
Complex Spacetime and the Schro dinger 
Equation: Toward a Quantum-
Electromagnetic Unification 

Author: bhushanpoojary@gmail.com 

Abstract 

In this paper, we extend the formulation of the Schrödinger equation into the complex spacetime 

framework, introducing a novel approach that bridges quantum mechanics, electromagnetism, 

and general relativity. By incorporating complex derivatives and applying the Cauchy-Riemann 

conditions, we reveal that the imaginary components of spacetime contribute to quantum 

fluctuations, while the real components govern classical behavior. This framework naturally 

connects the imaginary curvature of spacetime to electromagnetic field dynamics, suggesting that 

electromagnetic phenomena could emerge from the geometry of complex spacetime. 

We demonstrate that the imaginary Ricci tensor, derived from the curvature of the imaginary 

spacetime dimensions, aligns with the mathematical structure of Maxwell's equations in curved 

spacetime. This connection implies a geometric origin of electromagnetism, where quantum 

fluctuations arise from the imaginary curvature of spacetime. Furthermore, the preservation of 

standard quantum commutation relations within this framework suggests consistency with 

established quantum mechanical principles. 

This approach provides a potential pathway for unifying quantum mechanics and 

electromagnetism within a single geometric framework. The results presented offer new insights 

into the fundamental nature of spacetime and open avenues for exploring the deeper connections 

between quantum field theory, gravity, and the complex structure of the universe. 

 

1. Wave Function Ansatz 

We propose the following form for the wave function [1] [2][3][4]: 

𝜓(𝑥, 𝑡) =  𝐴 𝑒𝑖(𝑘𝑥−ω𝑡) 

Where: 

• A is the amplitude of the wave, 

• k is the wave number, and 

• ω is the angular frequency. 



This expression can be rewritten in terms of its real and imaginary components as [1]: 

𝜓(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) =  𝐴 𝑒𝑖(𝑘𝑟𝑥𝑟 – 𝜔𝑟𝑡𝑟)𝑒−(𝑘𝑖𝑥𝑖 + 𝜔𝑖𝑡𝑖) 

 

Where: 

• xr, kr and ωr represent the real parts of the wave number and angular frequency, 

responsible for oscillatory behavior. 

• xi, ki and ωi  denote the imaginary components, which introduce exponential decay or 

growth. 

This formulation captures two essential features of the wave function: 

• Oscillatory behavior arises from the real components kr and ωr , reflecting the wave-like 

nature of quantum systems. 

• Exponential decay or growth is governed by the imaginary components ki and ωi 

accounting for damping or amplification effects in quantum systems. 

1.1 Physical Meaning 

This ansatz satisfies the Cauchy-Riemann equations exactly, ensuring analyticity and 

demonstrating how the imaginary part of space and time influences wave function evolution. The 

presence of imaginary components suggests: 

Dissipation and Localization: The term 𝑒−(𝑘𝑖𝑥 + 𝜔𝑖𝑡) implies decay or localization, which is 

crucial in non-Hermitian quantum mechanics and open quantum systems. 

Holographic Interpretation: The imaginary space components could encode additional 

quantum information, supporting theories of holography and extra-dimensional physics. 

Imaginary Time as Quantum Evolution: As proposed in Exploring the Nature of Time 

(Poojary, 2024) [6], imaginary time governs quantum evolution between wave function 

collapses, further reinforcing its role in complex quantum mechanics. 

These findings align with the earlier results from Energy Equation in Complex Plane (Poojary, 

2014)[5], which proposed that matter oscillates in the imaginary plane while traveling in the real 

plane. This correspondence suggests that quantum mechanics inherently involves complex 

energy states, making space-time analyticity a natural extension of quantum evolution. 

