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Abstract
The numbers whose sum of divisors is a perfect square may initially appear to follow no 

specific pattern. However, through this research, I have identified a particular rule related to 

prime numbers. Furthermore, I establish that the existence of infinitely many numbers whose sum 
of divisors is a perfect square is a necessary and sufficient condition for the existence of an 

irreducible polynomial with integer coefficients that generates infinitely many prime numbers. 

Additionally, I explore its connection to Bunyakovsky's conjecture.

Introduction
While studying perfect numbers — numbers that are equal to the sum of their proper divisors 
—I extended my research to the sum of all divisors, rather than just the proper ones. In doing 
so, I observed that a significant number of integers have a sum of divisors that forms a perfect 
square. This led me to establish certain patterns and conduct further investigation, ultimately 
revealing a connection to Bunyakovsky’s conjecture. If this paper contains no errors, resolving 
Bunyakovsky’s conjecture through this approach would hold even greater mathematical 
significance than previously recognized.
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Background Knowledge

Introduction of the Key Function: The Divisor Sum Function 

 


    →  

The function described here is the sum of divisors function , which represents the sum of 
all divisors of a number n. We will refer to numbers whose sum of divisors is a perfect square 
as DS numbers. Thus, the sequence of DS numbers will be called the DS sequence, and the 
set of DS numbers will be referred to as the DS set. The DS set will be listed in increasing 
order, excluding duplicates. Therefore, the n-th element of the DS set is the n-th DS number 
and corresponds to the n-th term of the DS sequence. 
Note that 1 is not considered a DS number.
Upper density: This refers to the upper bound of the proportion of a subset within the set of 
natural numbers, indicating the density of that subset in the natural numbers.

P is set of prime number

1
The numbers whose sum of divisors is a perfect square are listed as follows:



It seems that there is no clear pattern. However, let's consider 22, 94, and 214. In doing so, we 
can easily discover a pattern.

  ×    ×    ×

All three numbers are twice a prime number.

  ×    ×



Moreover, 66 and 282 are six times 11 and 47, respectively. Therefore, it is a natural conjecture 
that six times 107 will also be a DS number. 

×          

We are satisfied. Therefore, although not all DS numbers can be expressed as twice a prime nu
mber, we can observe that twice certain primes (11, 47, 107, ...) are DS numbers. If we find a 
pattern among the primes 11, 47, 107, ..., we may be able to discover a rule for the DS numbe
rs.

⋯

The difference between 11 and 47 is 36, and the difference between 47 and 107 is 60. 36 is 

the square of 6, and 60 is the product of 6 and 10. Therefore, we have a sequence that 

increases by a constant amount, denoted as ×     ⋯, and let’s call this 

sequence . According to this pattern, the next term in the sequence is 107+84=191. 

If our conjecture holds, then twice 191 should also be a DS number.

      

Twice 191, which is 382, is also a DS number. However, twice 299, the next term 191+108 = 
299, is not a DS number.

      ××

However, twice 431, the next term 299+132=431, is a DS number.

      

The decisive difference between 11, 47, 107, 191, 431 and 299 is that the former are prime 

numbers, while 299 is a composite number, being the product of 23 and 13. Therefore, we can 
make the following conjecture:

Conjecture 1 If a number is included in  and is a prime, then twice that number is a DS n

umber.



To prove Conjecture 1, let's first find the general term of the sequence . The recurrence 

relation for  is as follows:

 ×  

Solving the recurrence relation gives us the following:

 

The difference between two consecutive terms is as follows:

   

Let the sequence  be defined as follows:

   ≥    

Then,  is an arithmetic sequence with a common difference of 24. Therefore, we can 

conjecture that the general term of  is in the form of a quadratic expression.

Theorem 1 If  is an arbitrary sequence with all positive terms that is monotonically 

increasing, and      is an arithmetic sequence, then the general term of  is a 

quadratic expression.

-proof-

Since      is an arithmetic sequence, we can consider      . Then, for the 

common difference d, we have:

  ≠

 




  




  




  











   




 





 



This is a quadratic expression in terms of n. ■

Applying Theorem 1 to , we get the following:

 

 

 

In this way, we have found the general term of .

