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Abstract This paper discusses the complex extensions of Riemann Zeta function and complementary
formulas of Gama function. By re-writing the Zeta function equation, it is proved that the equation
described a relation between the original Zeta function )(s and a now function )1()( ss   . But
the domains of these two function does not the same and incompatible, so the Riemann Zeta function
equation does not hold. It is also proved that the complex extension formula of the present complementary
formula of Gama function is wrong. The correct formula is given by strict calculation. The condition

1)Re(0  s needs to be satisfied in order to make the residue integral finite for this formula. However,
Riemann Zeta function itself requires 1)Re( s . Therefore, Riemann Zeta function equation does not
hold at any point in the complex plane, and it is meaningless to discuss it.
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1 Introduce

In 2019, the author of this paper published a paper to prove that Riemann's original paper in 1859 on
Riemann hypothesis contained four fundamental mistakes that led to serious inconsistencies in Riemann
Zeta function equations. Therefore, the Riemann hypothesis is meaningless, which reveals the essential
reason why Riemann conjecture problem cannot be solved for a long time [1].

In 2020, the author published a paper again to prove that even without considering the problems
existing in Riemann Zeta function equation and assuming that Riemann Zeta function equation is valid,
Riemann conjecture is also not valid, and the Riemann Zeta function has no non-trivial zeros [2].

This paper discusses the complex extensions of Riemann Zeta function. By re-writing the Zeta
function equation, it is proved that the equation described a relation between the original Zeta function

)(s and a now function )1()( ss   . But the domains of these two function does not the same and
incompatible, so the Riemann Zeta function equation does not hold.

It is also proved that the complex extension formula of the existing complementary formula of Gama
function is wrong. The correct formula is given through strict calculation, and the condition

1)Re(0  as needs to be satisfied in order to make the residue integral be limited. However, the
Zeta function itself requires 1)Re( s so that Riemann Zeta function equations do not hold at any point in
the complex plane.

Riemann Zeta function has two forms, the series summation form and the integral form. The
summation form of series is initially defined as:
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Where s a ib  is a complex number. It is generally believed that when ( ) 1Re s  , Eq. (1) is
convergent. When ( ) 1Re s  ,, Eq.(1) is divergent and the function is meaningless.

In order to make the function meaningful in the region ( ) 1Re s  , Riemann used the Gama function
to express Eq.(1) in the form of integral with ( x R ) [3,4]
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To calculate Eq.(2), Riemann extended it into the integral on the complex plane by )( iyxddzdx 
and get
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Using the method of residue, Riemann deduced following relation
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By considering Eq.(1) again and let
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Eq.(4) is briefly written as
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Eq.(6) is called the Riemann Zeta function equation. However, Riemann in his 1859’s paper had no any
discussion on the domain of Eq.(6). He only directly wrote [3]

This equation gives the values of the function ( )s for all complex s and shows that it is
single-valued and finite for all valves of s other than 1, and also that it vanishes when s is
negative even integer.

What this sentence means that Eq.(6) holds for all finite points ibas  including the points
1)Re( s and 1)Re( s , except for the point 1)Re( s . However, this is not possible. Because Eq.(6)

comes directly from Eq.(4), which is nothing more than a symbolic representation of Eq. (4). For example,
according to Eq.(4), the right of Eq.(6) is )5.1()1(   s which is infinite and does not make sense.

Perhaps some mathematicians have seen the problem with Riemann's statement, and in the literature
[3], )(s in the left side of Eq. (6) is regarded as a newly defined function )(s  and change its domain
to the following statement [4]

Eq.(6) is for 0)Re( s . By uniqueness of analytic continuation, Eq.(5) is valid for all 1s .

But this statement is obviously self-contradictory, since it is believed that Eq.(6) is only applicable to
the region 0)Re( s , it cannot be applicable to the region 0)Re( s , and it cannot be valid in all cases
with 1s . In fact, if a function is infinite in a certain region, it is not an analytic function in that region.
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The huge confusion caused by this contradictory definition is also one of the reasons to lead that Riemann
conjecture does not make sense.