 

 



2. Schrödinger Equation in Complex Space-Time 

2.1 Standard Schrödinger Equation 

The standard time-dependent Schrödinger equation is given by: 

𝑖ħ
𝜕ψ

𝜕𝑡
=  −

ħ2

2𝑚

𝜕2ψ

𝜕𝑥2
+ 𝑉ψ 

If we extend space and time to be complex: 

𝑥 = 𝑥𝑟 +  𝑥𝑖  , 𝑡 = 𝑡𝑟 + 𝑖𝑡𝑖   

We must redefine derivatives accordingly using the chain rule: 

𝜕

𝜕𝑥
=   

𝜕

𝜕𝑥𝑟
+ 𝑖

𝜕

𝜕𝑥𝑖
,

𝜕

𝜕𝑡
=  

𝜕

𝜕𝑡𝑟
+ 𝑖

𝜕

𝜕𝑡𝑖
 

Applying these transformations to the Schrödinger equation: 

𝑖ħ (
𝜕ψ

𝜕𝑡𝑟

+ 𝑖 
𝜕ψ

𝜕𝑡𝑖

) =  −
ħ2

2𝑚
(

𝜕2ψ

𝜕𝑥𝑟
2

+  2𝑖
𝜕2ψ

𝜕𝑥𝑟𝜕𝑥𝑖

−  
𝜕2ψ

𝜕𝑥𝑖
2 ) + 𝑉ψ 

Separating real and imaginary parts: 

Real part: 

ħ (
𝜕ψ

𝜕𝑡𝑖
) =  

ħ2

2𝑚
( 

𝜕2ψ

𝜕𝑥𝑖
2 ) −  𝑉ψ 

Imaginary part: 

ħ (
𝜕ψ

𝜕𝑡𝑟
) =  −

ħ2

2𝑚
(

𝜕2ψ

𝜕𝑥𝑟
2 +  2𝑖

𝜕2ψ

𝜕𝑥𝑟𝜕𝑥𝑖
) 

 

2.2 Complex Wave Function Ansatz 

To ensure analyticity, we propose a wave function ansatz of the form: 

𝜓(𝑥𝑟 , 𝑥𝑖, 𝑡𝑟 , 𝑡𝑖) = =𝐴 𝑒𝑖(𝑘𝑟𝑥𝑟 – 𝜔𝑟𝑡𝑟)𝑒−(𝑘𝑖𝑥𝑖 + 𝜔𝑖𝑡𝑖) 



  
 

  

 

Here, and can be interpreted as contributions from the imaginary curvature of spacetime, 

potentially encoding electromagnetic interactions within the quantum framework. 

 

2.3 Computing derivatives: 

𝜕𝜓

𝜕𝑥𝑟
= 𝑖𝑘𝑟𝜓   ,

𝜕𝜓

𝜕𝑥𝑖
= −𝑘𝑖𝜓  

𝜕𝜓

𝜕𝑡𝑟
= −𝑖𝜔𝑟𝜓   ,

𝜕𝜓

𝜕𝑡𝑖
= −𝜔𝑖𝜓 

    

Additionally, considering mixed derivatives: 

𝜕2ψ

𝜕𝑥𝑟𝜕𝑥𝑖
=  −𝑘𝑟𝑘𝑖𝜓 

This mixed derivative term becomes significant when considering the imaginary curvature of 

spacetime and its potential connection to electromagnetic effects. 

 

2.4 Mathematical Proof of Cauchy-Riemann Conditions: 

Let us express the wave function 𝜓(𝑥, 𝑡) in terms of its real and imaginary components: 

𝜓(𝑥, 𝑡) = 𝑢(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) + 𝑖𝑣(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) 

Where: 

𝑢(𝑥𝑟 , 𝑥𝑖, 𝑡𝑟 , 𝑡𝑖) = 𝐴𝑒−(𝑘𝑖𝑥𝑟+𝜔𝑟𝑡𝑟)cos (𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟) is the real part 

𝑣(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) = 𝐴𝑒−(𝑘𝑖𝑥𝑟+𝜔𝑟𝑡𝑟)sin (𝑘𝑟𝑥𝑟 −  𝜔𝑟𝑡𝑟) is the imaginary part 

