^{4} - 2u^{2} + 1) du^{2} + u^{2} (1 - u^{2})^{2} dv^{2}$$

2. On a $u^2 = 1 - Z$ et $X^2 + Y^2 = u^2(1 - u^2)^2$ d'où : $X^2 + Y^2 = (1 - Z)Z^2$. Donc la surface (Γ) est une surface de troisième degré.

Correction 14.4. Soit la surface d'Enneper :

$$M(u,v) \begin{cases} X = u - \frac{u^3}{3} + uv^2 \\ Y = v - \frac{v^3}{3} + vu^2 \\ Z = u^2 - v^2 \end{cases}$$

1. Calculons les vecteurs M'_u , M'_v :

$$M'_{u} \begin{cases} 1 - u^{2} + v^{2} \\ 2uv \\ 2u \end{cases}, \quad M'_{v} \begin{cases} 2uv \\ 1 - v^{2} + u^{2} \\ -2v \end{cases}$$

On a:

$$ds^{2} = dM.dM = (M'_{u}du + M'_{v}dv).(M'_{u}du + M'_{v}dv) = M'_{u}.M'_{u}du^{2} + 2M'_{u}.M'_{v}dudv + M'_{v}.M'_{v}dv^{2}$$

Par suite:

$$\begin{split} M'_u.M'_u &= \|M'_u\|^2 = (1-u^2+v^2)^2 + 4u^2v^2 + 4u^2 = (1+u^4+v^4-2u^2+2v^2-2u^2v^2) + 4u^2v^2 + 4u^2 \\ M'_u.M'_u &= 1+u^4+v^4+2u^2+2v^2+2u^2v^2 = (1+u^2+v^2)^2 \\ M'_v.M'_v &= \|M'_v\|^2 = 4u^2v^2 + (1+u^2-v^2)^2 + 4v^2 = 4u^2v^2 + (1+u^4+v^4+2u^2-2v^2-2u^2v^2) + 4v^2 \\ M'_v.M'_v &= 1+u^4+v^4+2^u2+2v^2+2u^2v^2 = (1+u^2+v^2)^2 \\ M'_u.M'_v &= 2uv.(1-u^2+v^2) + 2uv(1-v^2+u^2) - 4uv = 2uv(1+1) - 4uv \Longrightarrow \\ M'_u.M'_v &= 4uv - 4uv = 0 \Longrightarrow M'_u\bot M'v \end{split}$$

On a obtenu : $ds^2 = (1 + u^2 + v^2)^2 (du^2 + dv^2)$ la première forme fondamentale, par suite $E = G = (1 + u^2 + v^2)^2$ et F = 0.

2. Posons $\mathcal{N} = M'_u \wedge M'_v$ et $n = \frac{\mathcal{N}}{\|\mathcal{N}\|}$ donc n est un vecteur unitaire normal à la surface d'Enneper. On obtient alors :

3. D'après le cours de géodésie (A. Ben Hadj Salem, 2017), la courbure moyenne *H* en un point d'une surface est donnée par la formule suivante :

$$H = \text{Trace de la matrice } g^{-1}.\Phi$$

où:

$$g = \begin{pmatrix} E & F \\ F & G \end{pmatrix}, \quad \varPhi = \begin{pmatrix} L & M \\ M & N \end{pmatrix}$$

avec L, M, N sont les coefficients de la deuxième forme fondamentale $Ldu^2 + 2Mdudv + Ndv^2$. On obtient :

$$g^{-1}.\varPhi = \frac{1}{E}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\begin{pmatrix} L & M \\ M & N \end{pmatrix} = \frac{1}{E}\begin{pmatrix} L & M \\ M & N \end{pmatrix} \Longrightarrow H = \frac{L+N}{E}$$

Calculons maintenant L et N:

$$M_{uu}^{\prime\prime} \left\{ \begin{array}{l} -2u \\ 2v \\ 2 \end{array} \right., \quad M_{vv}^{\prime\prime} \left\{ \begin{array}{l} 2u \\ -2v \\ -2 \end{array} \right.$$

$$L = M_{uu}^{"}.n = \frac{2u^2 + 2v^2 + 2}{1 + u^2 + v^2} = +2$$

$$N = M_{vv}^{"}.n = \frac{-2u^2 - 2v^2 - 2}{1 + u^2 + v^2} = -2 \Longrightarrow$$

 $H = \frac{0}{(1 + u^2 + v^2)^2} = 0$ donc la courbure moyenne est nulle en tout point.

Correction 14.5. 1. La métrique de la surface est donnée par :

$$ds^2 = A^2 du^2 + B^2 dv^2$$
, $A = A(u, v)$, $B = B(u, v)$

qu'on peut écrire $ds^2 = Edu^2 + 2Fdudv + Gdv^2$ avec $E = A^2$, $G = B^2$ et F = 0. Donc les courbes coordonnées u = constante et v = constante sont orthogonales. On écrit le déplacement infinitésimal d'un point M sous la forme $dM = Adu.e_1 + Bdv.e_2$ où (e_1, e_2) est une base orthonormée du plan tangent au point M ce qui donne $ds^2 = A^2du^2 + Bdv^2$. Introduisons la notation des formes différentielles, on obtient :

$$\omega_1 = Adu, \ \omega_2 = Bdv \Longrightarrow \omega_1 \wedge \omega_2 = ABdu \wedge dv$$

où ∧ désigne le produit extérieur des formes. Par suite :

$$d\omega_{1} = d(A.du) = dA \wedge du = \left(\frac{\partial A}{\partial u}du + \frac{\partial A}{\partial v}dv\right) \wedge du = \frac{\partial A}{\partial u}du \wedge du + \frac{\partial A}{\partial v}dv \wedge du = -\frac{\partial A}{\partial v}du \wedge dv$$
$$d\omega_{1} = -\frac{\partial A}{\partial v}du \wedge dv$$
$$d\omega_{2} = d(B.dv) = dB \wedge dv = \frac{\partial B}{\partial u}du \wedge dv$$

Cependant, selon le théorème fondamental de la géométrie riemannienne locale, il existe une forme différentielle unique ω_{12} définie dans le plan tangent du point qui satisfait les équations (S.S Chern, 1985; H. Cartan, 1973) :

$$d\omega_1 = \omega_{12} \wedge \omega_2 \tag{14.2}$$

$$d\omega_2 = \omega_1 \wedge \omega_{12} \tag{14.3}$$

et
$$d\omega_{12} = -K\omega_1 \wedge \omega_2$$
 (14.4)

avec K la courbure totale ou la courbure de Gauss au point M. Ecrivons :

$$\omega_{12} = \lambda_1 \omega_1 + \lambda_2 \omega_2$$

De l'équation(14.2), on obtient :

$$\omega_{12} \wedge \omega_2 = d\omega_1 \Longrightarrow (\lambda_1 \omega_1 + \lambda_2 \omega_2) \wedge \omega_2 = \lambda_1 \omega_1 \wedge \omega_2 = -\frac{\partial A}{\partial v} du \wedge dv \Longrightarrow$$
$$\lambda_1 A B . du \wedge dv = -\frac{\partial A}{\partial v} du \wedge dv \Longrightarrow \lambda_1 = -\frac{1}{A B} \frac{\partial A}{\partial v}$$

De l'équation(14.3), on obtient :

$$\omega_{1} \wedge \omega_{12} = d\omega_{2} \Longrightarrow \omega_{1} \wedge (\lambda_{1}\omega_{1} + \lambda_{2}\omega_{2}) = \lambda_{2}\omega_{1} \wedge \omega_{2} = d\omega_{2} = \frac{\partial B}{\partial u}du \wedge dv \Longrightarrow$$
$$\lambda_{2}AB.du \wedge dv = \frac{\partial B}{\partial u}du \wedge dv \Longrightarrow \lambda_{2} = \frac{1}{AB}\frac{\partial B}{\partial u}$$