In the second chapter, the complex extension of Riemann Zeta function is discussed in detail. Let

)1()( ss   represent a new function( It is actually not the Zeta function of original meaning.), and

write Eq.(6) as
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It is easy to prove that the definition domain of product of all terms on the right side of Eq.(7) is still

1)Re( s 。By considering Eq.(5), the domain of new function )(s  on the left side of Eq.(7) is

1)Re( s . So the domains on the two sides of Eq.(7) are different. It is shown again that the Riemann Zeta

function does not hold.
It is known that the complementary formula of Gama function for real numbers is [5]
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Where a is a real non-integer. Riemann used following complementary formula of Gama function of

complex number when he deduced the Zeta function equation [5].
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However, Eq. (8) is not a strict calculation result, but is obtained directly let sibaa  in Eq.(7). It
is proved in this paper that Eq. (8) is wrong. By the strict calculation, the correct result is
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It indicates that the product of two complementary complex Gama functions is a real number, so Eqs. (4)
and (6) of Riemann Zeta function have to be changed accordingly, and the final result is:
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According to Eq.(10), the Riemann conjecture on the trivial and non-trivial zeros (if having any) of the Zeta
function had to change accordingly.

More importantly, it is proved in this paper that in order to make the residue circumference integral
absolutely convergent, Eq.(9) needs to satisfy the condition 1)Re(0  s , so Eq.(10) must also satisfy
this condition. On the other hand, according to the definition of Eq.(1), )(s itself requires 1)Re( s .
These two conditions are mutually exclusive. As a result, the Riemann Zeta function equation does not hold
at any point oan the complex plane, and any discussion of it is meaningless. So this paper will not discuss
the trivial and non-trivial zeros of Eq.(10) any more.

2. The existing problems in the complex extension of Zeta function

2.1 The definition of analytic extension of a function

As we known that general function has a domain of definition. Beyond the domain of definition, the
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function may be meaningless. In order to make the function sense in a larger region, it needs to be extended.
Suppose that the function )(1 xf is clearly defined in the region 1L , but it has no meaning in the region

2L . In order to make it sense in the region 2L , we need to extent and change it into )(2 xf . The analytic
extension of a function needs to meet following three conditions [5].

1. In the extended region 2L , the form of )(2 xf must be different from )(1 xf , otherwise the
contradiction will be caused and the extension becomes meaningless.

2. In the original region 1L , the form of )(2 xf should be completely the same with )(1 xf ,
otherwise, )(2 xf can not be regarded as the extension of )(1 xf .

3. Since a function can be extended in many different ways, it will lead to different results. In order to
guarantee uniqueness, the extension must be an analytic extension, or the extend function must be derivable
everywhere in whole region. If it is a complex continuation, the Cauchy-Riemann equation must be
satisfied.

2.2 The analytic continuations of real functions

The common example of a real function’s continuation is [6]

 32
1 1)( xxxxf 1x （11）

Where Rx is a real number. Eq. (11) is meaningful and limited in the field 1x . when 1x , the
function )(1 xf and becomes meaningless. On the other hand, we define

x
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)(2 xf is meaningful on the whole number axis except at the point 1x . At all points of the field with
1x , we always have )()( 21 xfxf  . By developing )(2 xf into the Taiwan's series when 1x , we

can prove )()( 21 xfxf  completely.
However, when 1x , Eqs. (2) and (12) can not be equal each other. For example, let 2x , we

have )2(1f and 1)2(2 f . Because the definition field of )(2 xf is greater than that of )(1 xf ,
we consider )(2 xf as the continuation of )(1 xf in the field with 1x and write two functions in the
unified form as below
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In general, a function can be extended in many different ways, resulting in different results. In order to
ensure the uniqueness, the continuation of function needs to meet the continuity condition, so that the
function can be differentiated everywhere. The continuation that meets this condition is called as the
analytic continuation [3].

It is important to emphasize that at every point in the small field where the original function is
meaningful, the value of the extended function should be exactly the same as the value of original function,
otherwise it is not the continuation of the original function. Meanwhile, in the extended field, the form of
the extended function must be different from the original function, otherwise the extension of the function
is meaningless [3].

For example, for Eqs. (2) and (3), in the field 1x where the original function makes sense, the
values of function )(2 xf and )(1 xf must be the same at every point. Although their forms look different
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on the surface, they are the same actually. In the field 1x after the continuation, the forms of )(2 xf
and )(1 xf must be different. Otherwise )(2 xf is still equal to )(1 xf , which is no meaning.