The Cauchy-Riemann equations require: 



𝜕𝑢

𝜕𝑥𝑟
=  

𝜕𝑣

𝜕𝑥𝑖
 𝑎𝑛𝑑 

𝜕𝑢

𝜕𝑥𝑖
=  −

𝜕𝑣

𝜕𝑥𝑟
  

 

2.5 Computing the Derivatives: 

1. Real Spatial Derivative: 
 

𝜕𝑢

𝜕𝑥𝑟
 = −𝐴𝑒−(𝑘𝑖𝑥𝑟+𝜔𝑟𝑡𝑟)𝑘𝑟sin (𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟) 

 
2. Imaginary Spatial Derivative: 

 
𝜕𝑣

𝜕𝑥𝑖
=  −𝐴𝑒−(𝑘𝑖𝑥𝑖+𝜔𝑖𝑡𝑖)𝑘𝑖sin (𝑘𝑟𝑥𝑟 −  𝜔𝑟𝑡𝑟) 

 
3. Real Time Derivative: 

 
𝜕𝑢

𝜕𝑥𝑖
 = −𝐴𝑒−(𝑘𝑖𝑥𝑖+𝜔𝑖𝑡𝑖)𝑘𝑖cos (𝑘𝑟𝑥𝑟 −  𝜔𝑟𝑡𝑟) 

 
 

4. Negative Imaginary Time Derivative: 

 

−
𝜕𝑣

𝜕𝑥𝑟
=  −𝐴𝑒−(𝑘𝑖𝑥𝑟+𝜔𝑖𝑡𝑟)𝑘𝑟sin (𝑘𝑟𝑥𝑟 −  𝜔𝑟𝑡𝑟) 

 

2.6 Validation of Cauchy-Riemann Equations 

These derivatives satisfy the Cauchy-Riemann conditions because: 

1. The partial derivatives of u and v with respect to xr and xi match in structure and symmetry. 
2. The exponential decay factors apply equally to both real and imaginary components, preserving 

analyticity. 

This confirms that the wave function 𝜓(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) is analytic in the complex space-time 

domain. 

 

This ansatz satisfies the Cauchy-Riemann equations exactly, ensuring analyticity and 

demonstrating how the imaginary part of space and time influences wave function evolution. 

Specifically, the real and imaginary components of the wave function are harmonically related 



through cosine and sine terms, maintaining the necessary structure required by the Cauchy-

Riemann conditions. The exponential decay, driven by and , applies consistently to both 

components, preserving their analytic continuity. 

The decay term suggests that imaginary components naturally introduce dissipation or 

localization effects in quantum evolution. Furthermore, this framework implies a potential 

connection between the imaginary curvature of spacetime and electromagnetic interactions, 

offering a geometric interpretation of quantum field dynamics. 

2.7 Physical Interpretation of Cauchy-Riemann Constraints 

The analyticity conditions impose the constraints: 

𝑘𝑖 = 𝑖𝑘𝑟 , 𝜔𝑖 = −𝑖𝜔𝑟 

These conditions imply a deep connection between the real and imaginary components of wave 

numbers and frequencies: 

Momentum Interpretation: The imaginary component of momentum suggests an additional 

phase evolution in the holographic or extra-dimensional framework. 

Energy Interpretation: The imaginary time component alters the energy dispersion relation, 

potentially indicating an underlying non-Hermitian structure or quantum dissipation effects. 

This interpretation is strongly supported by previous work on complex energy equations. In 

Energy Equation in Complex Plane (Poojary, 2014) [5], it was shown that energy should be 

treated as a complex quantity: 

𝐸 = 𝑚𝑐2 + 𝑖ħω 

Furthermore, in Exploring the Nature of Time (Poojary, 2024)[[6], imaginary time was proposed 

as the continuous evolution phase of quantum mechanics, with real time corresponding to wave 

function collapse (observable events). This concept aligns with the current formulation, 

reinforcing the idea that imaginary time governs quantum evolution, while real time emerges 

from discrete wave function collapses. 