Now, we can state Conjecture 1 as follows:

Conjecture 1  For any natural number n≥1 , if p is a prime of the form   , then 

is a perfect square.

-proof-

The divisors of a prime p are only 1 and p. Therefore, for any prime p, the divisors of p are 
just 1 and p. The divisors of 2p are 1,2,p, and 2p. Thus, the sum of the divisors of 2p is 

3p+3. If p has the form   , then the sum of the divisors of 2p is as follows:

      

Therefore, if p has the form   , then 2p is a DS number. ■

2
Lemma 2 If two arbitrary natural numbers a and b are coprime, then   .

-proof-

 


   


 ⇒  








Because the divisors d and k of a and b, respectively, are all distinct (other than 1), we can 

separate the sum of the divisors as follows: 






 





  

∴gcd   ⇒   

                                                     ■

Theorem 2 For a prime p and a natural number t that is not a multiple of p , 
   .

-proof-

For a prime p and a natural number t that is not a multiple of p, p and t are coprime. 

Therefore, by Lemma 2, we have: 

        

                                                     ■

Lemma 2-1 For a prime p of the form    , except when p and q are the same, 

p and q are always coprime (q,n are natural numbers).

-proof-

Since q is a natural number, it is at least 1. If q=1, then it is obvious that q and p are 

coprime. Thus, we only need to consider the case where q is greater than 1.

≥  ⇒ ≥  

   ≥  ≥ 

∴  ∵≠

When q is greater than 1 and not equal to p, we know that p is greater than q.
Now, suppose that p and q are not coprime; that is, they share a common divisor greater than 
1. Since p is a prime number, any common divisor other than 1 must be p itself. Thus, 



p must be a divisor of q. Therefore, p must be smaller than q (since they are not equal). 
This contradicts our earlier observation that p is greater than q. Thus, our assumption is false, 
Therefore, there can be no common divisor of p and q other than 1, and p and q are always 
coprime when they are not equal.  ■

Theorem 2-1 For a prime p of the form    , pq is a DS number. (q,n are natural 

numbers, and p≠q).

-proof-

By Lemma 2-1, p and q are always coprime. Therefore, by Lemma 2, we have:

  

 And since p is a prime of the form    , by Theorem 2, we have:

    

Therefore, the sum of the divisors of pq is a perfect square, so pq is a DS number. ■

Above, we showed that when p≠q and p is a prime of the form    , pq is a DS 

number. Now, we examine the case when p and q are equal.

Theorem 2-2 If p=q and p is a prime, then pq is not a DS number.

-proof-

    

Assume that a perfect square of this form exists.

  ∈ 

 

±



   ∈ ∵∈ 

  

  

  ×   ∧      ∴        

∴ 

 

±
 

pq can be a DS number only when p=0 and k=1, but 0 is not a prime.
Therefore, such a perfect square does not exist, and there is no prime p for which pq is a DS 
number when p=q.  ■

3

Above, we proved that for a prime p of the form    , if p≠q then pq is a DS number.

Therefore, the question "Do infinitely many DS numbers exist?" can be rephrased as 

"Do infinitely many primes of the form     exist?" 

However, there are a few important points to consider.

Theorem 3 If q is a DS number, then the only prime of the form     is 3.

-proof-

If q is a DS number, then  is a perfect square. Then,

      ∈  

p must be a prime. Therefore, the smaller of the two terms must be 1.

      



Since n is a natural number, q must be 1. Therefore, when n=2 and q=1, the value of p is 3.

Therefore, if q is a DS number, the only prime of the form     is 3.  ■



In other words, "When q is not a DS number, there are infinitely many primes of the form 

   " is equivalent to "There are infinitely many DS numbers."

Theorem 3-1 If there are infinitely many primes of the form     when q is not a 

DS number, then there are infinitely many DS numbers. the converse does not hold.

-proof-

Let proposition P be "There are infinitely many primes of the form     when q is not a 
DS number." Let proposition Q be "There are infinitely many DS numbers." 

Thus To show that P is a sufficient condition for Q, we need to prove that 

if P holds, then Q also holds.