It is difficult to find the form of analytic continuation of a function in practical problems. The analytic
continuations of some functions in existing mathematics are actually unsuccessful. As we see below, the
negative continuation of the Gama function violates the above principles. In the extended field, the form of
the function is exactly the same as the original function’s form, so it is still infinite and meaningless.

2.3 The analytic continuation of complex function

Let Ciyxz  be a complex number, a similar example of analytic continuation of complex

function is shown below [6].

 642
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)(1 zF is an analytic function and convergent inside the unit circle but is divergent outside the unit circle
without meaning. )(2 zF is an analytic function meaningful on the whole complex plane except at points

iz  .
To developing )(2 zF into the Taylor's series of complex functions in the field 1z , we can obtain
)(1 zF . That is to say, two functions are completely the same. Since the definition field of )(2 zF is larger

than )(1 zF , )(2 zF can be regarded as an analytic continuation of )(1 zF over the entire complex plane
(except at points iz  ). Similar to Eq.(4), we write they in the unified form
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Similarly, within the extended field 1z ( iz  ), )(1 zF and )(2 zF are not the same functions,
because )(1 zF is meaningless in this case.

2.4 The existing problem of complex extension of Riemann Zeta function

According to common understanding at present, Eq.(6) is regarded as the analytic extension of Eq.(1)
in the region 0)Re( s . The left side of Eq.(6) is considered as a newly defined Zeta function which is
different from Eq.(1), i.e., )()( ss   . The right side of Eq.(6) is the concrete form of new Zeta
function, and the domain for both sides of the formula is 0)Re( s . According to this understanding,
Eq.(6) should be written as

1( ) 2(2 ) (1 )sin (1 )
2

s ss s s         
 

0)Re( s （17）

However, this is obviously impossible, because Eq.(6) comes from formula (4), and the one to the left
is defined in terms of Eq.(1). If )(s on the left side of Eq.(6) is regarded as a new function )(s  ,

)1( s on the right side should also be regarded as a new function )1( s . Eq.(6) becomes the relation
between the two new functions )(s  and )1( s and it has nothing to do with the original Zeta
function, so there is no so-called new Zeta function )()( ss   .

According to the definition of function extension in Section 3.1, if new function )(s  shown in
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Eq.(17) is meaningful in the region 0)Re( s , it should be exactly the same as the original function
)(s in the original region 0)Re( s , otherwise it cannot be considered as the extension of )(s .

However, this is simply not possible. For example, let 15.2 s , according to the definition of function
extension, there should be )5.2()5.2(   . However, according to Eq.(17), this is obviously not
possible, we have

1.5 2.5(2.5) 2 2 ( 1.5)sin ( 1.5) (2.5)
2
          

 
（ ） （18）

Therefore, even if )(s  on the left of Eq.(18) is regarded as the new Zeta function, it is not a complex
extension of the Zeta function shown in Eq.(1).

By considering Eq.(9) and let )1()( ss   ，the Riemann Zeta function can be written into the
form of Eq.(7)。Because )1( s is not the original Zeta function as shown in Eq.(1), it is rational to
consider it as a now function )(s  . According to Eq.(1), the domain of Zeta function )(s is

1)Re( s 。The domain of Gama function is 0)Re( s . For the other part )2/cos()2( ss  中 , the
domain of s 的 can be arbitrary. So the domain of the functions on the right side of Eq.(7) is still

1)Re( s 。On the region of 1)Re( s ，the right side of Eq.(7) becomes infinite and meaningless.
However, by considering Eq.(5), the domain of new function )(s  on the left side of Eq.(7) is

1)Re( s . Therefore, the domains on the two sides of Eq.(7) are different. This result indicates that the
Riemann Zeta function does not hols. In fact, as the author proved in Reference [1] by concrete calculation
that , On the real axis of the complex plane, the two sides of equation (5) are not equal to each other, which
fully illustrates the problem

Besides, even if Eq.(17) is regarded as an extension of Zeta function on the region 0)Re( s , since
the function domain of Eq.(1) is 1)Re( s . In the region 1)Re(0  s , the Zeta function is still not
defined. It does not like what Riemann thought that the extended Zeta function holds for all regions except
at point 1)Re( s .