On a obtenu ω_{12} :

$$\omega_{12} = \lambda_1 \omega_1 + \lambda_2 \omega_2 = -\frac{1}{AB} \frac{\partial A}{\partial v} \omega_1 + \frac{1}{AB} \frac{\partial B}{\partial u} \omega_2 \Longrightarrow$$

$$\omega_{12} = -\frac{1}{AB} \frac{\partial A}{\partial v} A du + \frac{1}{AB} \frac{\partial B}{\partial u} B dv = -\frac{A'_v}{B} du + \frac{B'_u}{A} dv$$

Calculons $d\omega_{12}$ et utilisant l'équation (14.4) :

$$d\omega_{12} = -\left(\frac{A'_v}{B}\right)_v dv \wedge du + \left(\frac{B'_u}{A}\right)_u du \wedge dv = \left[\left(\frac{A'_v}{B}\right)_v + \left(\frac{B'_u}{A}\right)_u\right] du \wedge dv = -K.AB.du \wedge dv$$

D'où:

$$K = -\frac{1}{AB} \left[\left(\frac{A'_v}{B} \right)_v + \left(\frac{B'_u}{A} \right)_u \right]$$

C.Q.F.D

Correction 14.6. On définit une surface (S) par les équations :

$$M(u,v) \left\{ \begin{array}{l} X = u^2 + v \\ Y = u + v^2 \\ Z = uv \end{array} \right.$$

1. On obtient les composantes des vecteurs OM'_u et OM'_v :

$$M'_{u} \left\{ \begin{array}{l} 2u \\ 1 \\ v \end{array} \right., \quad M'_{v} \left\{ \begin{array}{l} 1 \\ 2v \\ u \end{array} \right.$$

2. Calculons les coefficients E, F, G de la première forme fondamentale de la surface (S):

$$\begin{cases} E = ||M'_u||^2 = 4u^2 + v^2 + 1 \\ F = M'_u \cdot M'_v = 2(u+v) + uv \\ G = ||M'_v||^2 = 4v^2 + u^2 + 1 \end{cases}$$

3. L'expression de ds^2 est :

$$ds^2 = Edu^2 + 2Fdudv + Gdv^2 = (4u^2 + v^2 + 1)du^2 + 2(2(u+v) + uv)dudv + (4v^2 + u^2 + 1)dv^2$$

- 4. Les coordonnées (u, v) ne sont pas orthogonales car $F \neq 0$ et non symétriques car $E \neq G$
- 5. Un vecteur normal de (S) est donné par $M'_u \wedge M'_v$:

$$\begin{pmatrix} 2u \\ 1 \\ v \end{pmatrix} \land \begin{pmatrix} 1 \\ 2v \\ u \end{pmatrix} = \begin{pmatrix} u - 2v^2 \\ v - 2u^2 \\ 4uv - 1 \end{pmatrix}$$

Correction 14.7. On définit une surface (Σ) par les équations :

$$M(u,v) \begin{cases} X = a.cosu.cosv \\ Y = a.cosu.sinv \\ Z = b.sinu \end{cases}$$

avec a, b deux constantes positives.

1. Les vecteurs OM'_{u} et OM'_{v} sont donnés comme suit :

$$M'_{u}$$

$$\begin{cases} -asinucosv \\ -asinusinv \\ bcosu \end{cases}, \quad M'_{v}$$

$$\begin{cases} -acosusinv \\ acosucosv \\ 0 \end{cases}$$

2. Les coefficients E, F, G de la première forme fondamentale de la surface (Σ) :

$$\left\{ \begin{array}{l} E = ||M_u'||^2 = a^2 sin^2 u cos^2 v + a^2 sin^2 u sin^2 v + b^2 cos^2 u = a^2 sin^2 u + b^2 cos^2 u \\ F = M_u'.M_v' = 0 \\ G = ||M_v'||^2 = a^2 cos^2 u sin^2 v + a^2 cos^2 u cos^2 v = a^2 cos^2 u \end{array} \right.$$

- 3. Par suite : $ds^2 = Edu^2 + Gdv^2 = (a^2sin^2u + b^2cos^2u)du^2 + a^2cos^2udv^2$.
- 4. Les coordonnées (u, v) sont orthogonales car F = 0 mais $E \neq G$ par suite non symétriques.
- 5. Soit \mathcal{N} vecteur normal en un point de (Σ) .

$$\mathcal{N} = \begin{vmatrix} -asinucosv \\ -asinusinv \\ bcosu \end{vmatrix} \wedge \begin{vmatrix} -acosusinv \\ acosucosv \\ 0 \end{vmatrix} = \begin{vmatrix} -abcos^2ucosv \\ -abcos^2usinv \\ -a^2sinucosu \end{vmatrix} \Longrightarrow ||\mathcal{N}||^2 = a^2cos^2u(a^2sin^2u + b^2sin^2u)$$

Par suite on obtient le vecteur unitaire normal *n* donné par :

$$n = \frac{\mathcal{N}}{\|N\|} = \frac{1}{|\cos u|\sqrt{a^2\sin^2 u + b^2\sin^2 u}} \begin{vmatrix} -b\cos^2 u\cos v \\ -b\cos^2 u\sin v \\ -a\sin u\cos u \end{vmatrix} = \frac{1}{\epsilon\sqrt{a^2\sin^2 u + b^2\cos^2 u}} \begin{vmatrix} -b\cos u\cos v \\ -b\cos u\sin v \\ -a\sin u\cos u \end{vmatrix}$$
$$-\frac{b\cos u\cos v}{\epsilon - a\sin u\cos u}$$
$$\epsilon = 1 \text{ si } \cos u > 0, \epsilon = -1 \text{ si } \cos u < 0$$

6. Calculons ci-dessous les vecteurs OM''_{uu} , OM''_{uv} , OM''_{vv} :

$$M_{uu}^{"} = \begin{vmatrix} -acosucosv \\ -acosusinv \\ -bsinu \end{vmatrix} M_{uv}^{"} = \begin{vmatrix} asinusinv \\ -asinucosv \\ 0 \end{vmatrix} - \frac{acosucosv}{acosusinv}$$

7. On pose:

$$L = n.OM''_{uu}, \quad M = n.OM''_{uv}, \quad N = n.OM''_{vv}$$

Calculons ces derniers coefficients:

$$L = \frac{1}{\epsilon \sqrt{a^2 \sin^2 u + b^2 \cos^2 u}}.ab \quad M = 0, \quad N = \frac{1}{\epsilon \sqrt{a^2 \sin^2 u + b^2 \cos^2 u}}.ab\cos^2 u$$

Correction 14.8. On considère la surface (Γ) définie par les équations :

$$M(u,v) \begin{cases} X = sinu.cosv \\ Y = sinu.sinv \\ Z = cosu + Logtg\frac{u}{2} + \psi(v) \end{cases}$$

avec $\psi(v)$ est une fonction définie de classe C^1 de v.

- 1. Le domaine de définition de la surface (Γ) : $(u,v) \in]0, \pi[\times \mathbb{R}, \text{ ainsi } tg(u/2) > 0.$
- 2. Fixons $v = v_0 = constante$, on obtient $X = cosv_0.sinu$, $Y = sinv_0sinu$, d'où:

$$\frac{Y}{X} = tgv_0 \Longrightarrow Xtgv_0 - Y = 0$$

C'est l'équation d'un plan dans \mathbb{R}^3 . Les courbes coordonnées v = constante constituent une famille de courbes planes de (Γ) appartenant au plan $Xtgv_0 - Y = 0$. Ce dernier est perpendiculaire au vecteur $w = (tgv_0, -1, 0)^T$, le vecteur tangent à la courbe coordonnée u est $\tau = (cosucosv_0, cosusinv_0, \frac{cos^2u}{sinu})^T$. Le produit scalaire de $w.\tau = tgv_0.cosucosv_0 - cosusinv_0 + 0 = 0$, par suite, le plan coupe (Γ) sous un angle constant égal à $\pi/2$.

