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Abstract. In present paper we prove an original theorem on the natural numbers. From this the
theorem emerges a set of symmetries of the natural numbers which puts Number Theory on a
new footing. One of the consequences of the theorem, but not the most important one, is the odd
number factorization algorithm.

1. Introduction

The results of this paper are based on the following representation of odd numbers. If ITis an odd
number and [x] is the integer part of x, then IT can be uniquely written in the form

H:2V+1+2”+§ﬁi2i, veNu{—l},
i=0

InT1 :
where V+l={ﬁ:|, B =%11=0,12,..,v-1 (Theorem 1). It is easy to show that in such a
n

representation, the powers of 2 cannot be replaced by powers of any other integer. The main
difference between this result and the known arithmetic systems (binary, decimal etc.) is that the
coefficients of the linear combination can take negative values. This feature will allow us to define
"the conjugate” (Definition 1), "the complementary" (Definition 2), "the L/R symmetry" (Definition
3), "the transpose" (Definition 4) and "the kernel" (Definition 9) of an odd number.

The mathematical objects that concern us primarily, namely the "octets of odd numbers", are
defined through a combination of conjugates and transposes of odd numbers (Equation (49)). A
second mathematical object, arising from symmetries, is the "chains" of odd numbers (Definition
10). Based on these concepts, we obtain a classification of odd numbers, and an algorithm for
factoring composite odd numbers.

2. Odd numbers as linear combinations of consecutive powers of 2

In this Section, we derive the representation mentioned in the Introduction.
InTI

Theorem 1. Let I1 be an odd number, and { 2
n

} is the integer part of |In_I; e R. Then IT can be
n

uniquely written in the form

v-1 .
N=2""+2"+> B2, 1
i=0
where VeNU{—l}, v+1:“n—l;l}, L =%1i=012,..,v-1.
n



Proof. If I1=1 we have v+1= Iln—;:| =0= v =-1 and from Equation (1) we obtain
LIn
M=1eQ,=[22"]=[12].
In3 |
If [T=3 wehave v+1= {n = v =0 and from Equation (1) we obtain
n -

M=3=2'+2"eQ,=[2',2|=[2,2*].

We now examine the case where v e N = {1, 2,3, } . The lowest odd value of IT in (1) is

IT,, = H(v) =2t 2t 1= 4, (2)
The largest odd value of IT in (1) is

I, =I(v)=2"+2"+2"+ 22 +..+ 2 +1=2"" -1, (3)
From Equations (2) and (3) we get that for any odd IT =11 (V, B ) in Equation (1), the following
inequality holds,

I, =2""+1<II(v, B)< 2" -1=11,,,. @)

The number N (H (v.8 )) of odd numbers in the closed interval [2'”1 +1,2 —1] is

_Hmax_H (ZHZ _1)_(2”1—’_1)

N(T1(v, ) ===

The integers f£,,i=0,1,2,...,v =1 in (1) can only take two values, namely S =%1, and thus (1)

min +1:

+1=2". ()

gives exactly 2" =N (H(V, B )) odd numbers. Considering also Equation (5), we conclude that
for every v e N” Equation (1) gives all odd numbers in the interval QO = [2”1, 2"+2] .

From Inequality (4), we obtain
2 +1<II< 2% -1
so we have 2"*' <IT < 2"*?. Thus
(v+1)In2<InTI<(v+2)In2

from which we get

In—H—l +1< Init

In2 In2

and finally

v+1={|n—n}. (6)
In2

We prove now that every odd number IT#1 can be uniquely written in the form of Equation (1).
We write the odd 11 as

v-1 )
O=2"+2"+) B2, )
i=0

where V+1:{|In—l;[} and f =%1i1=0,12,..,v-1, and
n



v-1 .
N=2""42"+> 52, (8)
i=0

where v+1:|:||n—l;[} and y, =%1i=0,12,...,v-1.
n
From Equations (7) and (8) we get
(:Bo _70)’20 +(131_71)'21+(ﬁ2 _7/2)'22 +"'+(ﬂv—l_;/v—l)'2]/_1 = Or (9)
where

B =%1i=012..,v-1,i€{012,..,v-1} and 5, =%1i=0,12,..,v-1,i€{012..,v-1}.
If in Equation (9) there are i € {0,1, 2,...,1/—1} such that B # y,, and let K is the smallest of them,

then dividing by 2“*, we get an odd number equal to an even number. So, it follows that

B =yrVvi=012,..v-1. o
In order to write an odd number IT#1,3 in the form of Equation (1) we initially define the

veN from Equation (6). Then, we calculate the sum

2V+1 + 21/ .

If 2" +2"<I1 we add 2", whereas if 2""+2" >TI then we subtract it. By repeating the
process exactly v times we write the odd number IT in the form of Equation (1). The number v
of steps needed in order to write the odd number IT in the form of Equation (1) is extremely low
compared to the magnitude of the odd number IT, as derived from Inequality (4).

Example 1. For the odd number IT=23 we obtain from Equation (6)

+1= {Inﬁ} =>v=3.
In2

Then, we have

2714 2v = 2% 1 28 =24 > 23 (thus 2° is subtracted)

2* +2°—22 =20< 23 (thus 2" is added)

24 +2° 22 42 =22 < 23 (thus 2° =1 is added)

2'+2° 2242 +1=23.

Fermat numbers F, can be written directly in the form of Equation (1), since they are of the form

1_[min ’

Fo=2" +1=10,,(2°-1)=2" +2" -2 2 -2"° - -2'-1, (10)

where SeN. Similarly, the Mersenne numbers M , can be written directly in the form of

Equation (1), since they are of the form II

max 7/
M, =2 —1=T1 ,,(p—-2)=2""+2P2 + 2P 4+ +2"+1, (11)
where p is prime.
We now give the following definition.
Definition 1. Let II be an odd number greater than 1, and consider the representation of II as

described in Theorem 1. Then the conjugate T of T1 is
v-1 .

O =0 (v,7;)=2" 42"+ 7,2, (12)
j=0



where 7; z—ﬂj, j=012,..,v-1.

Proposition 1. If I1 is odd, then the following hold.
1. We have that

() =1 (13)
2. We have that
T =3-2""—11. (14)

3. We have that 1 is divisible by 3 if and only if T1" is divisible by 3.
4. Two conjugate odd numbers cannot have common factors greater than 3.

5. Conjugates I1 and T1" are equidistant from the midpoint 3-2" of the interval Q, = [2”1, 2”2] :
Proof. 1. This is an immediate consequence of Definition 1.