Therefore, some people later proposed an extension method [4], in the region 1)Re(0  s , the
Zeta function is written as:

1
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In this way, it is considered that the Riemann Zeta function of Eq.(1) is extended to the entire complex
space except at the point 1)Re( s , and Eqs.(1), (17) and (19) constitute the complete definition of
Riemann Zeta function.

The problem is that if Eq.(19) is considered to be the extended Zeta function, then the discussion of
Riemann conjecture should be based on it. Because Riemann conjecture indicated that the all zeros of Zeta
function fall on the point 2/1)Re( s , i.e., on the domain of the Zeta function )(s  . However, this is
not the case in practice. Starting from Riemann, Eq.(17) has been used to discuss the zero point of Zeta
function, and no one used Eq.(19). Therefore, no matter whether the definition of Eq.(19) is reasonable or
not, it has nothing to do with Riemann's 1859 paper and does not belong to the discussing scope of
Riemann's conjecture so it is not discussed in this paper further.

3. The complex continuation of complementary formula of Gama function
3.1 The calculation of complementary formula of Gama function
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Suppose that a is a real non-integer number with 10  a , it can be proved to exist the following
formula [5]
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Though the formula is defined in the real field, it needs to use the Residue theorem of complex function to
prove. Let ibas  , the complex continuation of Eq.(20) is considered to directly let sa in Eq.(20)
at present and get
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Correspondingly, the complex continuation of Eq.(7) is considered becoming follow form
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According to Eq.(21), the complex extension of complementary formula of Gama function is
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It should be noted that Eq.(21) is obtained by analogy and is not strictly calculating result. We prove below
that Eq.(21) is not true and therefore Eq.(23) is not true.

3. 2 The proof that Eq.(21) does not hold

We write the left side of Eq.(21) as
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According to the Euler formula, we have
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If Eq.(22) holds, by comparing the real parts and the imaginary parts of Eq.(24) and (27), we have
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Let 0b in Eqs.(28) and (29), we get
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Eq.(30) is completely the same as Eq.(21), but Eq.(31) can not hold when 2/)12(  na . Where is

wrong? Let’s analyze it below.

3. 3 The calculation of Eq.(31)

At present, the Residue theorem is used to calculate Eq.(20). Let’s repeat this calculation at first.
Suppose that a is a real non-integer, we consider the integral of complex function below with

2arg0  z [5]

dzzQzaT
C

a  )()( 1
（32）

Here )(zQ is a single value and analytic function everywhere except at several isolated singularities.
There are no singularities on the positive real axis. When 0z and z , )(zQza tends to zero
consistently.

Fig.1 The contour of residue calculation

The integral contour C of residue calculation is shown in Fig.1. It stars off from the point
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 xz on the above positive real axis, goes along the positive real axis and arrive at point A with
Rx  . Then goes along a big circle 0C with radius and comes back to point B on the down positive real

axis. Then goes along the negative direction of real axis and arrives at point x . At last, goes around
the small circle C and reaches the starting point.

Therefore, the integral of Eq.(31) can be written as
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By using the Residue theorem, we have

    )(2)( 11 zQzresidzzQz a

C

a  （34）

For Eq.(21), we have )1/(1)( zzQ  , Eq.(34) becomes

















 

z1
2

z11

11

0

1 a

C

aa zresidzzdx
x

x  （35）

According to the calculation premise of Eq.(32), under the condition 10  a , when  Rz , due

to 1a , we have

0
1

)( 



z

zzQz
a

a
（36）

When 0 Rz , due to 0a ，we have

0
1

)( 



z

zzQz
a

a
（37）

Therefore, the integral can be guaranteed to converge on both the upper and lower limits, that is

0)(
0

1   dzzQz
C

a and 0)(1   dzzQz
C

a



（38）

Substituting the result above in Eq.(33), we get

  





 )(

1
2)(

1
1)( 1

2
1

2
1 zQzres

e
idzzQz

e
dzzQz a

ai
C

a
ai

R
a





（39）

The function )1/(1)( zzQ  has an unique singularity iez  1 on the real axis. The residue is

  



)1(1
1

1

'1
)( 








 










 ai

ez

a

ez

a
a ez

z
zreszQzres

ii）（
（40）

Substituting it in Eq.(35), we get the current result with












aee
i

ee
ei

e
eidx

x
x

iaiaaiia

i

ai

aia

sin
22

1
2

1 22

)1(

0

1













 

 

 （41）
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However, if let ibasa  , as proved in Section 3.1, it is impossible to let  sa sinsin 
on the right side of Eq.(39). It needs to be calculated again.