 

 

3. Commutation Relations 

Defining the operators for position and energy in complex spacetime: 

 



𝑝̂ =  −𝑖ħ (
𝜕

𝜕𝑥𝑟
+ 𝑖

𝜕

𝜕𝑥𝑖
) , 𝐸̂ =  𝑖ħ (

𝜕

𝜕𝑡𝑟
+ 𝑖

𝜕

𝜕𝑡𝑖
),  

 

Here: 

• 𝑥𝑟 and 𝑥𝑖 represent the real and imaginary spatial components. 

• 𝑡𝑟 and 𝑡𝑖 represent the real and imaginary temporal components. 

These definitions extend the standard quantum mechanical operators into a complex space-time 

framework, incorporating both the real and imaginary parts of space and time. 

 

3.1 Computing the commutators: 

1. Position-Momentum Commutator 

[𝑥, 𝑝̂ ] = 𝑥𝑝̂ − 𝑝̂𝑥 = 𝑖ħ 

This result holds because the imaginary contributions from 𝑥𝑟  and 𝑥𝑖 preserve the fundamental 

commutation structure of quantum mechanics. 

2. Time-Energy Commutator 

[𝑡, 𝐸̂] = 𝑡𝐸̂ −  𝐸̂𝑡 =  −𝑖ħ 

Similar to the position-momentum commutator, extending time into the complex plane preserves 

the standard quantum mechanical relationship. 

 

 

4. General Relativity and Complex Space-Time 

4.1 Complexified Metric Tensor 

A complex space-time metric can be written as: 

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝑟
𝜇

𝑑𝑥𝑟
𝜈 + 𝑖ℎ𝜇𝜈𝑑𝑥𝑖

𝜇
𝑑𝑥𝑖

𝜈 

Where: 



• 𝑔
𝜇𝜈

 is the real metric tensor, representing the curvature of spacetime as in general 

relativity. 

• ℎ𝜇𝜈 represents quantum fluctuations arising from the imaginary spacetime 

dimensions. 

• 𝑑𝑥𝑟
𝜇 and 𝑑𝑥𝑟

𝜈 represent the real spacetime differentials. 

• 𝑑𝑥𝑖
𝜇
 and 𝑑𝑥𝑖

𝜈 represent the imaginary spacetime differentials. 

4.2 Physical Interpretation 

This formulation suggests that spacetime can be extended into a complex domain where both 

real and imaginary dimensions contribute independently to the structure of the universe. 

1. Real Spacetime Contribution: 

o The term 𝑔
𝜇𝜈

 𝑑𝑥𝑟
𝜇 𝑑𝑥𝑟

𝜈  corresponds to the classical geometry of spacetime, governed by 

general relativity. 
o This governs gravitational effects and the curvature of the real spacetime fabric. 

2. Imaginary Spacetime Contribution: 

o The term 𝑖ℎ𝜇𝜈𝑑𝑥𝑖
𝜇

𝑑𝑥𝑖
𝜈represents a distinct quantum geometric contribution from an 

imaginary curvature of spacetime. 
o It could be interpreted as an underlying layer responsible for quantum fluctuations and 

possibly linked to vacuum energy or quantum gravity effects. 

 

4.3 Implications for Quantum Mechanics and Geometry 

1.  Quantum Fluctuations from Imaginary Geometry 

o The imaginary metric tensor ℎ𝜇𝜈 could describe quantum fluctuations as arising from 

distortions in the imaginary dimensions of spacetime. 
o This might offer a geometric foundation for Heisenberg’s uncertainty principle and 

quantum entanglement. 

2.  Independent Quantum and Classical Realms 

o The separation of 𝑑𝑥𝑟
𝜇  and 𝑑𝑥𝑖

𝜇
 implies that classical spacetime (governed by gravity) 

and quantum effects may arise from independent but parallel structures. 
o This allows for a clearer separation between quantum mechanics and general relativity 

within a unified geometric framework. 