3. Calculons les composantes des vecteurs OM'_{μ} et OM'_{ν} .

$$M'_{u}$$
 $\begin{cases} cosucosv \\ cosusinv \\ \frac{cos^{2}u}{sinu} \end{cases}$, M'_{v} $\begin{cases} -sinusinv \\ sinucosv \\ \psi'(v) \end{cases}$

4. Calculons les coefficients E, F, G de la première forme fondamentale de la surface (Γ) .

$$\begin{cases} E = ||M'_u||^2 = \cos^2 u + \frac{\cos^4 u}{\sin^2 u} = \frac{1}{tg^2 u}. \\ F = M'_u.M'_v = \frac{\psi'(v).\cos^2 u}{\sin u}. \\ G = ||M'_v||^2 = \sin^2 u + \psi'^2(v). \end{cases}$$

5. D'où l'expression de ds^2 :

$$ds^{2} = \frac{1}{tg^{2}u}du^{2} + 2\frac{\psi'(v).cos^{2}u}{sinu}dudv + (sin^{2}u + \psi'^{2}(v))dv^{2}$$

6. Les coordonnées (u, v) ne sont pas orthogonales $(F \neq 0)$ et non symétriques $(E \neq G)$.

7. On suppose pour la suite que $\psi(v) = 0$. Soit \mathcal{N} vecteur normal en un point de (Γ) .

$$\mathcal{N} = \begin{vmatrix} cosucosv \\ cosusinv \\ \frac{cos^2u}{sinu} \end{vmatrix} \wedge \begin{vmatrix} -sinusinv \\ sinucosv \\ 0 \end{vmatrix} = \begin{vmatrix} -cos^2ucosv \\ -cos^2usinv \\ sinucosu \end{vmatrix} \Longrightarrow ||\mathcal{N}||^2 = cos^2u \Longrightarrow ||\mathcal{N}|| = cosu > 0, \ u \in]0, \pi[$$

Par suite on obtient le vecteur unitaire normal *n* donné par :

$$n = \frac{\mathcal{N}}{\|\mathcal{N}\|} = \begin{vmatrix} -cosucosv \\ -cosusinv \\ sinu \end{vmatrix}$$

8. Calculons les vecteurs OM''_{uu} , OM''_{uv} , OM''_{uv}

$$M_{uu}^{"} \begin{cases} -sinucosv \\ -sinusinv \\ \frac{cosu(cos^{2}u - 2)}{sin^{2}u} \end{cases}, \quad M_{uv}^{"} \begin{cases} -cosusinv \\ cosucosv \\ 0 \end{cases} \begin{cases} -sinucosv \\ -sinusinv \\ 0 \end{cases}$$

9. On pose : $L = n.OM''_{uu}$, $M = n.OM''_{uv}$, $N = n.OM''_{vv}$. Calculons les coefficients L, M et N, on obtient :

$$L = \mathbf{n.OM}_{uu}^{"} = \frac{-\cos u}{\sin u}, \quad M = \mathbf{n.OM}_{uv}^{"} = 0, \quad N = \mathbf{n.OM}_{vv}^{"} = \sin u \cos u$$

10. La courbure totale *K* est donnée par :

$$K = \frac{L.N - M^2}{E.G. - F^2} = \frac{L.N}{E.G} = \frac{\frac{-cosu}{sinu}.sinucosu}{\frac{1}{tq^2u}.sin^2u} = -1$$

H La courbure moyenne est donnée par : $H = Trace(g^{-1}.\Phi)$. Il s'ensuit :

$$g = \begin{pmatrix} \cot g^2 u & 0 \\ 0 & \sin^2 u \end{pmatrix} \Rightarrow g^{-1} = \begin{pmatrix} tg^2 u & 0 \\ 0 & \frac{1}{\sin^2 u} \end{pmatrix}, \ \Phi = \begin{pmatrix} -\cot g u & 0 \\ 0 & \sin u \cos u \end{pmatrix} \Rightarrow$$
$$g^{-1}.\Phi = \begin{pmatrix} -tg u & 0 \\ 0 & \frac{1}{tg u} \end{pmatrix} \Rightarrow H = \frac{1}{tg u} - tg u$$

Correction 14.9. Soit la surface (Γ) définie paramétriquement par :

$$M(u,v) \begin{cases} X = thu.cosv \\ Y = thu.sinv \\ Z = \frac{1}{chu} + Logth\frac{u}{2} \end{cases}$$

avec *chu* et *thu* sont respectivement le cosinus et la tangente hyperboliques définies par :

$$chu = \frac{e^{u} + e^{-u}}{2}, \quad thu = \frac{e^{u} + e^{-u}}{e^{u} - e^{-u}}$$

- 1. Le domaine de définition de la surface (Γ) est $u \in]0, +\infty[$ tel que u > 0.
- 2. Calculons les composantes des vecteurs OM'_u et OM'_v . On rappelle que $\frac{dthu}{du}$ =

$$1 - th^2 u = \frac{1}{ch^2 u}.$$

$$M_u' \left\{ egin{array}{l} rac{cosv}{ch^2u} \\ rac{sinv}{ch^2u} & , & M_v' \left\{ egin{array}{l} -thusinv \\ thucosv \\ 0 \end{array}
ight.$$

3. Le calcul des coefficients E, F, G de la première forme fondamentale de la surface (Γ) donne :

$$\begin{cases} E = ||M'_u||^2 = \frac{1}{ch^2 u s h^2 u} \\ F = M'_u M'_v = 0 \\ G = ||M'_v||^2 = th^2 u \end{cases}$$

4. D'où l'expression de ds^2 :

$$ds^2 = \frac{1}{ch^2 u s h^2 u} du^2 + th^2 u dv^2$$

- 5. Les coordonnées (u, v) sont orthogonales car F = 0 mais non symétriques $E \neq G$.
- 6. Soit \mathcal{N} un vecteur normal en un point M de (Γ) . On a :

$$\mathcal{N} = \begin{vmatrix} \frac{\cos v}{ch^2 u} & \\ \frac{\sin v}{ch^2 u} & \\ \frac{1}{shuch^2 u} & \\ \end{vmatrix} \xrightarrow{-thusinv} \begin{vmatrix} -thusinv \\ thucosv \\ 0 & \\ \end{vmatrix} = \frac{-\cos v}{ch^3 u} \Rightarrow ||\mathcal{N}||^2 = \frac{1}{ch^4 u} \Rightarrow ||\mathcal{N}|| = \frac{1}{ch^2 u}$$

D'où n le vecteur unitaire normal au point M:

$$n = \begin{vmatrix} \frac{-\cos v}{chu} \\ \frac{-\sin v}{chu} \\ \frac{\sin v}{chu} \end{vmatrix}$$

7. Calculons les vecteurs :

$$OM''_{uu}$$
, OM''_{uv} , OM''_{vv}

$$M'_{uu} \begin{cases} \frac{-2shucosv}{ch^{3}u} \\ \frac{-2shusinv}{ch^{3}u} \\ -\frac{3ch^{2}u - 2}{shu^{2}ch^{3}u} \end{cases}, M'_{uv} \begin{cases} \frac{-sinv}{ch^{2}u} \\ \frac{cosv}{ch^{2}u} \\ 0 \end{cases}, M'_{vv} \begin{cases} -thucosv \\ -thusinv \\ 0 \end{cases}$$

On pose:

$$L = n.OM''_{uu}, \quad M = n.OM''_{uv}, \quad N = n.OM''_{vv}$$

8. Calculons les coefficients L, M et N, on obtient :

$$L = \frac{-1}{shuchu^2}, \quad M = 0, \quad N = \frac{shu}{ch^2u}$$

9. On commence par *K* la courbure totale :

$$K = \frac{LN - M^2}{EG - F^2} = \frac{L.N}{E.G} = -1$$

H La courbure moyenne est donnée par : $H = Trace(g^{-1}.\Phi)$. Il s'ensuit :

$$g = \begin{pmatrix} \frac{1}{ch^2 u s h^2 u} & 0\\ 0 & t h^2 u \end{pmatrix} \Rightarrow g^{-1} = \begin{pmatrix} ch^2 u s h^2 u & 0\\ 0 & \frac{ch^2 u}{s h^2 u} \end{pmatrix}, \ \Phi = \begin{pmatrix} -\frac{1}{ch^2 u s h u} & 0\\ 0 & \frac{s h u}{c h^2 u} \end{pmatrix} \Rightarrow$$
$$g^{-1}.\Phi = \begin{pmatrix} -s h u & 0\\ 0 & \frac{1}{s h u} \end{pmatrix} \Rightarrow H = \frac{1}{s h u} - s h u$$