3.4 The correct calculation of Eq.(21)

Eq. (21) is recalculated below to obtain theorem 1.

Theorem1：The calculation result of Eq.(21) is


 

a
edx

x
x bs

sin10

1




 

1)Re(0  s （42）

Proof: For the same contour integral, according to Eq.(24), let

)1/()lncos(),(1 zzbzbQ  )1/()ln(sin),(2 zzbzbQ  （43）

dzzbQzbaT
C

a  ),(),( 1
1

1 dzzbQzbaT
C

a  ),(),( 2
1

2 （44）

When 0z and  Rz , the functions )ln(cos zb and )ln(sin zb are uncertain, but we

1)lncos( zb and 1)lncos( zb . When  Rz , due to 1a , we have

0
1

lncos)(1 



z
zbzzQz aa

（45）

When 0 Rz , due to 0a , we have

0
1

)ln(sin)(1 



z
zbzzQz aa

（46）

So we can use the residue theorem to calculate. For ),(1 baT , similar to Eq.(39), the calculating result is

 
 iez

aa

C

a zbzzQzresdzzbQz
i 

  )lncos()(),(
2
1 1

1
1

1
1

2
)(co)ln(co )1()1()1(


 

bb
aiaiiai eeeibseebse


 

 （47）

For ),(2 baT ，the calculating result is

 
 iez

aa

C

a zbzzQzresdzzbQz
i 

  )ln(sin)(),(
2
1 1

2
1

2
1

i
eeeibeebe
bb

aiaiiai

2
)(sin)ln(sin )1()1()1(


  





（48）

According to Eq.(39) and by considering the relation 1 ie , the last result is

21
2)ln(co

1
)1(

2
0

1 




 bb
ai

ai

a eee
e
idxxbs

x
x 


  





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2sin2
2 

 
 bbbb

iaia

ee
a

ee
ee

i 










 （49）

i
eee

e
idxxb

x
x bb

ai
ai

a

21
2)ln(sin

1
)1(

2
0

1 




 


  





i
ee

ai
ee

ee
i bbbb

iaia 2sin2
2 

 
 










 （50）

When 0b , Eq.(50) is consistent with Eq.(30) and Eq.(50) is equal to zero. The contradiction shown in
Eq.(31) does not exist again. Eq.(24) becomes





 

a
e

i
eeiee

a
dx

x
xdx

x
x bbbbbibas

sin22sin11 0

1

0

1








 










  

 （51）

The result of integral is a real number, rather than a complex number. The complex continuation formula
(23) should be changed in the form of Eq.(42).

It should be noted that Eq. (42) holds only under the condition 10  a . Beyond this condition, Eq.
(42) is still invalid.

3. 5 The correct calculation of real Gama function’s complementary formula

Based on Theorem 1, Theorem 2 can be obtained below.

Theorem 2: The complex extension of real Gama function’s complementary formula should
be revised as


 





0

1

sin1
)1()(


 

a
edx

x
xss

bs

1)Re(0  s （52）

Proof：The definition of complex Gama function is





0

1)( dttes st 0)Re( s （53）

If 0a ，the function is infinite and meaningless. Similarly, we have







 
00

11)1( duueduues susu 1)Re( s （54）

So in the region 1)Re(0  s , )(s and )1( s are absolutely convergence and they can be
combined into a double integral [5]








00

1)1()( duuedttess sust   dtdutute sut 1

0 0

)( / 
 

  （55）

Let utx / , uty  , the variation range of x and y can be from 0 to infinite, the corresponding
Jacobian determinant is:

2

1

)1(),(
),(

),(
),(

x
y

ut
yx

yx
ut













（56）
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Substituting it in Eq.(55), we get

 )1()( ss dxdy
x
y

xy
xxe sy 

 





0
2

0 )1(
1

dx
x

xdx
x

xdye
ss

y  
   









0

1

0 0

1

11
1)Re(0  s （57）

So according to Theorem 1, Eq.(52) of Theorem 2 is proved.
It should be emphasized that the domain of Eq.(57) is 1)Re(0  s . Beyond this range, the contour

integral diverges and the result is invalid because Eqs.(45) and (46) do not hold. Some literature and
textbooks said that since the left and right sides of formula (21) are analytic functions on the whole plane
except the points ...,2,1,0  nz , Eq.(23) is valid on the plane except for these points [4].
However, this is not possible. Outside the range 1)Re(0  s , Eq.(23) does not exist.