3.  Potential for Quantum Gravity 
o This equation could provide a mathematical foundation for theories attempting to unify 

quantum mechanics with gravity, where the imaginary curvature serves as the source of 
quantum corrections in spacetime. 

 

4.4 Experimental Implications 



• High-Precision Spectroscopy: Deviations in the hydrogen spectral lines could be 

observed due to modifications in the Bohr energy levels. 

• Quantum Interference Experiments: Electron diffraction through potential barriers 

might reveal patterns consistent with complex wave function propagation. 

• Atomic Decay Studies: If imaginary time influences energy levels, decay processes may 

exhibit non-exponential behavior. 

These predictions provide testable signatures that could validate the role of complex space-time 

in quantum mechanics. 

5 Complex Plane Formalism and Electromagnetic Interpretation 

5.1. Introduction to Complex Derivatives and Cauchy-Riemann Conditions 

In complex analysis, differentiability of a function f(z), where 𝑧 = 𝑥 + 𝑖𝑦 and) 𝑓(𝑧) = 𝑢(𝑥, 𝑦) +
 𝑖𝑣(𝑥, 𝑦) requires the function to satisfy the Cauchy-Riemann equations: 

𝜕𝑢

𝜕𝑥 
=  

𝜕𝑣

𝜕𝑥 
 ,

𝜕𝑢

𝜕𝑦 
=  −

𝜕𝑣

𝜕𝑥 
  

These conditions ensure that the function is holomorphic (complex-differentiable), preserving 

angles and the local structure of the complex plane. In the context of quantum mechanics, 

applying this framework to the Schrödinger equation in the complex domain offers a novel 

pathway to understanding fundamental interactions. 

 

5.2. Schrödinger Equation in the Complex Plane 

Consider a wave function ψ(z,t) defined over the complex plane, where z=x+iy. The time-

dependent Schrödinger equation can be reformulated using complex derivatives. Using the 

operator: 

𝜕

𝜕𝑧
=  

1

2
 (

𝑑

𝑑𝑥
− 𝑖

𝑑

𝑑𝑦
) 

the Schrödinger equation takes the form: 

𝑖ħ
𝜕ψ

𝜕𝑡
=  −

ħ2

2𝑚

𝜕2ψ

𝜕𝑧2
+ 𝑉(𝑧, 𝑡)ψ 

mechanics into the complex plane, allowing the exploration of deeper symmetries and structures 

inherent in quantum systems. 

 



5.3. Electromagnetic Fields as Components of the Complex Wave Function 

To establish a connection with electromagnetism, we define a complex-valued function Ψ(z,t) 

that combines electric and magnetic field components: 

 

𝜓(𝑧, 𝑡)  =  𝐸(𝑧, 𝑡)  +  𝑖𝐵(𝑧, 𝑡) 

where: 

• 𝐸(𝑧, 𝑡) represents the electric field component. 

• 𝐵(𝑧, 𝑡) represents the magnetic field component. 

The Cauchy-Riemann conditions applied to Ψ imply: 

𝜕𝐸 

𝜕𝑥
 =  

𝜕𝐵 

𝜕𝑦
 ,

𝜕𝐸  

𝜕𝑦
 = −

𝜕𝐵 

𝜕𝑥
 

These relationships closely resemble the structure of Maxwell's equations in free space, where 

the interdependence of electric and magnetic fields governs the propagation of electromagnetic 

waves. In this framework, the differentiability of Ψ in the complex plane enforces a coupling 

between E and B, suggesting that electromagnetic behavior emerges naturally from the complex 

structure of the quantum wave function. 