 ⇒  

suppose that P is true, that is, assume there are infinitely many primes of the form    .

By Theorem 2-1, if p is of the form     and p≠q, then pq is a DS number.

By the assumption, there are infinitely many p determined by n and q, and there are also 

infinitely many q that generate p. Therefore, for primes of the form    , there are 

infinitely many pq, and since all of these pq are DS numbers, there are infinitely many DS

numbers. that is, Q holds.

⇒  

(Assuming that Q is true) That is, suppose that DS numbers exist infinitely.

It suffices to show that for every DS number p of the form    , it is of the form pq .

 ⋯

However, it can be seen that for prime numbers p of the form    , such as 70 or 81, 

they are not of the form pq. Therefore, in general, not every DS number is of the form pq 

with p =     Therefore, if P then Q, but the converse does not hold. ■

Therefore, if there exist infinitely many prime numbers p of the form    , then 

DS numbers exist infinitely.

Theorem 3-2     →   is neither surjective nor injective.



-proof-

 

    

Therefore, it does not satisfy injectivity.

Since there does not exist a  that satisfies   , it does not satisfy surjectivity. ■

Theorem 3-3  The image of    →  , denoted by S, is a set that is vastly sparser than the

domain, the set of natural numbers.  [1]

-proof-

   ⇒  ≥  ∈

∴  ≤ ⇒ ≤

∴   ≤  ⊆ …

Therefore, the choice of n is limited to up to x.

By the Fundamental Theorem of Arithmetic, every natural number can be uniquely expressed as 
a product of prime numbers. Thus

 
 




 (    …   are distinct prime numbers ,  ≥  ) then

By Lemma 2,    
 




  

 




  

Since 
  is the sum of a geometric series,


  


 



For each , 
  is monotonically increasing with respect to , and since it is 


  

   
  




  


 




 

≤
  

 When we denote it as  ≤ .


  


 

≤ 

Since there exists an appropriate positive constant A, it can be deduced that it is 
  

≪ .

 ≪log 

log 
⇒  ≪log 

log 

Therefore, for a fixed prime p, the number of possible values for e can be estimated, and it is 
as follows.

  ⌗∈∪   ≤  ≪ log 

log 
  

An upper bound for the number of values R(x) within the range S can be determined.

The elements m of S are determined by the selection of a finite number of primes and their 

corresponding exponents. Therefore,

 ⌗∈  ≤  ≤ 
≥


  ⋯

 ≤


 



  

P(x) is a sufficiently large upper bound that guarantees x is greater than or equal to m.  

And since it is  ≪log 

log 
,

 ≪ 
≥


 ⋯


 



log 

log 

And as the prime p increases, log   becomes smaller, so




≤
log 

log 
≪ log  × 

≤

log 
 ≪ log  ×log




an upper bound can be obtained. By using the more refined Erdős–Pomerance method, the follo
wing upper bound can be derived, and the existence of an absolute constant A can be proven.

log ≪ logloglog ⇒  ≪ 
logloglog 


logloglog   ∀   

Since x is not zero, dividing by x and taking    gives the following.




≪ 


∴ lim

→∞



 

lim
→∞


⌗∈ ≤ 
 

Therefore, the upper density of the image S of the function  is 0.

On the other hand, the upper density of the set of natural numbers is as follows.

⌗∈  ≤  ∴ lim
→∞


⌗∈   ≤ 
 


 

Therefore, the image S of the divisor function is vastly sparser compared to the domain, the set 
of natural numbers.  ■

Theorem 3-4  The image S of the divisor function is an infinite set.

-proof-

It suffices to show that the divisor function  takes infinitely many values.

If we denote it by    ≥ , then   is equal to the sum of a geometric series.

Thus         As  increases,     also increases. Thus For distinct values of k, 

  is distinct.  Therefore, for k=0,1,2,3,… it can be seen that infinitely many distinct values e
xist, all of which are included in the image S. Therefore, S is an infinite set.  ■
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By Theorem 3-3, when considering     , not all natural numbers are the 

coefficients of leading term. Therefore, for q that is not a DS number, if the images of    

     (   →   ) contain infinitely many primes, then there are infinitely 

many primes of the form   . Thus If the image of      contains 

infinitely many primes, then DS numbers exist infinitely.