Correction 14.10. 1a. La surface est paramétrée par :

$$M = \begin{vmatrix} x \\ y \\ f(x, y) \end{vmatrix}$$

On obtient les éléments suivants :

$$M'_{x} = \begin{vmatrix} 1 \\ 0 \\ f'_{x} \end{vmatrix}, \quad M'_{y} = \begin{vmatrix} 0 \\ 1 \\ f'_{y} \end{vmatrix}$$

$$E = M'_{x}.M'_{x} = ||M'_{x}||^{2} = 1 + f'^{2}_{x}, \quad F = M'_{x}.M'_{y} = f'_{x}f'_{y}, \quad G = M'_{y}.M'_{y} = ||M'_{y}||^{2} = 1 + f'^{2}_{y}$$

$$\mathcal{N} = M'_{x} \wedge M'_{y} = \begin{vmatrix} 1 \\ 0 \\ f'_{x} \end{vmatrix} \wedge \begin{vmatrix} 0 \\ 1 \\ f'_{y} \end{vmatrix} = \begin{vmatrix} -f'_{x} \\ -f'_{y} \Rightarrow ||\mathcal{N}||^{2} = 1 + f'^{2}_{x} + f'^{2}_{y} \Rightarrow$$

$$q = ||\mathcal{N}|| = \sqrt{1 + f'^{2}_{x} + f'^{2}_{y}} \Rightarrow n = \mathcal{N}/q = \frac{1}{q} \begin{vmatrix} -f'_{x} \\ -f'_{y} \\ 1 \end{vmatrix}$$

$$M''_{xx} = \begin{vmatrix} 0 \\ 0 \\ f''_{xx} \end{vmatrix}, \quad M''_{xy} = \begin{vmatrix} 0 \\ 0 \\ f''_{xy} \end{vmatrix}, \quad M''_{yy} = \begin{vmatrix} 0 \\ 0 \\ f''_{yy} \end{vmatrix}$$

$$L = n.M''_{xx} = \frac{f''_{xx}}{q}, \quad M = n.M''_{xy} = \frac{f''_{xy}}{q} \quad N = n.M''_{yy} = \frac{f''_{yy}}{q}$$

1b. On commence par *K* la courbure totale :

$$K = \frac{LN - M^2}{EG - F^2} = \frac{\frac{f_{xx}''}{q} \cdot \frac{f_{yy}''}{q} - \left(\frac{f_{xy}''}{q}\right)^2}{(1 + f_x'^2)(1 + f_y'^2) - (f_x'f_y')^2} = \frac{f_{xx}''f_{yy}'' - (f_{xy}'')^2}{q^2(1 + f_x'^2 + f_y'^2)} = \frac{f_{xx}''f_{yy}'' - (f_{xy}'')^2}{(1 + f_x'^2 + f_y'^2)^2}$$

H La courbure moyenne est donnée par : $H = Trace(g^{-1}.\Phi)$. Il s'ensuit :

$$g = \begin{pmatrix} 1 + f_{x}'^{2} & f_{x}'f_{y}' \\ f_{x}'f_{y}' & 1 + f_{y}'^{2} \end{pmatrix} \Rightarrow g^{-1} = \frac{1}{1 + f_{x}'^{2} + f_{y}'^{2}} \begin{pmatrix} 1 + f_{y}'^{2} & -f_{x}'f_{y}' \\ -f_{x}'f_{y}' & 1 + f_{x}'^{2} \end{pmatrix}, \quad \Phi = \frac{1}{q} \begin{pmatrix} f_{xx}'' & f_{xy}'' \\ f_{xy}'' & f_{yy}'' \end{pmatrix} \Rightarrow$$

$$g^{-1}.\Phi = \frac{1}{q(1 + f_{x}'^{2} + f_{y}'^{2})} \begin{pmatrix} f_{xx}''(1 + f_{y}'^{2}) - f_{x}'f_{y}'f_{xy}'' & ---- \\ ---- & (1 + f_{x}'^{2})f_{yy}'' - f_{x}'f_{y}'f_{xy}'' \end{pmatrix} \Rightarrow$$

$$H = Trace(g^{-1}.\Phi) = \frac{(1 + f_{x}'^{2})f_{yy}'' - 2f_{x}'f_{y}'f_{xy}'' + (1 + f_{y}'^{2})f_{xx}''}{(1 + f_{x}'^{2} + f_{y}'^{2})^{3/2}}$$

Correction 14.11. Soit (Σ) une surface de \mathbb{R}^3 paramétrée par OM(u,v) telle que sa première forme fondamentale s'écrit : $ds^2 = Edu^2 + 2Fdudv + Gdv^2$

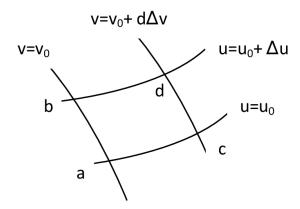


Figure 14.1 – Le quadrilatère infinitésimal des courbes coordonnées

1. Les conditions i),ii) et iii) sont équivalentes :

i) - On suppose que $\frac{\partial E}{\partial v} = \frac{\partial G}{\partial u} = 0$. On rappelle : soit A un vecteur et $\alpha = A.A$, alors $d\alpha = dA.A + A.dA = 2A.dA$. Comme $E = OM'_u.OM'_u$, on obtient $dE = 2OM'_u.dOM'_u = 2OM'_u.(OM''_udu + OM''_udv) = 2OM'_u.OM''_udu + 2OM'_u.OM''_udv$ soit $\frac{\partial E}{\partial v} = 2OM'_u.OM''_uv = 0 \Rightarrow OM'_u \perp OM''_uv$ ou $\frac{\partial OM}{\partial u} \perp \frac{\partial^2 OM}{\partial u\partial v}$.

Utilisant la même méthode pour G, on otient que $\frac{\partial G}{\partial u} = 0$ implique que $\frac{\partial OM}{\partial v} \perp \frac{\partial^2 OM}{\partial u \partial v}$. Les vecteurs OM'_u , OM'_v sont une base du plan tangent en M, par suite le vecteur $\frac{\partial^2 OM}{\partial x^2}$ est normal au plan tangent donc parallèle à tout vecteur normal, et en particulier le vecteur $M'_u \wedge M'_v$. C'est la condition ii).

ii) - Le vecteur $\frac{\partial^2 OM}{\partial u \partial v}$ est parallèle au vecteur normal N à la surface. D'après la condition i), E dépend de u et G dépend de v. Soit l'arc ab sur la figure (14.1). Sa longueur est donnée par :

$$L_{ab} = \int_{u_0}^{u_0 + \Delta u} \sqrt{E(t)} dt = \int_{u_0}^{u_0 + \Delta u} ds = s(b) - s(a) = ba$$

Pour l'arc cd, la longueur de l'arc cd est exprimée par la même formule vue que Eest fonction de u seulement. On a donc dc = ba. C'est la condition iii).

iii) - On suppose que les côtés opposés de tout quadrilatère curviligne formés par les courbes coordonnées (u, v) ont même longueurs. La première forme fondamentale donne:

$$ds^2 = E.du^2 + 2Fdudv + Gdv^2$$

Dans notre quadrilatère acdb, la longueur de l'arc ab dépend que de u, de même l'arc cd, par suite le calcul des longueurs des arcs ab et cd dépendent que de la variable u et on a : $dv = 0 \Longrightarrow ds^2 = E.du^2 \Longrightarrow ds = \sqrt{E(u)}du$ et $\frac{\partial E}{\partial v} = 0$. De la même manière, on obtient $\frac{\partial G}{\partial u} = 0$. C'est la condition i).