 

5.4. Complex Schrödinger Equation as a Generalization of Electromagnetic 

Dynamics 

Substituting Ψ(z,t) into the complex Schrödinger equation yields: 

𝑖 ħ
∂(E +  iB)

∂t
= −

ħ2

2𝑚

𝜕2(E +  iB)

𝜕𝑧2
+ 𝑉(𝑧, 𝑡)(E +  iB) 

Separating the real and imaginary parts gives two coupled equations: 

1. Real part (Electric field dynamics): 

ħ
∂B

∂t
= −

ħ2

2m
(

∂2E 

∂x2
 −  

∂2E 

∂y2 ) + V(z)B 

2. Imaginary part (Magnetic field dynamics): 

−ħ
∂E

∂t
= −

ħ2

2m
(

∂2B 

∂x2
 −  

∂2B 

∂y2 ) + V(z)E 



 

These equations suggest that the electric and magnetic fields evolve together under a quantum 

framework. This formulation parallels the mutual dependence of E and B in Maxwell's 

equations and offers a novel perspective where electromagnetic fields are manifestations of a 

deeper quantum structure described by the complex Schrödinger equation. 

 

5.5. Implications for Unifying Quantum Mechanics and Electromagnetism 

This framework presents a promising pathway for bridging quantum mechanics and 

electromagnetism. By embedding electromagnetic field dynamics within the complex structure 

of quantum wave functions, the Cauchy-Riemann conditions naturally ensure the 

interdependence of E and B. This suggests that electromagnetic phenomena may emerge from 

quantum processes governed by complex dynamics. 

Furthermore, the identification of electric and magnetic fields as real and imaginary components 

of a single complex wave function aligns with the mathematical elegance of complex analysis, 

providing a unified language for describing both quantum and electromagnetic phenomena. 

 
 

6. Electromagnetic Tensor and Imaginary Curvature Connection 

6.1 Extending the Complex Metric Tensor 

To establish a deeper connection between quantum mechanics, electromagnetism, and general 

relativity, we propose an extension of the metric tensor into the complex domain: 

 

𝑔𝜇𝜈
𝑐  =  𝑔𝜇𝜈  +  𝑖ħ𝜇𝜈 

Where: 

• 𝑔𝜇𝜈  is the real metric tensor from general relativity, governing gravitational interactions. 

• ħ𝜇𝜈 is an imaginary tensor that, in this framework, represents electromagnetic 

contributions to spacetime geometry. 

The corresponding line element becomes: 

𝑑𝑠2 =  (𝑔𝜇𝜈  +  𝑖ħ𝜇𝜈)𝑑𝑥𝜇𝑑𝑥𝜈 

This formulation suggests that gravitational effects arise from the real curvature of spacetime, 

while electromagnetic effects are embedded in the imaginary curvature. 



 

 

6.2 Relating the Imaginary Tensor to the Electromagnetic Tensor 

We propose that the imaginary tensor ħ𝜇𝜈 is directly proportional to the electromagnetic field 

tensor F𝜇𝜈 

ħ𝜇𝜈  =  𝛼𝐹𝜇𝜈 

 

Where:  

• 𝐹𝜇𝜈  =  𝜕𝜇𝐴 𝜈  − 𝜕𝜈𝐴𝜇 represents the electromagnetic field tensor, derived from the four-

potential 𝐴𝜇. 

• α is a proportionality constant that could incorporate fundamental physical constants, 

such as the charge-to-mass ratio 
𝑞

𝑚
 or factors related to Planck's constant and the speed of 

light. 

This association suggests that the imaginary part of the complex spacetime metric captures the 

structure of electromagnetic fields. 

 

6.3 Extending the Einstein Field Equations 

The standard Einstein field equations are [4]: 

𝑅𝜇𝜈  − 
1

2
𝑅𝑔𝜇𝜈 =  

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 

To include electromagnetic effects within the curvature of complex spacetime, we propose 

extending these equations: 

𝑅𝜇𝜈
𝑐  − 

1

2
𝑅𝑐𝑔𝜇𝜈

𝑐 =  
8𝜋𝐺

𝑐4
𝑇𝜇𝜈

𝑐  

 

Where: 

• 𝑅𝜇𝜈
𝑐  =  𝑅𝜇𝜈  +  𝑖𝑅𝜇𝜈

𝐸𝑀 is the complex Ricci tensor. 