2. From Equations (1) and (12) we get

M+IT = (27 +2")+(27 +2")

or equivalently

IT+IT =3-2"".

3.If the odd I1 is divisible by 3 then it is written in the form IT=3x,x =odd , and from Equation

(14) we get 3x+IT" =3.2"*, thatis, [T = 3(2V+1 - X). The converse can be proved similarly.

4. Let II=xy, T =xz, x, y, z are odd numbers. Then, Equation (14) implies that
x(y+2)=3-2""", and consequently X =3.

5. From equation (14) we obtain

*

M-3.2"=3-2"-11,

and thus

m-3.2"|=[3-2"-11
Proposition 1 implies that 3 is the only odd number which is equal to its conjugate;

3 =3.2"1-3=3. For the I1 =1, we define

1" =1. (15)
It is easily proven that Theorem 1 is also valid for even numbers that are not powers of 2. In

*

. O

order to write an even number E that is not a power of 2 in the form of Equation (1), initially it
is consecutively divided by 2 and it takes of the form of equation

E=2"TI, (16)
where IT odd number, [T #1, | e N". Then, we express II as in Equation (1).

Example 2. By consecutively dividing the even number 368 by 2 we obtain

E=368=2".23.

Then, we write the odd number I1 =23 in the form of Equation (1),

23=2"+2°-22+2'+1

and we get

368=2" -(24 +2° 2242 +1) =20 427 =20+ 2° 4 2°,



This equation gives the unique way in which the even number 368 can be written in the form of
Equation (1). For even numbers the lowest power of two in Equation (1) is different from 1= 2°.

The middle 3-2" of the interval Q) = [2”1, 2”2] is a center of symmetry of two conjugates

numbers of the interval Q, . Therefore, also for the even numbers E of Q, the conjugate E is

defined, and the Equation E+E" =3-2"" applies.
For the odd numbers of the interval Q, the following applies.
Corollary 1.
IfTle [2”1, 3- ZVJ c Q, then there exists a unique T1' € [3- 2V,2V+2] < Q, such that TI'-11=2".
Definition 2.
We define the odd numbers IT and I1' as “complementary”.
For complementary numbers the following holds.

Corollary 2.
1. We have that

!

(Y =11.

2. The complement and conjugate of an odd number I1 are commutative,

!

() =(1r)".
3. The L/R symmetry

We now give the following definition.
Definition 3.
1. The odd number I1 has Left-symmetry L when there exists an index L such that

Ba=+LB =P ==p=F=-1 (17)
where L € {2,3,4,...,1/ —1} .
2. The odd number II has Right-symmetry R when there exists an index R such that
Bra="LBr=Pro==p=5=+1, (18)
where Re{2,3,4,..,v-1}.

Sometimes, we will use the notation L(I'T) and R(IT) for L and R, respectively, above.

Example 3. The prime number
Q=568630647535356955169033410940867804839360742060818433

is a factor of F, =2* +1. From the Equation (6) we have v+1=178, and then from Equation

(1) we have



Q=218 4 QM7 76 | I7e | DITA | D173 4 D72 _ pl7T | DIT0 | DI6S | D168 | DleT | D166

4165 _ o164 | ol63 _ 9162 _ol6l _ 9160 _ o159 | ol | olST | ols6 _ 9156 _ olsé _ ol53 _ 152
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QI gl L ol _ ol plss 4 ol _ oIl gl _ 28 | gl28 _ oIzl | o126 _ ol25 i
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W 40 9B 2 | ¥ 95 gt B o2 o2 o I8 _gl8_oll _lb | ol
1M gt gz _gll_gl0 99 8 o7 96 95 _pb_p3_92_ 9l

So the factor 568630647535356955169033410940867804839360742060818433 of F,has Left-
symmetry L (568630647535356955169033410940867804839360742060818433)=15.

We observe that if an odd number Q is B, = —1 in its representation (i.e., it has left symmetry),
then
Q=2"-K+1, (19)
where K is odd.
Similarly, if D is an odd number such that £, = +1, then
D=2%.K-1, (20)
where K is odd.
Indeed, to prove (21) we note that

Q=2"+2"+B 27+ B 2+ + B 2 4242 2P 2221

where v +1= {%} . Then, we have the following sequence of equations
n

Q=2""42"+ 5,2 + B, , 2 4.+ B 2 42 (2542 4+ 22 4 241
Q=2"42"+4_2" +p,,2" 7 +..+ f 2" +2" (27 -1)

Q=2"+2"+8 2"+ 8,2 +..+ 2" +1

Q _ 2L (2v+l—L +2v+l—L—1 +ﬂV712V+17L72 +ﬂv72 2v+l—L—3m+ﬂL)+1

Q=2"K+1

where

K=2"t4+2" 48 27+ + B (21)
Equation (20) is proved similarly. For the odd ones of form D we have,

K=2""R4+2" R4+ B 2" " 4+ B.. (22)

We give two examples.



Example 4. For odd number 18303 we have

18303 +1=2"x143.
Therefore R(18303) =7 . Indeed, from Equation (6) we get v =13 and from Equation (1) we

obtain

18303 =2 428 — 222 M 2 4 27 4 2P 4 2T 20 4 22 1 20 1 3+ 22+ 21 41,

Example 5. For the number C1133 which is composite factor of F,, with 1133 digits, we have
C1133-1=2"-K.

Therefore, L (Cl 133) =14,

From Definition 1 and Equations (21), (22) we obtain the following.
Corollary 3.

The conjugate of Q=2"-K +1is Q" =2"-K" -1, and vice versa.
It is easy to prove the following.
Proposition 2.

1. QQ, =Q.

2. DD, =Q.

3.Q0,=D.

4. L(Q)<L(Q,)=L(QQ,)=L(Q).
5.L(Q)<R(D)=R(QD)=L(Q).
6. R(D)<L(Q)=R(QD)=R(D).
7.R(B)<R(B,)=L(DD,)=R(D,).

8. Symmetry (I1, ) = Symmetry (I1, ) = Symmetry (I1,IT, ) > Symmetry (I1, ) = Symmetry (I1, ).

We give two examples:
Example 6. L (641)=7<L (114689)=14 => L (641x114689)=7.
Example 7. R (607)=5<R (16633)=6 => L (607x16633)=5.
A consequence of Proposition 2 is the following.
Corollary 4. 1. Composite numbers of the form C =2"" +1 are written as

C=2"+1=(2" K, +1)(2-K,+1), x=3,

where x=1,2,3,.. and K, K, are odd numbers.