2. Quand ces conditions sont satisfaites, on dit que les courbes coordonnées de (Σ) forment un réseau de Tchebychev. 1

Posons:

$$d\tilde{u} = \sqrt{E}du, \quad d\tilde{v} = \sqrt{G}dv \Longrightarrow \frac{\partial M}{\partial u} = \frac{\partial M}{\partial \tilde{u}} \frac{d\tilde{u}}{du} = \sqrt{E} \frac{\partial M}{\partial \tilde{u}} \Longrightarrow \frac{\partial M}{\partial v} = \sqrt{G} \frac{\partial M}{\partial \tilde{v}} \Longrightarrow F = OM'_{u}.OM'_{v} = \sqrt{E}GOM'_{\tilde{v}}.OM'_{\tilde{v}} = \sqrt{E}.G\tilde{F} \Longrightarrow F dudv = \tilde{F}d\tilde{u}d\tilde{v}$$

Par suite ds^2 s'écrit :

$$ds^2 = d\tilde{u}^2 + 2\tilde{F}d\tilde{u}d\tilde{v} + d\tilde{v}^2$$

De l'unicité de l'écriture de la première forme fondamentale, on a $\tilde{E}=\tilde{G}=1$, il s'insuit $\tilde{F}=OM'_{\tilde{u}}.OM'_{\tilde{u}}=\|OM'_{\tilde{u}}\|.\|OM'_{\tilde{u}}\|cos\theta=1\times 1.cos\theta$ ce qui donne :

$$ds^2 = d\tilde{u}^2 + 2\cos\theta d\tilde{u}d\tilde{v} + d\tilde{v}^2$$

où θ est l'angle entre les vecteurs $OM'_{\tilde{u}}$ et $OM'_{\tilde{v}}$. Or $OM'_{\tilde{u}}$ et $OM'_{\tilde{v}}$ sont respectivement fonction de \tilde{u} et \tilde{v} . On obtient ainsi que θ est fonction de (\tilde{u}, \tilde{v}) . θ est aussi l'angle entre les courbes coordonnées \tilde{u}, \tilde{v} car le vecteur $OM'_{\tilde{u}}$ (respectivement $OM'_{\tilde{v}}$) est tangent à la courbe coordonnée \tilde{u} (respectivement \tilde{v}) au point M.

3. On calcule les 2 déterminants A et B sachant que $\tilde{E} = \tilde{G} = 1$ et $\tilde{F} = cos\theta$:

$$A = \begin{vmatrix} -\frac{1}{2}E_{vv} + F_{uv} - \frac{1}{2}G_{uu} & \frac{1}{2}E_{u} & F_{u} - \frac{1}{2}E_{v} \\ F_{v} - \frac{1}{2}G_{u} & E & F \\ \frac{1}{2}G_{v} & F & G \end{vmatrix}$$

$$B = \begin{vmatrix} 0 & \frac{1}{2}E_{v} & \frac{1}{2}G_{u} \\ -\frac{1}{2}E_{v} & E & F \\ \frac{1}{2}G_{u} & F & G \end{vmatrix}$$

D'où:

$$B = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 1 & \cos\theta \\ 0 & \cos\theta & 1 \end{vmatrix} = 0$$

$$A = \begin{vmatrix} +\tilde{F}_{uv} & 0 & \tilde{F}_{u} \\ \tilde{F}_{v} & 1 & \tilde{F} \\ 0 & \tilde{F} & 1 \end{vmatrix} = (1 - \tilde{F}^{2})\tilde{F}_{uv} + \tilde{F}.\tilde{F}_{u}.\tilde{F}_{v}$$

^{1.} Pafnouti Tchebychev (1821 - 1894) : Mathématicien russe.

De
$$F = cos\theta \Rightarrow F_u = \frac{\partial F}{\partial u} = -sin\theta \frac{\partial \theta}{\partial u} \Rightarrow F_{uv} = \frac{\partial F_u}{\partial v} = -cos\theta \frac{\partial \theta}{\partial v} \frac{\partial \theta}{\partial u} - sin\theta \frac{\partial^2 \theta}{\partial u \partial v}$$

$$F_v = \frac{\partial F}{\partial v} = -sin\theta \frac{\partial \theta}{\partial v}. \text{ Par suite :}$$

$$A = (1 - \tilde{F}^2)\tilde{F}_{uv} + \tilde{F}.\tilde{F}_{u}.\tilde{F}_{v} = -\sin^2\theta\cos\theta\frac{\partial\theta}{\partial u}\frac{\partial\theta}{\partial v} - \sin^3\theta\frac{\partial^2\theta}{\partial u\partial v} + \cos\theta\sin^2\theta\frac{\partial\theta}{\partial u}\frac{\partial\theta}{\partial v} = -\sin^3\theta\frac{\partial^2\theta}{\partial u\partial v}$$

$$\implies K = \frac{A}{(EG - F^2)^2} = -\sin^3\theta\frac{\partial^2\theta}{\partial u\partial v}.\frac{1}{\sin^4\theta} = -\frac{1}{\sin\theta}.\frac{\partial^2\theta}{\partial u\partial v}, \text{ C'est l'équation de sinus-Gordon.}$$

4. On pose:

$$\begin{cases} \hat{u} = \tilde{u} + \tilde{v} \\ \hat{v} = \tilde{u} - \tilde{v} \end{cases} \Longrightarrow \begin{cases} \tilde{u} = \frac{1}{2}(\hat{u} + \hat{v}) \Rightarrow d\tilde{u} = \frac{1}{2}(d\hat{u} + d\hat{v}) \\ \tilde{v} = \frac{1}{2}(\hat{u} - \hat{v}) \Rightarrow d\tilde{v} = \frac{1}{2}(d\hat{u} - d\hat{v}) \end{cases}$$

L'expression de $d\tilde{s}^2$ devient :

$$d\hat{s}^{2} = \frac{1}{4}(d\hat{u} + d\hat{v})^{2} + 2 \cdot \frac{1}{4}cos\theta(d\hat{u} + d\hat{v})(d\hat{u} - d\hat{v}) + \frac{1}{4}(d\hat{u} - d\hat{v})^{2} \Longrightarrow$$

$$d\hat{s}^{2} = \frac{1}{2}(1 + cos^{2}\theta)d\hat{u}^{2} + \frac{1}{2}(1 - cos^{2}\theta)d\hat{v}^{2} = cos^{2}(\theta/2)d\hat{u}^{2} + sin^{2}(\theta/2)d\hat{v}^{2} \Longrightarrow$$

$$d\hat{s}^{2} = cos^{2}\omega d\hat{u}^{2} + sin^{2}\omega d\hat{v}^{2}, \quad \omega = \theta/2$$

Correction 14.12. 1. Soit (\mathcal{F}) une surface définie dans \mathbb{R}^3 , paramétrée par la fonction vectorielle OM = S(u, v) telle que :

$$S(u,v) \begin{vmatrix} x = f(u,v) \\ y = g(u,v) \\ z = h(u,v) \end{vmatrix}$$

On obtient:

$$\frac{\partial S}{\partial u} = \begin{vmatrix} f'_u \\ g'_u \\ h'_u \end{vmatrix}, \frac{\partial S}{\partial v} = \begin{vmatrix} f'_v \\ g'_v \\ h'_v \end{vmatrix} \Longrightarrow E = \frac{\partial S}{\partial u} \cdot \frac{\partial S}{\partial u} = f'_u^2 + g'_u^2 + h'_u^2, \Longrightarrow$$

$$F = \frac{\partial S}{\partial u} \cdot \frac{\partial S}{\partial v} = f'_u f'_v + g'_u g'_v + h'_u h'_v, \quad G = \frac{\partial S}{\partial v} \cdot \frac{\partial S}{\partial v} = f'_v^2 + g'_v^2 + h'_v^2$$

