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Abstract
In this letter a theorem is stated on the complex-valued represention of the radius
vector of an osculating circle. This theorem can be used in education in mathematics and
physics. To develop exercises for education a construction is presented for a class of

curves characterized by a parameter. A numerical example is provided to illustrate the
educational potential of the theorem and the constuction of corresponding exercises.

A curve is given by the function Y (x) = y. Let Z a point on the curve with coordinates (x, y).
Then the coordinates (Cx, Cy) of the center C and the radius R of the osculating circle at the point Z are

Cy =x+R,
, R== |RZ+R?
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where the coordinates (Rx, Ry) of the radius vector R are obtained as
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1 Theorem

letZ:=x+Y(x)'i,C=C,+ Cy-i and R = R, + R, - i be the complex-valued representions of the
point Z, the center C and the radius vector R of the osculating respectively. Then the coordinates

(Cx, Cy) of the center C and the radius R of the osculating circle at the point Z obtained as

C=Z+R R=|R|
where the coordinates (Rx, Ry) of the radius vector R can be obtained as
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Proof
Z(x)=x+y-i=x+Y(x)-i

Z'(x) = %Z(x) = %(x +Y() D) =1+Y"(x)i
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2 Example
Given the function of the curve Y (x) = /2 - p - x with parameter p, the coordinates R,, = 10 and
R, = —5 of the radius vector R, shown in Figure 1
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Figure 1: The osculating circle at the point Z, its center C and radius vector R.



From y =Y(X¥) =,/2-p-Xand

R
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RZ

Y'(%) = —
Ry

the coordinates (X, ¥) of the point Z and the parameter p can be constructed as

( Ry R}
X =+ > R?
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<y=— RZ
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\P = Rz

The function of the curve then can be expressed as

Ry
Y(x)=§- 2'Ry-x

For the given coordinates R, = 10 and R,, = —5 of the radius vector R we then have

the radius R, see Figure 1:

R= |RZ+R2=./(10)2+ (-5)2 =5V5

the coordinates (X, §) of the point Z, see Figure 1:
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the parameter p of the function Y(x) = /2 - p - x, see Figure 1:

_RE (10

the function Y (x) of the curve, see Figure 1:

Y(x)=2'p-x=V2-8-x=4"Vx



the function Y (x) in the point Z:

Y=Y =4-V1=4=7

the first and second derivative of the function Y (x):
2
Y'(x) =—
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the first and second derivative of the function Y (x) in the point Z:

Y'(®) =Y'(1) = % —2
@ = Y1) = == 1
%) = =T

the complex-valued represention of the point Z, see Figure 1:

Z®=ZA)=1+Y(D)-i=1+4-i=%+F-i

and the first and second derivative of the function Z(x) in the point Z:
') =Z')=1+Y'Q)-i=14+2"i

'@ =Y")-i=—-1-i=—i



Applying the theorem

The complex-valued represention of the radius vector R, see Figure 1:
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=10—5-i = R(1) + R, (1) i

R,(%) = R,(1) =10

R, (%) = R,(1) = -5

The radius R, see Figure 1:

R(®) =R(1) = |R(1)|=110—-5"i| = 5V5

The complex-valued represention of the center C, see Figure 1:
CH=C)=ZM+RMD)=A+4-D)+10-5-)=11-i=C(D+C, ()i
G =G0 =11

C,(%) =¢C,(1) =-1
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