2. Composite numbers of the form C =2""—1 are written as
C=2""-1=(2"-K,+1)(2"-K,-1), x=4,

where X=1,2,3,.. and K,, K, are odd numbers.

From Definitions 1 and 2 we obtain the following.
Corollary 5. In every conjugate pair (H, H*), one number has left symmetry, and the other has right.

4. Transpose of odd number. Categorization of odd numbers

We now give the following definition.



Definition 4. 1. We write the odd D in the form of Equation (1),

D=2"4+2"+B 2 '+ B, ,2" " +.+ B2" +1, (23)
where v +1= |:|In—2} . We define the transpose T (D) of D as
n
1 1 18 = ﬁ - ﬂ v+l v+l < v+1-k
T(D)= +—+ 2y L] 27 =27 3+ 27 24
( ) ( 2v+1 21/ 2v—l 21/—2 21 j ;ﬂk ( )
2. We write the odd Q in the form of Equation (1),
Q=2"+2"+B 2 +B,,2" " +..+ 52" -1, (25)
where v+1= ‘:|In_(2?:| . We define the transpose T (Q) of Q as
n
1 1 ﬁ = IB - ﬂ v+l v+l < v+l-k
T =— e e T N B A 2V 26
(Q) [2v+1 2v 21/—1 2v—2 21 j ;ﬂk ( )
3. We set
T(1)=1. o)
4. From Equations (24), (26), (27) we get the general equation
v-1
T (H) =2+ S, '(3”' Zﬂk 2 j , (28)
k=1

where v +1= II‘I_H .
| In2

Algorithm for the calculation of the transpose. Let II be an odd number. We first calculate

v+l= [Iln—l;l from Equation (6). Next, applying the algorithm described of Example 1, we write
n -

[T in the form of Equation (1), and we calculate £, =£1,i=12,3,...,v =1 and the transpose T (H)

of II from Equation (28).

We now prove a series of results regarding the transpose of an odd number.
Theorem 2.
1. It holds that

T(I)=1ifand only if 1=2"-3,v>2,veN. (29)
2. It holds that

131:1
T(D)=D B =Prea
V+1_{In_D} < k=1,2,3,---,v—;2,v:even (30)
In2
k:1!2’31'--yVT_1,V:0dd



p=-1

T(Q):Q ﬁv—k :_ﬂk+l
v+1:{|n_Q} < k=1,2,3,...,V;2,v=even- (31)
In2

k:1,2,3,...,VT_l,v:odd

Proof. 1. For [1=2" -3 we get
Mm=2" —3=(2V —1)—2=(2V-1+2V-2 V2 +...+21+1)—2

4

=27 42742 4201
that is, I'T has left symmetry, and thus Equation (26) implies T (H) =1. Now, let T(IT)=1. The

odd IThas either left or right symmetry. We only consider the former case, as the latter is similar.
Then

M=2""+2"+B 2" '+ B 2" +..+ B,2°+ B2 -1, (32)
where N+1= ‘:Iln—l;[} . Thus, from Equation (26), we get
n

T (H) =-1-2"-B 2 —.- B, 2"+ 2",

Thus, we have the following sequence of equivalent equations

T(IT)=1

-1-2'-pB 2 —.-B2"+2" =1

—1-2'-B 2~ = B2" 42" 4 2" =" 4]

—1-2'—pB 2~ = B2" 42" 2R =M N 222 1
As the representation in Equation (1) is unique, we have
By=py=py==f=+1

Therefore, (32) implies

M=2"" 42" 42" 42" —1=2(2"+2" 4+ 2" 2 4.+ 2" +1) -1
:2(2n+1_1)_1:2n+2_3 '

Setting N+2=v we obtain [1=2"-3.

2. This is proved similarly. We write D in the form of Equation (1), that is,

D=2""4+2"+8_,2""+ B, ,2" % +..+ 52" +1, (33)
where v+1= “n—l:z)} . Equations (33) and (24) imply

n
T(D)=1+2+8,2"+B,,2° +..+ B,2" + 2. (34)

Then T (D) =D if and only if
142+ 8,2+ B, 20 4o+ 2 + 27 =2 42"+ B 27+ B, 2 o+ 5,20+ B2+ 1.

As the representation in (1) is unique, the proof is complete. O
Theorem 3.



1. If the odd number D has right symmetry, then

T(D)-T(D")=6. (35)
2. If the odd number Q has left symmetry, then
T(Q)-T(Q")=-6. (36)
Proof. We only prove (35), as the proof of (36) is similar. From Equation (33), we get,
D'=2""+2"-p 2" B 2" —..— 52" -1=Q. (37)
Equation (26) implies
T(D")=-1-2+8,,2"+f,,2°+..+ f,2" + 2", (38)
Finally, from (34) and (38), we obtain T (D)-T(D")=6. O
Theorem 4.
For every odd T1, v +1= [In_H} , e, = [2”1, 2”2], then

In2
T(IT)< 22, (39)

Proof. Without loss of generality, we may assume that I'Thas right symmetry. From Equation (34),
and taking into account that £ =+1,i=0,12,...,v -1, we obtain

T(D)=14+2+8,2"+B ,2° +..+ B2  + 2" <1424 22 +.. 42"+ 2" =22 1
T(D)<2"?-1<2""? ’
This result implies that if an odd ITbelongs to the interval Q = [2”1, 2+ :' , its transpose T (IT)

]

can be found in intervals Q,,n<v.

Theorem 5.
If D, Q belongs to the interval CQ, =[2"",2""7], v+1=“n—2}=ﬂn—(§] v=4,5,6,..., then

n n
T(D—2)+T(D):T(Q)+T(Q+2):2”2. (40)

Proof. The smallest odd number D with right symmetry in Q = [2”1, 2”2] is D,,, =2""+3.
Thus, D € Q, if and only if (D - 2) €Q (D> 3). The largest odd number with left symmetry in
the interval Q, is Q,;,, =2"" +1. Thus, the following Q € Q, if and only if (Q+2)eQ, (Q>3
). We do the proof of the equation T (Q) +T (Q + 2) =2""%. The proof of the equation
T(D-2)+T(D)=2"" is similar. From Definition 3 we have

Q=2"+2"+8 2"+ 8,277+ B 2 +. .+ p,2°-2-1

and

Q+2=2""+2"+B 27+ B, ,2" 2+ B, 2" +..+ B,2° -2 +1.

From these Equations and (28) we get

T(Q)+T(Q+2)=2"2. O

Theorem 6.