La première forme fondamentale de (F) s'écrit :

$$ds^{2} = \left\| \frac{\partial S}{\partial u} \right\|^{2} du^{2} + 2 \frac{\partial S}{\partial u} \cdot \frac{\partial S}{\partial v} du dv + \left\| \frac{\partial S}{\partial v} \right\|^{2} dv^{2} = E \cdot du^{2} + 2F du dv + G dv^{2}$$

Soit *n* le vecteur normal unitaire :

$$n = \frac{\frac{\partial S}{\partial u} \wedge \frac{\partial S}{\partial v}}{\left\|\frac{\partial S}{\partial u} \wedge \frac{\partial S}{\partial v}\right\|} = \frac{1}{\left\|\frac{\partial S}{\partial u} \wedge \frac{\partial S}{\partial v}\right\|} \left(\left\| \begin{array}{c} f'_u \\ g'_u \\ h'_u \end{array} \wedge \left\| \begin{array}{c} f'_v \\ g'_v \\ h'_v \end{array} \right) = \frac{1}{\left\|\frac{\partial S}{\partial u} \wedge \frac{\partial S}{\partial v}\right\|} \left(\left\| \begin{array}{c} g'_u h'_v - h'_u g'_v \\ h'_u f'_v - f'_u h'_v \\ f'_u g'_v - g'_u f'_v \end{array} \right)$$

Quand le point M varie sur la surface (\mathcal{F}) , le repère $(\frac{\partial S}{\partial u}, \frac{\partial S}{\partial v}, n)$ est un repère mobile. La deuxième forme fondamentale de (\mathcal{F}) est définie par :

$$n.d^2S = Ldu^2 + 2Mdudv + Ndv^2$$

où les coefficients L, M, N sont donnés par :

$$L = n \cdot \frac{\partial^2 S}{\partial u^2}, \quad L = n \cdot \frac{\partial^2 S}{\partial u \partial v}, \quad N = n \cdot \frac{\partial^2 S}{\partial v^2}$$

2. On considère que (\mathcal{F}) est la sphère définie par $:S = \begin{vmatrix} x = R\cos\varphi\cos\lambda \\ y = R\cos\varphi\sin\lambda & R > 0 \\ z = R\sin\varphi \end{vmatrix}$ Soit \mathcal{L}_M la variable de Mercator. La variable Mercator est définie par $\mathcal{L}_M = \frac{1}{2} \frac{1}{$

 $Logtg\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$ avec $d\mathcal{L}_M = \frac{d\varphi}{cos\varphi}$. On a alors :

$$\frac{\partial S}{\partial \varphi} = \begin{vmatrix} -Rsin\varphi cos\lambda \\ -Rsin\varphi sin\lambda \\ Rcos\varphi \end{vmatrix}, \quad \frac{\partial S}{\partial \lambda} = \begin{vmatrix} -Rcos\varphi sin\lambda \\ Rcos\varphi cos\lambda \\ 0 \end{vmatrix}, \quad \frac{\partial S}{\partial \mathcal{L}_M} = \frac{\partial S}{\partial \varphi} \frac{\partial \varphi}{\partial \mathcal{L}_M} = cos\varphi \begin{vmatrix} -Rsin\varphi cos\lambda \\ -Rsin\varphi sin\lambda \\ Rcos\varphi \end{vmatrix}$$

Par suite, on obtient:

$$\begin{split} \frac{\partial S}{\partial \mathcal{L}_{M}}.\frac{\partial S}{\partial \mathcal{L}_{M}} &= R^{2}cos^{2}\varphi, \quad \frac{\partial S}{\partial \lambda}.\frac{\partial S}{\partial \lambda} = R^{2}cos^{2}\varphi \Longrightarrow \\ \frac{\partial S}{\partial \mathcal{L}_{M}}.\frac{\partial S}{\partial \mathcal{L}_{M}} &= \frac{\partial S}{\partial \lambda}.\frac{\partial S}{\partial \lambda} = R^{2}cos^{2}\varphi = e^{\Phi(\mathcal{L}_{M},\lambda)} \ avec \ \Phi(\mathcal{L}_{M},\lambda) = Log(R^{2}cos^{2}\varphi), \quad \frac{\partial S}{\partial \mathcal{L}_{M}}.\frac{\partial S}{\partial \lambda} = 0 \end{split}$$

Il s'ensuit que $S(\mathcal{L}_M, \lambda)$ est une paramétrisation conforme de (\mathcal{F}) .

La première forme fondamentale de la sphère paramétrée par (φ, λ) est donnée par:

$$ds^2 = R^2 d\varphi^2 + R^2 \cos^2 \varphi d\lambda^2$$

Maintenant, on considère les paramètres (\mathcal{L}_M, λ) , on obtient alors ds^2 comme suit :

$$ds^2 = R^2 cos^2 \varphi \left(\frac{d\varphi^2}{cos^2 \varphi} + d\lambda^2 \right) \Longrightarrow ds^2 = R^2 cos^2 \varphi (d\mathcal{L}_M^2 + d\lambda^2) \Longrightarrow$$
$$ds^2 = e^{Log(R^2 cos^2 \varphi)} (d\mathcal{L}_M^2 + d\lambda^2) = e^{\Phi(\mathcal{L}_M, \lambda)} (d\mathcal{L}_M^2 + d\lambda^2), \ \Phi(\mathcal{L}_M, \lambda) = Log(R^2 cos^2 \varphi)$$

Calculons le vecteur normal N:

$$\mathcal{N} = \frac{\partial S}{\partial \mathcal{L}_{M}} \wedge \frac{\partial S}{\partial \lambda} = \begin{vmatrix} -Rsin\varphi cos\varphi cos\lambda \\ -Rsin\varphi cos\varphi sin\lambda \\ -Rsin\varphi cos\varphi sin\lambda \\ Rcos^{2}\varphi \end{vmatrix} - \begin{vmatrix} -Rcos\varphi sin\lambda \\ Rcos\varphi cos\lambda \\ 0 \end{vmatrix} - \begin{vmatrix} -cos\varphi cos\lambda \\ -cos\varphi sin\lambda \\ -sin\varphi \end{vmatrix}$$

$$\implies \text{le vecteur unitaire normal est } n = -\begin{vmatrix} cos\varphi cos\lambda \\ cos\varphi sin\lambda \\ sin\varphi \end{vmatrix}$$

Calculons les vecteurs : $\frac{\partial^2 S}{\partial \mathcal{L}_M^2}$, $\frac{\partial^2 S}{\partial \mathcal{L}_M \partial \lambda}$, $\frac{\partial^2 S}{\partial \lambda^2}$. D'où :

$$\begin{split} \frac{\partial^2 S}{\partial \mathcal{L}_M^2} &= \frac{\partial}{\partial \varphi} \left(\frac{\partial S}{\partial \mathcal{L}_M} \right) \frac{\partial \varphi}{\partial \mathcal{L}_M} = \cos \varphi \frac{\partial}{\partial \varphi} \left(\frac{\partial S}{\partial \mathcal{L}_M} \right) = -R \cos \varphi \left| \begin{array}{c} \cos 2\varphi \cos \lambda \\ \cos 2\varphi \sin \lambda \\ \sin 2\varphi \end{array} \right. \\ \frac{\partial^2 S}{\partial \mathcal{L}_M \partial \lambda} &= R \cos \varphi \left| \begin{array}{c} \sin \varphi \sin \lambda \\ -\sin \varphi \cos \lambda \end{array} \right. , \quad \frac{\partial^2 S}{\partial \lambda^2} &= -R \cos \varphi \left| \begin{array}{c} \cos \lambda \\ \sin \lambda \\ 0 \end{array} \right. \end{split}$$

Le calcul des coefficients L, M et N donnent les résultats suivants :

$$L = R\cos^2\varphi$$
, $M = 0$, $N = R\cos^2\varphi$

par suite:

$$\begin{split} n.d^2S &= Ld\mathcal{L}_M^2 + 2Md\mathcal{L}_m d\lambda + Nd\lambda^2 = R\cos^2\varphi(d\mathcal{L}_M^2 + d\lambda^2) \Longrightarrow \\ -n.d^2S &= -(Ld\mathcal{L}_M^2 + 2Md\mathcal{L}_m d\lambda + Nd\lambda^2) = -R\cos^2\varphi(d\mathcal{L}_M^2 + d\lambda^2) \Longrightarrow \\ -nd^2S &= e^{Log(R^2\cos\varphi)} \left(\frac{d\mathcal{L}_M^2}{\rho_1} + \frac{d\lambda^2}{\rho_2}\right) = e^{\Phi(\mathcal{L}_M,\lambda)} \cdot \left(\frac{d\mathcal{L}_M^2}{\rho_1} + \frac{d\lambda^2}{\rho_2}\right), \; \rho_1 = \rho_2 = -R \end{split}$$

Ainsi la sphère (\mathcal{F}) paramétrée par (\mathcal{L}_M, λ) est une surface isotherme.