3.6 The influence on the problem of Riemann hypothesis

Eq.(23) was used for Riemann to deduce the Riemann Zeta function quation, so the result of Eq.(52)
will have an impact on the Riemann hypothesis problem. On the basis of Eq.(6), Riemann defines a new
function )(s to let [3, 4]

)(
2

)1(
2
1)( 2/ sssss s  






 

（58）

It is proved to have following symmetry a

)1()( ss   （59）

Due to ( )s and )(s have the same zeros, the practical calculations on the zeros of Zeta function are
based on Eq.(58). According to Eq.(7), ( ) 0s  when 2s k  （  ,3,2,1,0k ）. For the cases with

2s k  , the zeros are called as the trivial zeros of the Zeta function. For the cases with +2s k , the
current theory do not discuss them.

By considering Eq.(52), the Riemann Zeta function equation becomes

)1()1(sin2)( 1 ssaes bs    ）（ 1)Re(0  s （60）

The symmetry of Eq.(59) does not exist again, i.e., )1()( ss   . More serious problem is that Eq.(60)
demands 1)Re(0  s which is the condition that the calculation of residue calculation should satisfied.
However, according to the definition of Eq.(1), Eq.(60) is invalid at any point on the complex plane. So any
discussion on Eq.(60) is meaningless, so we do not discuss the zero of Eq.(60) any more in this paper.

4 Conclusion

The author pointed out in Reference 1 that Riemann used a summation formula to derive the integral
form of the Zeta function in his paper in 1859. This formula is applicable when 0x . If 0x , the
formula does not make sense at this point. However, Riemann's calculation involves 0x at the lower
limit of the integral, resulting in divergence of integral form of Zeta function [1].

In this paper, it is proved that on the real number axis of the complex plane, when the left side of the
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Riemann Zeta function equation is finite, the right side may be infinite, and vice versa. The Riemann Zeta
function equation holds only at a point 2/1)Re( s , where the Zeta function is infinite, not zero.The
Riemann Zeta function equation exists serious inconsistencies [1].

In addition, when Riemann derived the Zeta function equation, he also missed a term, which is not
equal to zero in the region 1)Re( s , but is divergent, resulting in the Zeta function equation invalid.
Therefore, the Riemann Zeta function equation does not hold, and the Riemann hypothesis is meaningless
[1].

The calculations of the zero of Riemann Zeta function’s zeros are also discussed. It is pointed out that
the existing calculation uses an approximate method, the analytic property of complex variable function is
destroyed, and the Cauchy-Riemann equation cannot be satisfied. Although a large number of non-trivial
zeros are found on the line 2/1)Re( s of the complex plane, none of them are real zeros of the Zeta
function.

The authors proved in paper 2 that even if the Riemann Zeta function equation is considered valid, the
Riemann hypothesis is also invalid. The author uses a standard method to completely separate the real and
imaginary parts of the Riemann Zeta function equation, and proves that the real and imaginary parts cannot
equal to zeros at the same time [2]. So the Zeta function equation has no non-trivial zero, and the Riemann
hypothesis solved completely.

In this paper, the existing problem of the complex extension of Riemann Zeta function is discussed.
The equation is rewritten in the form of Eq.(7), which is proved to be a formula describing the relationship
between the original Zeta function )(s and the new function )1()( ss   . However, the domains
of two sides of the equation are different and incompatible, so the Riemann Zeta function equation is
invalid. It is not true as Riemann thought, that the equations of the Zeta function hold for all points except
the point 1)Re( s on the complex plane.

Finally, it is proved that the complex extension formula of the existing Gama function complementary
formula is wrong, and the correct formula is given by strict calculation. In order to make the contour
integral of the residue calculation finite, the formula needs to satisfy the conditions. But the Zeta function
itself requires 1)Re( s , both are mutually exclusive. Therefore, the Gama function equation derived by
Riemann is invalid at any point of the complex plane, and it is meaningless to discuss it.
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