10



If D, Q belongs to the interval ), = [2,27%], v+1= “n—;):| = |:I|n_(2?:|/ v=4,5,86,..., then
n n

T(D)-T(D-4)=T(Q)-T(Q+4)=2"". (41)
Proof. We do the proof of the equation T(Q)-T(Q+4)=2"". The proof of the equation
T (D) =T (D —4)= 2" is similar. From Definition 3 we have

Q=2""42"+8,,2" "+ B, ,27+ B ;27 +..+ ,2° -2-1

and

Q+4=2""+2"+B 2+ B , 272+ B, 2" +..+ B,2° +2-1.

From these Equations and (28) we get

T(Q)-T(Q+4)=2". O
Expunging T (D) and T(Q) from Equations (40) and (41) we obtain the following.

Corollary 6.
If D, Q belongs to the interval Q, = [27,27%], v+1= “n—l:z)} = [Iln—g}, v=4,5,6,..., then

n n
T(D-2)+T(D-4)=T(Q+2)+T(Q+4)=2"" (42)
Theorem 7.

For every odd 11, then
T(2"-11)=T(m),
where ne N.

Proof. We prove the Theorem for odd D ones with left symmetry. The proof for odd Q ones with
right symmetry is similar. We have

D=2"4+2"+B 2+ B ,2" " +..+ B2" +1,

where v +1= {M—D} .
In2

From this Equation and (24) we get the following equivalent equations,

2nD=2n+V+l+2n+v +ﬂv_12n+v—1+ﬂv_22n+v—2 +”'+ﬂ12n+1+2n
T(zn D):( 1 N 1 + ﬂv—l + ﬂv—Z o+ ﬂl +2_1n).2n+v+l

2n+v+l 2n+v 2n+v—1 2n+v—2 2n+l

o
1 1 ﬂ -1 ﬂ -2 ﬁl 1 +1

= +—+ =+t 4+ 5+ [ 277 =T (D

( 2v+l 21/ 2v—1 21/—2 21 20 ( )

We now give the following definition.
Definition 5. Categorizing odd numbers. Let IT be an odd number.
1. We define as symmetric every odd I1 for which
T(T(Im))=11. 43)
2. We define as asymmetric every odd Il for which
T(T(IT)) =11, (44)

11



From the Euclidean division identity it follows that every odd number IT is written in one of the
following forms,

Q=8m+1=2"K+1, n=34,5,..., (45)
V =8m+3=2°K -1, (46)
U =8m+5=2°K +1, (47)
D=8m+7=2"K-1, n=3,4,5,..., (48)

where K isodd and m=0,1,2,....
Numbers Q, U have left symmetry and V , D have right symmetry. From Equations (45) - (48)
and (28) it follows that odd numbers Q, D are symmetric, and odd numbers V, U are

asymmetric.
Proposition 3.
For the symmetric numbers of the interval Q,, the following holds.

1. If odd number of the form Q have (left) symmetry L, then 3<L<v+1. Q=2""+1 is the unique
odd number of Q, with symmetry L=v +1.

2. If odd number of the form D have (right) symmetry R, then 3<R<v+1. D=2""+7 is the unique
odd number of Q, with symmetry R=v+1.

Proof. We prove 1. The proof of 2 is similar. In Equation (45), if m is odd then L =3, if m is even
then L >3. Of all the odd numbers in the interval Q,, Q =2"** +1 has the largest left symmetry,

L(2”1+1):v+1. o

From Equation (28) and Definition 5 we obtain the following.
Corollary 7.

1. The odd number T
2. The odd number T
3. The odd number T
4. The odd number T

Theorem 8.

Q) is of the form Q.
D) is of the form D.
U) is of the form Q.
V) is of the form D.

VN N N

If an asymmetric odd number belongs to the interval Q. , then its transpose belongs to the interval €2 »

with u<v.

Proof. This is a direct consequence of Equations (46), (47) and (28). i
Equation (35) has been proved for all odd numbers with right symmetry. Equation (36) has

been proved for all odd numbers with left symmetry. Thus from Theorem 3 we obtain the

following.

Corollary 8.

1. For an asymmetric number of the form V ,

T(V)-T(V')=6.
2. For an asymmetric number of the form U,
T(U)-T(U")=-s6.

From Definition 4 we obtain the following.

12



Corollary 9.
1. Let a be an odd number

Q=2"K+1, L>4,
K is odd, belongs to the interval €, then T (Q +4) belongs to the interval Q,_ and T (Q + 2) belongs

to the interval Qv—(L—Z) .

2. Let a be an odd number
D=2%.K-1, R>4,

K is odd, belongs to the interval €2, then T (D —4) belongs to the interval € and T (D—-2)

(R-2)
belongs to the interval €, ;.

From Equations (45) - (48) we obtain the following.

Corollary 10.

A. 1. The odd numbers of the form U , U > 21, have fixed symmetry L =2.

2. The odd numbers of the form V , V 211, have fixed symmetry R=2.

B. 1. The product Q-U is of the form U .

2. The product Q-V is of the form V .

3. The product D-U is of the form V .
4. The product D-V is of the form U .

5. The product U -V is of the form D, with symmetry R ( D) >4,
6. The product V, -V, is of the form Q, with symmetry L=3.
7. The product U, -U, , is of the form Q, with symmetry L=3.

From Proposition 2 and Corollary 10 we obtain the following.

Corollary 11.

A composite odd number has one of the following ten forms.
1. Q=Q0,.

2.Q=DD,.

3. Q=V),.

4.Q=UU,.

5.V =QV,.

6.V =DU,.

7.U=QU,.

8.U=DV,.

9. D=QD,.

10. D=U)\V,.

From Proposition 2 and Corollaries 5 and 9 we obtain the following.
Corollary 12.

For the odd numbers Q, V , U, D the following holds.
1. The product Q-T (Q) is of the form Q.
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2. The product V - T (V) is of the form U .
3. The product U -T (U ) is of the form U .
4. The product D-T (D) is of the form Q.

From Definition 2 we obtain the following.

Corollary 13.

The complementary odd numbers T1 and I1' are of the same form.
We now prove the following.

Proposition 4.

A 1. If Qe Q, is a symmetric number with left symmetry, then

T(Q)=T(3-2""-Q)-6.

2.IfU € Q, is an asymmetric number with left symmetry, then

T(U)=T(3-2""-U)-6.

B. 1. If D € Q, is a symmetric number with right symmetry, then

T(D)=T(3-2""-D)+6.

2.IfV €Q, is an asymmetric number with right symmetry, then

T(V)=T(3:2""-V)+6.