3. On va vérifier les équations de Gauss-Weingarten :

$$\frac{\partial S'_{\mathcal{L}_{M}}}{\partial \mathcal{L}_{M}} \stackrel{?}{=} \frac{\Phi'_{\mathcal{L}_{M}}}{2}.S'_{\mathcal{L}_{M}} - \frac{\Phi'_{\lambda}}{2}.S'_{\lambda} - \frac{e^{\Phi}}{\rho_{1}}.n \Longrightarrow$$

$$-Rcos\varphi \begin{vmatrix} cos2\varphi cos\lambda & ? \\ cos2\varphi sin\lambda & = -sin\varphi \end{vmatrix} -Rcos\varphi sin\varphi sin\lambda \\ -Rcos\varphi sin\varphi cos\lambda - \begin{vmatrix} 0 \\ 0 \\ -Rcos\varphi sin\lambda \end{vmatrix} = 0 - \frac{R^{2}cos^{2}\varphi}{-R}(-1) \begin{vmatrix} cos\varphi cos\lambda \\ cos\varphi sin\lambda \\ sin\varphi \end{vmatrix}$$

$$\begin{vmatrix} -Rcos\varphi cos2\varphi cos\lambda & ? \\ -Rcos\varphi cos2\varphi cos\lambda & ? \\ -Rcos\varphi cos2\varphi sin\lambda & = -Rcos\varphi sin^{2}\varphi cos\lambda \\ -Rcos\varphi sin^{2}\varphi sin\lambda - \begin{vmatrix} 0 \\ 0 \\ -Rcos^{2}\varphi cos\varphi sin\lambda \\ -Rcos^{2}\varphi cos\varphi sin\lambda \end{vmatrix}$$

$$-Rsin\varphi cos^{2}\varphi \qquad 0 - Rcos^{2}\varphi cos\varphi sin\lambda - Rcos^{2}\varphi cos\varphi sin\lambda - Rcos^{2}\varphi cos\varphi sin\lambda \end{vmatrix}$$

$$\begin{vmatrix} -Rcos\varphi cos2\varphi cos\lambda \\ -Rcos\varphi cos2\varphi sin\lambda \\ -2Rsin\varphi cos^2\varphi \end{vmatrix} = \begin{vmatrix} Rcos\varphi (sin^2\varphi - cos^2\varphi)\varphi cos\lambda \\ Rcos\varphi (sin^2\varphi - cos^2\varphi)sin\lambda \\ -2Rsin\varphi cos^2\varphi \end{vmatrix}$$

3.2

3.3

$$\frac{\partial n}{\partial \mathcal{L}_{M}} \stackrel{?}{=} \frac{1}{\rho_{1}}.S'_{\mathcal{L}_{M}} \Longrightarrow$$

$$\frac{\partial}{\partial \mathcal{L}_{M}} \begin{pmatrix} -\cos\varphi\cos\lambda \\ -\cos\varphi\sin\lambda \\ -\sin\varphi \end{pmatrix} \stackrel{?}{=} \frac{1}{(-R)} \begin{vmatrix} -R\cos\varphi\sin\varphi\cos\lambda \\ -R\cos\varphi\sin\varphi\sin\lambda \\ R\cos^{2}\varphi \end{vmatrix}$$

$$\cos\varphi \begin{vmatrix} \sin\varphi\cos\lambda \\ \sin\varphi\sin\lambda \\ -\cos\varphi \end{vmatrix} = \begin{vmatrix} \cos\varphi\sin\varphi\cos\lambda \\ \cos\varphi\sin\varphi\sin\lambda \\ -\cos^{2}\varphi \end{vmatrix}$$

Ainsi, on a vérifié le premier groupe des équations de Gauss-Weingarten. On laisse au lecteur la vérification du deuxième groupe des équations de Gauss-Weingarten.

BIBLIOGRAPHIE

- 1. **F.R. Helmert**. 1884. *Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie*; Vol 2, Leibzig, B.G Teubner(reprinted 1962).
- 2. **H. Poincaré**. 1905. Sur les Lignes géodésiques des surfaces convexes. Transactions of the American Mathematical Society. $n^{\circ}6$, pp. 237-274; Œuvres 6, pp. 38-84.
- 3. **F. Tisserand & H. Andoyer**. 1912. *Leçons de Cosmographie*. 6ème édition. Librairie Armand Colin. 396p.
- 4. **G. Julia**. 1955. Cours de l'Ecole Polytechnique. *Cours de Géométrie Infinitésimale*. Cinquième Fascicule, Deuxième Partie : Théorie des Surfaces. Deuxième édition entièrement refondue. Editeur Gauthier-Villars. 141p.
- W.A. Heiskanen & H. Moritz. 1967. Physical Geodesy. Freeman, San Francisco. Reprint, 1979. Institute of Physical Geodesy, Technical University, Graz, Austria. 364p.
- J. Dieudonné. 1968. Calcul Infinitésimal. 1ère édition. Collection Les Méthodes. Hermann, Paris. 479p.
- 7. **A. Fontaine**. 1969. Rapport sur la Géodésie de la Tunisie. OTC.
- 8. C.A.C.G.G. (le Comité Associé Canadien de Géodésie et de Géophysique). 1973. Canadian Surveyor, Vol 27, *n*°3.
- 9. **A. Marussi**. 1974. Africa and Modern Geodesy. Proceedings of the First Symposium in Geodesy in Africa, 14-19 January. Khartoum. Soudan.
- 10. **B. Morando**. 1974. *Mouvement d'un Satellite Artificiel de la Terre*. Gordon & Breach, Paris, London et New York. 255p.
- 11. **L. Bers**. 1977. Quasiconformal mappings, with applications to differential equations, function theory and topology. Bulletin of the American Mathematical Society, vol 83, $n^{\circ}6$, pp. 1083-1100, 1977.