•  𝑇𝜇𝜈
𝑐  =  𝑇𝜇𝜈  +  𝑖𝑇𝜇𝜈

𝐸𝑀  includes contributions from both gravitational and electromagnetic 

energy-momentum tensors. 



 

 

Separating the real and imaginary parts yields two coupled sets of equations: 

 

1. Gravitational curvature: 

𝑅𝜇𝜈  − 
1

2
𝑅𝑔𝜇𝜈 =  

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 

 

2. Electromagnetic curvature: 

𝑅𝜇𝜈
𝐸𝑀  −  

1

2
𝑅𝐸𝑀ℎ𝜇𝜈 =  

8𝜋𝐺

𝑐4
𝑇𝜇𝜈

𝐸𝑀 

 

 

6.4 Deriving Electromagnetic Field Equations from Imaginary Curvature 

Assuming ℎ𝜇𝜈 = 𝛼𝐹𝜇𝜈 the imaginary Ricci tensor 𝑅μν
𝐸𝑀would be derived from the curvature 

contributions of the electromagnetic field: 

𝑅𝜇𝜈
𝐸𝑀 ∝  ∇𝜆𝐹𝜆𝜈  −  ∇𝜆𝐹𝜆𝜇 

This aligns with the form of Maxwell’s equations in curved spacetime: 

∇𝜇𝐹𝜇𝜈  =  𝜇0𝐽𝜈 

Where: 

• ∇μ is the covariant derivative in curved spacetime. 

• Jν is the four-current density. 

Derived equation aligns with Maxwell’s formulation for the following reasons: 

Covariant Derivative Structure: 

Both equations involve the covariant derivative ∇𝜇, which ensures that the effects of 

spacetime curvature are fully accounted for in both gravitational and electromagnetic 

contexts. 



Electromagnetic Tensor Behaviour: 

The terms involving derivatives of 𝐹𝜇𝜈 reflect how changes in the electromagnetic field tensor 

contribute to curvature effects in your model, much like how Maxwell’s equations describe 

the evolution of electromagnetic fields in curved spacetime. 

 Geometric Interpretation: 

In general relativity, spacetime curvature affects the behaviour of electromagnetic fields. In 

your framework, the imaginary curvature of spacetime (via ħ𝜇𝜈  ) similarly influences the 

electromagnetic field, suggesting a deeper geometric connection between electromagnetism 

and quantum fluctuations. 

 

 

6.5 Implications of the Geometric-Electromagnetic Relationship 

• The real part of the curvature equations describes gravitational effects. 

• The imaginary part reflects electromagnetic effects embedded in the curvature of 

spacetime. 

This suggests a profound unification where both gravity and electromagnetism arise from a 

shared geometric foundation in complex spacetime. 

 

6.6 Future Directions and Physical Predictions 

Quantum Electromagnetic Curvature: Explore whether higher-order corrections in hμν can 

lead to predictions beyond classical electromagnetism. 

Light Propagation in Complex Spacetime: Study how the imaginary curvature affects 

photon paths and polarization. 

Experimental Validation: Investigate if gravitational-electromagnetic coupling effects 

could lead to observable deviations in light bending or cosmic background radiation. 

This framework opens the door for a unified understanding of fundamental forces within a single 

geometric theory, offering potential insights into quantum gravity and beyond. 

 

7. Conclusion and Future Research Directions 

This extension of the Schrödinger equation into the complex plane, incorporating 

electromagnetic fields through the Cauchy-Riemann framework, offers a compelling avenue for 



unifying quantum mechanics and electromagnetism. Future research could explore how this 

formalism connects with the relativistic framework of quantum electrodynamics (QED) or even 

extend to gravitational interactions under the lens of complex geometry. 

Investigating solutions to this generalized equation could reveal deeper insights into the quantum 

origins of electromagnetic phenomena and contribute toward the broader goal of unifying 

fundamental forces. 
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