Proof. The proposition is a consequence of Theorem 3 and Corollary 8. We prove A.1. A.2 and B.1,
B.2 are proved similarly. From Equation (36) we get T (Q*) —T(Q)=6 and from Equation (14)
we get

T(3:2-Q)-T(Q)=6

or equivalently

T(Q)=T(3-2""-Q)-6. 5
5. Octet of odd numbers

We now give the following definitions.

Definition 6. We define as the octet ® of odd number II the non ordered octet

= (H,T (),(T (1)) T ((T (1)) ),H*,T (H*),(T (H)) T ((T (H)) )) (49)

Definition 7.

1. From Definitions 1 and 3 it follows that if ITis symmetric, then the numbers of the octet belong
InTI

to the same interval Q. IT belongs to the octet, so v+1= {—I > :l . We define this octet as

n

symmetric.

2. From Definitions 1 and Theorem 8 it follows that if IT is asymmetric, then the numbers of the

octet belong to the same interval €, . We define this octet as asymmetric.

We now give an example which also shows the ways in which we can write a symmetric octet.
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Example 8. From Equation (49) we get the symmetric octet in which IT=889 belongs,
D=(889, 529, 1007, 895, 647, 535, 1001, 641). To distinguish the pairs of transposes and conjugates,
we write the octet in the following form.

889 <« 529 <«*» 1007 <« 895

1 7

647 <« 535 <« 1001 <« 641
Because of Equation (13) (H* ) =TI two conjugates are always connected, in all octets, by the
symbol <, TT<>IT". With IT, «—TT, we denote that T (I1,)=1II, and T (I1,)=TI,. If
T(I—Il)zn2 and T(Hz);tl_[l, we write IT, ——>T1,. We follow this notation when I, is

asymmetric. In our example the octet is symmetric. Therefore IT, «——T1, is valid for all of the

octet numbers. The octet symmetries are easily seen when we place the numbers on the corners
of a regular octagon.

889 <« 529
*‘/l \*
647 1007

T7 IT

535 895
N s
1001 «— 641

A symmetric octet can be composed of eight different numbers, like the one of the previous
example, or of 4 different numbers or of 2 different numbers (with the exception of the degenerate

octets (1,1,1,1,1,1,1,1) of 1and (3,3,3,3,3,3,3,3) of 3). From the Definitions of the conjugate and
the transpose, the following equations are easily proven

2"+l 52" -1

2+ T2 -7

2"+l 27 -7 . (50)
2"+ T« 152"+7

2 1T 52" 1

Considering Equations (50) we get the symmetric octets

(2v+1 _'_1’ 2v+2 _7’ 2v+1 +7’ 2v+1 +7, 2v+2 _1’ 2v+2 _1, 2v+l +1, 2v+2 _7) , (51)
where v=3,4,5,....
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The symmetric octets (51) consist of four different numbers. The Fermat numbers for
v+1=2%,SeN, and Mersenne numbers for V+2= p=prime belong to these octets. The
symmetric octet (9,9,15,15,15,15,9,9) of conjugates (H, H*) =(9,15) consists of two numbers.
Asymmetric octets as generators of symmetric octets. If an odd number Il belongs to a
symmetric octet, then its conjugate IT™ and its transpose T(H) belong to the octet. Also, all the

numbers in the symmetric octet belong to the same interval €, . The asymmetric octets result

from a pair of conjugates (H,H*) belonging to an interval €2, and their transposes
(T (H),T(H*)) in another interval €, p<v (refer to Theorem 8). The octet of the pair

(T (H) T (H* )) is symmetric and we say that it is produced from the initial asymmetric octet.
We now present one example of an asymmetric octet in which one can see the way in which

we can write it so that the asymmetry is evident and so are the symmetric octet that it produces.
Example 9. Let the pair of asymmetric conjugates (U =10301,14275=V). We have

T (10301) =641 and T (14275) =895. Thus U =10301 produces the symmetric octet to which
Q =641 belongs, and V =14275 produces the (same) symmetric octet to which D =895 belongs.
10301

i

641 <« 1001 «*> 535 <« 647

895 <« 1007 <« 529 «'—» 889

AT
14275

The conjugates numbers of the interval €2, express a simple symmetry, they have a center of

symmetry at the middle 3-2" of the interval Q. As a symmetry, the transpose of a symmetric
odd number [T (IT=Q or Il = D) can be expressed through the Octet of Odd Numbers. Starting

from a symmetric number IT, taking conjugate- transpose or transpose-conjugate we return to
the number II. A geometric interpretation of "transpose" is given by Proposition 4. "The
conjugate” and "the transpose” are the fundamental symmetries that emerge from Theorem 1. By
using these symmetries we can find a set of symmetries of the natural numbers.

In the list below we have the transposes of eight odd numbers. The list shows the structure of
the odd numbers related through the symmetry of the 'transpose'.
List of characteristic transposes.
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NeN/N=>3

U=2"-3—-1

Q=2"+112"" -7

V=2"+3—"T57

U=2"+5—"1-2"-7

V=2N-5_T,2"1

D=2"+7«152"+7

Q=2"-7«152""+1

V =3.(2"+1)—>15

U=5-(2"+1)—»2"*-23

D=7-(2"+1)«1>2"*+31

In the list the consequences of Theorem 8 for the asymmetric U and V are seen. Asymmetric
U =2"+5 has the smallest possible difference of an asymmetric with its transpose,

N +5—T(2N +5)=2N +5—(2N —7):5—(—7):12,
However, as a consequence of Theorem 8§,

UeQ,,=[2"2""]and T(U)eQ, ,=[2""2"].

6. Quadruples and pairs of odd numbers.

From the Definition 7 of symmetric octets and Theorem 3, we have that every symmetric octet
consists of two ordered symmetric quadruples ® of the form

©®=(Q,Q+6,Q"-6,Q"), (52)
SO
®=(Q,Q+6,Q/-6,Q,Q,,Q,+6,Q,-6,Q;). (53)

Quadruples (53) are symmetric, in the sense that they belong to symmetric octets. The differences
of the corresponding numbers of two quadruples are the same. Thus we define the distance d of
the quadruples of Equation (53) as

d=[Q,-Q. (54)
This equation also applies to all quadruplets, whether they belong to the same octet or not. If
d %0, then the symmetric octet consists of eight different numbers. If d =0, then it consists of
four different numbers. Such a quadruple is (51). In addition, if we use the equation
Q+Q =3x2"", veN, we take the asymmetric quadruple

(Q=3-2""-3Q+6=3-2""+3Q -6=3-2""-3,Q =3-2"" +3)

which consists of the pair

(3:21-33.2"" +3). (55)

We prove the following.
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Proposition 5.