- 12. **C. Fezzani**. 1979. Analyse de la structure des réseaux astro-géodésiques tunisiens. Thèse de Docteur Ingénieur. Ecole Nationale des Sciences Géographiques. IGN France. 314p.
- 13. **C. Boucher**. 1979a. Systèmes géodésiques de référence et autres problèmes géodésiques liés à la localisation en mer. Colloque national sur la localisation en mer. Brest, 1-5 octobre 1979. IGN France.
- 14. **C. Boucher**. 1979b. Les Transformations géométriques entre systèmes géodésiques. Rapport Technique RT/G *n*°3, SGNM, IGN France.
- 15. **P. Dombrowski**. 1979. 150 Years after Gauss " disquisitiones generales circa superficies curvas". Astérisque *n*°62. Publication de la Société Mathématique de France. 153p.
- H.M. Dufour. 1979. Systèmes de références: Systèmes Projectifs. Conférence présentée au Colloque national sur la Localisation en mer. Brest, 1-5 octobre 1979. 27p.
- 17. **H. Monge**. 1979. L'ellipsoïde de Clarke 1880. Bulletin d'Information de l'IGN France n° 39-1979/3, pp. 37-38.
- 18. **J. Lemenestrel**. 1980. Cours de Géodésie Elémentaire, ENSG, IGN France.
- 19. **J. Commiot**. 1980. *Cours de Cartographie Mathématique*, ENSG, IGN France.
- 20. **A. Danjon**. 1980. Astronomie Générale: Astronomie sphérique et Eléments de mécanique céleste. Seconde édition, revue et corrigée. Librairie Scientifique et Technique Albert Blanchard. 454p.
- 21. **B. Doubrovine, S. Novikov et A. Fomenko**. 1982. *Géométrie Contemporaine : Méthodes et Application*. Première Partie : Géométrie des surfaces, des groupes de transformations et des champs. Edition Mir, Moscou. 438p.
- M. Charfi. 1983. Les Travaux de revalorisation de la Géodésie Tunisienne. OTC.
- 23. **P. Vaniček & E.J. Krakiwsky**. 1986. *Geodesy: the Concepts*. North Holland Compagny. 2ème Edition. 697p.
- Defense Mapping Agency(DMA). 1987a. DMA Technical Report 8350.2.
 Dept of Defense, World Geodetic System 1984, Its definition and relationships with local geodetic systems. 121p.
- 25. Defense Mapping Agency. 1987b. DMA Technical Report 8350.2-A. Part I: Methods, Techniques, and Data used in WGS84 development. Supplement to Department of Defense World Geodetic System 1984 Technical Report. 412p.

- 26. Defense Mapping Agency. 1987c. DMA Technical Report 8350.2-A. Part II: Parameters, formulas, and graphics for the practical application of WGS84. Supplement to Department of Defense World Geodetic System 1984 Technical Report. 775p.
- 27. **H. Moritz & I.I. Mueller**. 1988. *Earth Rotation : Theory and Observation*. Ungar Publishing Compagny. New York. 617p.
- 28. **B. Hofmann-Wellenhof, H. Lichtenegger et J. Collins**. 1992. *Global Positioning System, Theory and Practice*. Springer-Verlag Wien New York. 382p.
- 29. **M. Burša & K. Pi**ĕ. 1993. *Gravity Field and Dynamics of the Earth*. Springer-Verlag. 385p.
- 30. **Publications de l'Académie Bavaroise de Géodésie,** *n*°**58**. 1997. Symposium de la Commission EUREF, Sofia, 4-7 juin 1997. Extrait du rapport présenté par la Suisse. pp. 212-218.
- 31. **T. Soler**. 1998. A Compendium of transformation formulas useful in GPS work. Journal of Geodesy, Vol.72, $n^{\circ}7/8$, pp. 482-490.
- 32. **E.W. Grafarend**. 1998. Helmut Wolf: Das Wissenschaftliche Werk/ The Scientific Work. Publication de la Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe A, Heft *n*°115, München 1998. 97p.
- 33. **P. Petersen**. 1998. *Riemannian Geometry*. Graduate Texts in Mathematics, n° 171. Springer-Verlag. 435p.
- 34. **A. Ben Hadj Salem**. 1999. La Mise à niveau de la Géodésie Tunisienne par l'unification Carthage2000 de ses réseaux, présentée au Premier Atelier Maghrébin de Géodésie. Tunis, 18-20 mai 2000. Publiée dans la revue Géo-Top de l'OTC numéro spécial mai 2000, pp. 6-16.
- 35. **A. Ben Hadj Salem**. 1999. Note sur les comparaisons des azimuts géodésiques du réseau géodésique primordial Tunisien. 5p.
- 36. **H. Moritz**. 2000. Geodetic Reference System 1980. Journal of Geodesy, vol. 74 n°1, pp. 128-134.
- 37. **A. Ben Hadj Salem**. 2001. Contrôle de l'azimut d'orientation du système géodésique tunisien Carthage34. Publié dans la revue Géo-Top de l'OTC, *n*°4 février 2002, pp. 63-68.
- 38. **H.A. Kastrup**. 2008. On the Advancements of Conformal Transformations and their Associated Symmetries in Geometry and Theoretical Physics. arxiv:http://arxiv.org/physics.hist-ph/0808.2730v1. www.arxiv.org 82p.
- 39. Arrêté du ministre de la Défense nationale du 10 février 2009. 2009. Journal Officiel de la République Tunisienne n°14 du 17 février 2009.

- 40. **A.N. Pressley**. 2010. *Elementary Differential Geometry*. Springer-Verlag Heidelberg. 395p.
- 41. **M. Lemmens**. 2011. *Geo-information : Technologies, Applications and the Environment*. Series Geotechnologies and the Environment. Volume 5. Springer Netherlands. 349p.
- 42. E. Zeidler. 2011. Quantum Field Theory III: Gauge Theory A Bridge Between Mathematicians and Physicists. Springer-Verlag Heidelberg. 1158p.
- 43. A. Ben Hadj Salem. 2012. Selected Papers. Tome II. pp 165-172.
- 44. **A. Ben Hadj Salem**. 2013. Histoire de la Topographie en Tunisie : Les Coordonnées Origines Fuseaux. 11p.
- 45. United Nations Commitee of Experts on Global Geospatial Information Management (UN-GGIM). 2015. La Résolution adoptée par l'Assemblée générale le 26 février 2015.
 - www.ggim.un.org/docs/A_RES_69_266_F.pdf. 3p.
- 46. **A. Ben Hadj Salem**. 2017. Eléments de Géodésie et de la Théorie des Moindres Carrés Pour les Elèves-Ingénieurs Géomaticiens. Noor Publishing. 1ère Edition, *IS BN*: 978 3 330 96843 1. 364p.
- 47. **A. Ben Hadj Salem**. 2019. A Note of Differential Geometry. 10p. www.vixra.org/pdf/1903.0241v1.pdf
- 48. **J.M. Ortega & W.C. Rheinboldt**. 1970. *Iterative Solution of Nonlinear Equations in Several Variables*. Academic Press. 527p.
- 49. **A. Bjerhammer**. 1973. *Theory of Errors and Generalized Matrix Inverses*. Elsevier Scientific Publishing Compagny. Amsterdam. 420p.
- 50. **H. Cartan**. 1979. *Cours de Calcul Différentiel*. Nouvelle édition refondue et corrigée. Hermann Paris. Collection Méthodes. 365p.
- 51. **P. Hottier**. 1980. *Théorie des Erreurs*. Ecole Nationale des Sciences Géographiques. IGN France. 81p.
- 52. **A. Pázman**. 1984. Probability distribution of the multivariate nonlinear least-squares estimates. Kybernetika né20, pp. 209-230.
- 53. **S.S Chern**. 1985. Moving Frames. Société Mathématique de France. Astérisque, numéro hors série "Elie Cartan et les mathématiques d'aujour-d'hui". Lyon, 25-29 juin 1984. p 67-77.
- 54. **P.J.G. Teunissen**. 1985. *The Geometry of Geodetic Inverse Linear Mapping and Non-Linear Adjustment*. Publications on Geodesy, né1, Volume 8, Netherlands Geodetic Commission. 177p.

- 55. E.W. Grafarend & B. Schaffrin. 1989. The Geometry of non-linear adjustment the planar trisection problem. FESTCHRIFT to TORBEN KRA-RUP edited by E. Kejlo, K. Poder and C.C. Tscherning. Geodætisk Institut, Meddelelse né58, pp. 149-172. København, Danmark.
- 56. **P.J.G. Teunissen**. 1990. Nonlinear least squares. Manuscripta Geodaetica, Vol 15, né2, pp. 137-150.
- 57. **S. Amari & H. Nagaoka**. 2000. *Methods of Information Geometry*. Traduit du japonais par Daishi Harada. Translations of Mathematical Monographs, Vol 191. Oxford University Press. AMS. 206p.
- 58. **C. Brezinski**. 2005. La Méthode de Cholesky. Revue d'Histoire des Mathématiques, publication de la Société Mathématique de France. Vol 11 (2005), pp. 205-238.
- 59. **P.J. Olver**. 2013. *Nonlinear Systems*. 58p. Université de Minnesota.