Theorem 4 "For a non-DS number q and a natural number n, if the image of 

     (   →   ) contains infinitely many primes" is equivalent to 

"There are infinitely many primes of the form   ".

-proof-

Proposition A: The image of the function f,      ∈      ∈  

contains infinitely many primes.

Proposition B: There are infinitely many primes of the form   .

⇒ 

If the image of f contains infinitely many primes, then the following set is an infinite set.

∈      ∈

     

Since the above set is an infinite set, there are infinitely many distinct elements. 

Thus There are infinitely many     

⇒ 

Conversely, if there are infinitely many     , then the following set is an 

infinite set.

∈      ∈

And that set is equal to  ∩ . Therefore, the image of f contains infinitely many primes.

 ⇒  ∧ ⇒   ≡ ⇔ 

Therefore, A and B are equivalent.  ■



Now, to prove that DS numbers exist infinitely, it suffices to show that the polynomial 

    , where q is not a DS number, generates infinitely many primes.

The image of      contains infinitely many primes. ⇔ There are infinitely many

primes of the form   . ⇒ Infinitely many DS numbers exist. (By Theorem 3-1 and 

Theorem 4) 

The statement "For a non-DS number q,      takes infinitely many prime values" 

is a special case of the Bunyakovsky conjecture.

5
Bunyakovsky conjecture

  

The Bunyakovsky conjecture is an unsolved problem in number theory that concerns whether a

polynomial with integer coefficients can generate infinitely many primes. 

The Bunyakovsky conjecture asserts that for a polynomial  that satisfies the following 

three conditions, there are infinitely many prime values among the outputs of  for 

natural numbers n.

1. Integer coefficients and degree.  [2]

The polynomial  is an integer-coefficient polynomial with degree at least 1.

And the leading coefficient is positive

2. Irreducibility.

 is an irreducible polynomial over the integers, meaning that  cannot be factored into 

non-constant polynomials with integer coefficients.

3. The existence of a common divisor.

There no common factor for all the infinitely many values ,,, …

(in particular, the coefficients of  should be relatively prime. it’s not necessary for the 

values  to be pairwise relatively prime.)

Currently, the Bunyakovsky conjecture has been proven to hold only for linear polynomials 

(Dirichlet's theorem)

The statement "For a non-DS number q,      takes infinitely many prime values" 

corresponds to the case where a quadratic polynomial     ,        

in the Bunyakovsky conjecture.



Theorem 5  If the Bunyakovsky conjecture is true, then for a non-DS number q,

     takes infinitely many prime values.

-proof-

We just need to check whether      satisfies the three conditions mentioned above.

1. The leading term is of degree 2, and    →  thus  have integer coefficients.

2. Since q is not a DS number,  is not a perfect square. Therefore,      is

irreducible over the integers.

3. If there exists a prime r that divides all the values in the image of     , 

a contradiction arises.

      

When n=0 , -1 is not divisible by r. Therefore, there cannot exist a common divisor r of all the 

values in the image of     .

Since      satisfies the three conditions of the Bunyakovsky conjecture, if the 

Bunyakovsky conjecture is true,      generates infinitely many primes. ■

And since      is a quadratic polynomial, it follows that even if the Bunyakovsky 

conjecture is proven only for quadratic polynomials, it can be concluded that      
generates infinitely many primes. 

And even if only the case of    is proven, it can be concluded that       

generates infinitely many primes.

Therefore, the following logic holds.

The Bunyakovsky conjecture is true, or it is true in the case of quadratic 

polynomials in the Bunyakovsky conjecture.

⇓           

   generates infinitely many primes.  (By Theorem 5)

⇕



  Infinitely many primes of the form  exist.  (By Theorem 4)

⇓

Infinitely many DS numbers exist. (By Theorem 3-1)

conclusion
If the Bunyakovsky conjecture is true, then infinitely many DS numbers exist. Or

If the Bunyakovsky conjecture is true for quadratic polynomials, then infinitely many 

DS numbers exist.
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