1. If v =1, the pair of Q,,, =€, is

(Q=9,D=15).

2. If v>2, the pair of the interval Q,, is of the form (U, V),
(U=3-2"-33.2""+3=V).

3. The pair of asymmetrics (U,V ) produces the symmetric pair (9,15) for every v >2.
Proof. 1. If v =1, from Equation (55) we get
(3-2°-3,3-2°+3)=(9,15).

2. We have,
(3-2-8)-5=3.2""-8=8-(2"*~1)=8m,
(3-2*+8)-3=3.2""=8-3-2"" =8m.

3. We have,
U=3.2""-3=2"242""" 2" 42" 427242 % 4. .+ 2" 1,
and from Equation (28) we get T (U ) =9. Similarly we get T (V) =15. o

If Q=8m+1, meN, belongs to the interval Q, =[2"",2"**], v=3,4,5,..., then Q, Q+6
belong to the interval [2"*,3:2"] and their conjugates Q, Q —6 belong to the interval
[3-2",2""%]. Therefore, the different octets of the interval Q, are given by the inequality
2" +1<8m+1<3-2" +1

or equivalently

272 <m<3.27°.

From this inequality we get

Q=8(27+k)+1, k=0,12,..,2"° 1. (56)
From Equation (56) it follows that the interval Q, contains exactly 2"~ different symmetric

quadruples.
From Equation (49) we get Q, = (T (Ql*)) and Q, = (T (Qz*)) . Therefore, the distance (54) of
quadruplets of the same octet (53) is given by the equation

o--(1(0)] @
where Q=0Q, or Q=0Q,.

From Equation (57) we obtain the following.
Corollary 14.
The symmetric odd number T1 (T1=Q orIl =D ) belongs to an octet that contains two same quadruples

if and only if (T (H*)> =II.
Now let the odd numbers Q of the quadruple (52) with (left) symmetry L >4,

Q=2"-K+1, L>3, (58)
where K is an odd number. Taking into account that the quadruples (52) belong to the interval
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[2V+l +1,3-2" +1) we have 2" +1<2".K+1<3-2" +1 or equivalently 2" <K <3-2"" and

finally we obtain
K=2""t 41,2 432 +5,..,,3- 2" -1,
From this Equation we get

K=2"""41421, 1=0,1,2,...,2""" " =1, v> L+1. (59)
From Equations (58) and (59) we obtain,
Q,=2"-(2"""+1+24)+1, L=3, v=L+1, 1=012,.,2" " -1, (60)

From Equation (60) it follows that if v>L+1, the interval Q, contains exactly N =2"""

different symmetric quadruples with symmetry L.

There are quadruples of odd numbers containing asymmetric numbers.
Definition 8.
We define as asymmetric the quadruples

(UU+4U"-4U"), (V.V+4V -4 V7).
Numbers U +4 and V' —4 are of the form Q. Numbers U —4 and V +4 are of form D . For
the asymmetric numbers U and V we have,
U—>Q
and
V—>D.
We now prove the following.

Proposition 6.
1. If one of the equations

U=2"(Q+3)-3—5T(Q)«—0Q,
V=2"(D-3)+3— 5T (D)« >D

is valid, then the other is also valid, n=0,1,2,....
2. If one of the equations

U'=2"-(D-3)-3—"5T((T(D)) )}« >(T (D)),

V'=2"(Q+3)+3— 5T ((T(Q)) |« (T (Q)
is valid, then the other is also valid, n=0,1,2,....

Proof. We prove one of the combinations. The remaining combinations prove similarly. We
assume that the third Equation is valid, we put D =Q" and we get

V=2"-(Q-3)+3—5T(Q")«>Q",

or equivalently, changing the symbolism,

T(2(Q"-3)+3)=T(Q"). (61)
From Equation (6) it follows thatif Q€ Q, , then U € Q) , . Thus, from Proposition 4 we get
T(U)=T(3-2""-U)-6
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or equivalently

T(U)=T(3-2""-2"-(Q+3)+3)-6

or equivalently

T(U)=T(2"-(3-2""-Q-3)+3)-6

or equivalently

T(U)=T(2"-(Q" -3)+3)-6.

and with Equation (61) we get

T()=T(Q)-6

or equivalently, changing the symbolism,

U—5T(Q")-6

and considering Equation (52) for the quadruples of odd numbers (D—-6=Q, where D=T (Q*)

) we obtain,

U%T(Q*)—& 5T(Q)«—Q. O
From Equations (53) and (14) we get the following.

Corollary 15.

IfcI):(Ql,Ql+6,Qf—6,Q1*,Q2,Q2+6,Q;—6,Q;), Q, <Q,, is an octet of Q,, then
®_=(Q-2,Q+6-2"",Q -6+27,Q -2°,Q,+2°,Q,+6-2"",Q;-6+2"",Q; +2°)eQ,,
D, =(Q+2°,Q+6-2,Q -6+2",Q/+2°,Q,-2°,Q,+6-2",Q; -6+2",Q;-2°)eQ,

are also octets of odd numbers.
The Corollary 15 is true if ®_€Q , ®, €Q . If ®_¢Q , then ®_ is not an octet of odd

numbers. If @, ¢ Q) , then @, isnot an octet of odd numbers.

7. The kernel of odd numbers

In this Section we define the odd number kernel and present its basic properties.
Definition 9.
Let X, be a subset of Q2 of the form
X, ={8m+18m+3,8m+58m+7}={Q .V, .U, D} cQ,. (62)
We define as "the kernel" E = E_, of the elements of X,
Q,+3 Vv, +1 U -1 D, -3

E=E, = =2m+1eQ, ,. (63)
4 4 4 4

We prove the following.
Proposition 7.

1. The set X, is written in the form
X, ={4E-34E-14E+14E+3}. (64)
2.If the elements of the set X belong to the set €2, then for the kernel E the following applies,
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T(4E-1)+T (4E-3)=2"", (65)
T(4E+1)+T (4E+3)=2"", (66)
T(4E-3)-T(4E+1)=2", (67)
T(4E+3)-T(4E-1)=2"". (68)

3. For the kernel E = E_ the following applies,

T(4E-3)=T(3-2""+3-4E)-6,

T(4E-1)=T(3-2"* +1-4E)+86,

T(4E+1)=T(3-2""~1-4E)-6,

T(4E+3)=T(3-2""~3-4E)+6.

Proof. 1. From Equation (63) we get

Q=4E-3,V=4E-1,U =4E+1, D=4E+3. (69)
We substitute these Equations in (62) and we get (64).

2. Wereplace Q=4E-3,V =4E-1, U =4E+1, D=4E+3 of Equation (69) in (40), (41) and

we get Equations (65) - (68).
3. We replace Q=4E -3, V =4E-1, U =4E+1, D =4E +3 of Equation (69) in Proposition 4
and we get Equations of 3 of Proposition 7.

From Equation (63) it follows that every odd E is a kernel of the odd ones of a set X. There
are different sets X, X, with common kernel E =E_ . In these cases X, X, belong to

different sets Q,, Q. m
Proposition 8.
1. The kernels of the pair (3- 2"t -3,3.2"" +3) of the interval Q,, v>2, produce the pair of numbers
(3- 2t-1,3.2" +1) of interval €, ,,  which  belong  to  the  quadruple
(3:271-7,3:271-1,3-2"1+1,3-2""+7).
2. Every quadruple (Q, Q+6,Q" -6, Q*) of set €2, has two kernels
Q+3

4 4

E =

with
E +E,=3-2""
Proof. 1. For the pair (3- 2"t -3,3.2"" +3) of Q, we have

U-1_ 3.24-3-1

EV)=—( =7 =32"-1leq,,
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V41 3274341
4 4
2. The quadruple (Q,Q+6,Q*—6,Q*) of set Q,  has two sets of the form X,

E(V) =3.2"41eQ, ,.

Xl:{Q,Q+2,Q+4’Q+6} and X1={Q*—6,Q*—2,Q*—4,Q*} with kernels Ele;"r_3 and
_Q-3
4

e, Q+Q°
4

respectively. From these Equations we get E +E, =

* v+l
:Q+Q :3 2 :3.2v—l.
4 4
From 1 of Proposition 8 it follows that a pair (3~ 2"t -3,3.2" +3) of interval €, produces

and with Equation (14)

we obtain E +E, O

two different quadruples. From 2 of Proposition 8 it follows that starting from a quadruple
O, = (Q, Q+6,Q -6, Q*) of the interval Q , the kernels of

©,=(Q.Q+6,Q"-6,Q")

constitute a new quadruple

©, =(E,,E,+6,E,—6,E,)

of the interval Q _,. Thus, starting from ®, we obtain a sequence of quadruples ©,,0,,0,,....
To create the sequence 0,,0,,0,,... itis necessary to check at each step the form Q,V , U or D
of E;, 1=12,3,...., taking into account that every quadruplet ® is written in the form
®=(Q,Q+6,D-6,D)=(V-2V+4U-4U +2), (70)
where (Q,D) and (V,U) are pairs of conjugate numbers.

We present one examples.

Example 10.

For the quadruple

O, = (6700417, 6700423,5882489, 5882495)
we have

ST 3 o g,

E, = 20249073 1 470623-D,.

Thus, from Equation (70) we get
®, =(1675105,1675111,1470617,1470623).

We have

E, = 1675105+3 _ 418777=Q,,

14706233

E, =367655=D,.

Thus, from Equation (70) we get
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®, = (418777,418783,367649,367655).

We have
E,= % =104695=D,,
g, =3076573 _41913-0q,.

Thus, from Equation (70) we get
©, =(91913,91913,104689,104695).

We have
E, = 1913+3 _ 979 =V,
E, =%=26173=u1.

Thus, from Equation (70) we get
O, = (V1 -2V,+4,U, -4U, + 2) = (22977, 22983, 26169, 26175) .

We have

e 2913 e o

~ 26175-3

E, =6543=D,.

Thus, from Equation (70)we get
O, = (5745, 5761,6537, 6543) .

We have
5745+3
E.LO =

E,

Thus, from Equation (70) we get
0, =(V,-2V,+4,U,-4,U, +2)=(1633,1639,1433,1439).

we have

1633+3
E12 =

=1437=U,,
65433

=1635=V,.

—409=Q,,
1439-3

Es

Thus, from Equation (70) we get
O, = (409, 415,353, 359) .

We have
409+3
E14 =

=359=D,.

=103=D,,
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359-3
Bs=—,

Thus, from Equation (70) we get
O, = (89,95, 97,103) .

=89=Q,.

We have
89+3

E16: 4 :23:D7/
103-3

E17 :T:25:Q7.

Thus, from Equation (70) we get
®,, =(25,3117,23).

We have

25+3
E, = =7=D,eQ =[2°2°],
E, =$=5=u3 eQ =[2°2°].

The interval € :[22, 23] cannot contain a quadruple. Thus the sequence has last term the
quadruple ©,.

The numbers Q, <Q, <Q; <Q,, D, <D, <D, <D, of a symmetric octet ® belong to the set
X,
X, =X, uX,uX,uX, ={Q .V, U, D}u{Q,.V,U,D,}u{qQ,V,U,D,}u{qQ,.V,U,D,}. (71)

The relationship of the numbers of the octet is given by Equation (49). If the octet consists of two
same quadruples, we have @ =0 and

Xe =X, UX,={Q.V,,U;,D,} U{Q,.V,,U,,D,}. (72)
For quadruple ® of Equation (51) we get
Xo =X UX, ={2" +1,2" +3,2" 452" 4.7} Uf2" —7,2% 5 2" 3 N+ 1} (73)

To this set X belong the Fermat and Mersenne numbers.

8. Odd number chains

In this Section we define the chains of odd numbers.
Definition 10.
Let IT>15 be an odd number. We obtain the odd numbers I1,, I1,, I, II, from the equations

Mm-1=2"%.11,
Mm-3=2"%.11,
M-5=2%.11,
M-7=2%.11

~

24



where N;,N,,N;, N, € N". We repeat the process for I1, I1,, I1,, I1,, until we arrive at the odd

numbers 1, 3, 5, 7. We define the terms of the resulting strictly decreasing sequence as “the chain”
of the odd II.

We give an example.

Example 11.

For IT=57 we have
57-1=2%.7
571-3=2-27
57-5=2°.13
57-7=2-25

SO

I, =7

IT, =27

,=13

I1,=25

For I1, =27 we have
27-1=2-13
27-3=2°-3
271-5=2-11
27-7=2%.5

SO

IT, =3

I, =11.

I1,=5

For I1; =13 we have
13-1=2%-3
13-3=2-5
13-5=2°.1
13-7=2-3

so

IT, =1.

For Il =11 we have
11-1=2-5
11-3=2%1
11-5=2.3
11-7=2%1

For I1, =25 we have
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25-1=2°3

25-3=2-11
25-5=2°.5
25-7=2-9

SO

I1,=9.

For I1, =9 we have
9-1=2°1
9-3=2-3
9-5-22.1
9-7=2-1

Thus we get chain A,
A ={T1,11,,T1,,11,,...,11,} = {57,27,25,13,11,9,7,5,3,1},

arranging the elements of the chain in descending order.

Chains of odd numbers have a set of properties, some of which have been fully proven and
some of which have not. Also, proving some of these properties is extremely time-consuming.
Thus, in the remainder of the article we focus only on the presentation and application of the
properties of chains.

First property of chains of odd numbers.
The odd numbers D =8m—1 and Q =8m+1, where m=2,3,4,..., give the same chain.

D =8m-1 and Q =8m+1 have successive kernels,

_8m-1-3

E(D) 2m-1,

MZZm_Fl.

E(Q)

Thus, the first property of chains relates the chains of odd numbers of the sets X, ; and X, ;.

We give an example.
Example 12.
We present the chains of odd numbers of the four sets X of the interval €2, .

33 35 37 39

15 15 17 19
13 9 15 17
7 7 9 9
5 5 7 7
3 3 5 5
1 1 3 3

1 1
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57 59 61 63
27 29 29 31
25 27 27 29
13 13 15 15
11 11 13 13
11 11
77
5 5
3 3
1 1 1 1

The matrices show the consequences of the first property of chains. From the first matrix, we also
conclude that D =31 has the same chain as Q =33, and from the fourth matrix, that Q =65 has

the same chain as D =63. Ultimately, the chains of odd numbers concern the sets X.

9. An algorithm for factoring odd numbers
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The second property of chains concerns an algorithm for factoring odd numbers [1, 2, 3, 5, 8, 10].
Applying the algorithm for odd IT gives factors of both IT and I1'. Therefore the algorithm
applies to a pair (H, H') of complementary odd numbers. We give the steps of algorithm for IT.

Step 1.

Let IT be an composite odd number. The first step of the algorithm depends on the form of II.
1.If IT is of form Q, I[T=Q, from equation

Q-9=2-M

we obtain the odd number M .

2.If IT is of form V , [1 =V, from equation

V-11=2*-M

we obtain the odd number M .

3.If IT is of form U, IT=U, from equation

U-13=2°-M

we obtain the odd number M .

4.1f IT is of form D, IT1=D, from equation

D-15=2°-M

we obtain the odd number M .

Step 2.

We calculate the chain of M .

Step 3.

For the chain of M, at least one of the following is true.

1. IT has common factors with the numbers of the chain.

2. The factors of the numbers in the chain include numbers that either belong to the same octet
with factors of I1 or produce (if they are asymmetric) octets to which factors of I1 belong.

For the factorizations required by the algorithm, we can use the algorithm itself. This results in
four sequences of factorizations, starting from II,, IT,, II; and I1, of the M chain.

There are cases in which the form of the factors of II is known. One such case is the Fermat
numbers, where their factors are of the form Q [4, 6, 7, 9]. Therefore, to factorize Fermat numbers
or their composite factors, we apply the 1 of step 1.

We now give an example of applying the algorithm to an odd number whose factors we know.
The aim of the example is to show how to apply the algorithm.

Example 13.
[1=62177=97-641 is of the form Q. From 1 of second step of the algorithm we get

62177-9=2%.7771.

Therefore it is

M =7771=19-409.

We gradually calculate the chain of M . We have
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7771-1=2-3-5-7-37
7771-3=2°.971
7771-5=2-11-353
7771-7=22.3-647
SO
I, =3-5-7-37
IT, =971
IT, =11-353
IT, =3-647
First, from II,, we take 647, which belongs to the same octet as the factor 641 of 62177.
889 «— 529 «*—» 1007 «1— 895
* $ 3*
647 <« 535 «» 1001 <« 641
From I1, =3-5-7-37 we take
3.5.7.37-1=22.971
3:5-7-37-3=2-3-647
3.5.7.37-5=2°.5.97
3:-5-7.371-7=2-7-277
We notice that the numbers 971 and 3-647 are repeated. Also, the factor 97 of 62177 appears
for the first time, and new odd numbers enter the chain.
From I1, =971 we get
971-1=2-5-97
971-3=2°%.11°
971-5=2.3.7-23
971-7=27.241
In the first equation, the factor 97 of 62177 appears, and indeed by repeating the product 5-97
. Also, new odd numbers enter the chain.
From I1; =11-353 we get
11-353-1=2-3-647
11-353-3=2%.5.97
11-353-5=2.-7-277
11.353-7=22.3-17-19
We notice that the numbers 3-647 and 5-97 are repeated. Also, new odd numbers enter the
chain. For one of them, 3-17-19, we get
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3-17-19-1=2°.11?
3:17-19-3=2-3-7-23
317-19-5=22.241
3-17-19-7=2-13-37
We now apply the algorithm for complementary of I1, I'T'=45793=11-23.181. We have
(refer to Corollary 13)

45793-9=2°.5723.
Therefore it is
M'=5723=59-97.
We have
5723-1=2-2861
5723-3=2°.5-11.13
5723-5=2-3-953
5723-7=2%.1429
so
I1] = 2861
I, =5-11-13
T, =3-953
IT, =1429
First, we notice that the factor 11 of 45793 appears in the factors of I1;, =5-11-13. However, we
apply the algorithm for factoring of Il =62177. We apply a part of the algorithm.

The factor 181 of IT =45793=11-23-181 is asymmetric, and produces the symmetric number
73.

U=181—"->73
The 73 belongs to the following octet.
73 «—> 89 «>» 103 «—> 79
*$ $*
119 <« 95 «> 97 <« 113
The factor 97 of I1=62177 belongs to the same octet.
In the factors of M’ =5723=59-97, the factor 97 of I1=62177 appears.
From IT, =1429 we get
1429-1=2%.3-7-17
1429-3=2.23-31
1429-5=2"-89
1429-7=2-3°-79
The 89 belongs to the same octet as 97 .

The 79 of the product 3°-79 also belongs to the same octet as 97 .
Regarding the factorization of I1’, its factor 23 appears in the product 23-31.
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10. Conclusion.

This article contains ten definitions, eight theorems, eight propositions, and fifteen corollaries,
which give a set of symmetries of odd numbers. These symmetries put Number Theory on a new
footing. In the previous Sections we have presented a large part of the consequences of the
symmetries of natural numbers.
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