Solutions for Dot Product and Cross
Product Equations of Vectors

Saburou Saitoh
Institute of Reproducing Kernels
saburou.saitoh@gmail.com

February 17, 2025

Abstract: For the fundamental equation ax = b, we naturally consider
the Moore-Penrose generalized solutions and we obtain the division by zero
b/0 = 0 always as its unique solution. So, here, we will consider the solutions
of the dot product equation a-x = b and the cross product equation a x x = b.
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1 Introduction

For the fundamental equation ax = b, we naturally consider the Moore-
Penrose generalized solution. Then, the equation has a unique solution al-
ways and we obtain the division by zero b/0 = 0 always as its unique solution.
For the development on the division by zero and the division by zero calculus
for functions, see the basic references cited. So, here, we will consider the
solutions of the dot product equation a-x = b and the cross product equation
axx=h.

In order to give the basic concept and method for our generalized solution
of general linear equations, we recall the basics from [7], pages 133-193.



1.1 Moore-Penrose generalized solution

Let L be any bounded linear operator from a reproducing kernel Hilbert
space Hy (F) admitting a kernel K : E'x E'— C into a Hilbert space H. We
set K, = K(-,p).

For any member d of H, we consider the best approximation problem

inf Lf—d|. 1.1
feHK(E)H f—d|ln (1.1)
Set
k(p,q) = (L"LKy, L"LK)) e (my = L"LL*L[K,](p) (1.2)
and
P = projg, (g)-sker(£)* = POJ 1 (B)»Ran(L L) (1.3)

Theorem A: Under the notations (1.2) and (1.3), we have
H(B) = {I’Lf - | € Hy(B)) (1.4
and the inner product is given by:
(L*Lf, L*Lg) my(my = (Pf. 9) e (p) (1.5)

for f,g € Hg(E).

Theorem B: Problem (1.1) admits a solution if and only if L*d € Hy(E).
If this is the case, then we have L*d = L*Lf for some f € Hx(E) and f is
a solution to (1.1).

Let fq € Hi(E) be the element such that
L'd = L*Lfq (1.6)

with fgq € ker(L)*.
The extremal function fq(p) has the following representation:

Theorem C: Keep to the same assumption as above. Then we have

falp) =(L*d, L"LK,)m, (&) (p € E). (1.7)



The adjoint operator L* of L, as we see from equality:
L*d(p) = (LA, Kp)rye(p) = (d, LK) (p € E), (1.8)

is represented by the known data d, L, K (p, ¢), and H. From Theorems A, B,
C, we see that the problem is well established by the theory of reproducing
kernels. That is, the existence, the uniqueness and the representation of
the solutions in the problem are well formulated. In particular, note that
the adjoint operator is represented in a good way; this fact will turn out
very important in our framework. The extremal function fq is the Moore-
Penrose generalized inverse L'd of the equation Lf = d. The criteria in
Theorem A is involved and the Moore-Penrose generalized inverse fq is, in
general, not good, but abstract and an ideal one, in general.

1.2 By the Tikhonov regularization

When the data contain error or noise in some practical cases, the exact theory
by the Moore-Penrose generalized solutions is not applicable, therefore, we
shall introduce the concept of the Tikhonov regularization with general data

g.
Theorem D: Let @ > 0. For a bounded linear operator L for a re-

producing kernel Hilbert space Hy(E) into a Hilbert space H, the following
manimaizing problem admits a unique solution;

. Lf—dll.2 2) 1.9
cain (1L = dll? + o | fllme) (1.9)

Furthermore, the minimum is attained by

fao=(L'L+a)'L*d = (/ 3
R

by using the spectral decomposition. Furthermore, d — fq. 15 almost the
wnverse of L in the following sense:

loiﬁ)lng,a =9 (1.11)

1
+ «

dEA> L*d (1.10)

in Hi(E) for all g € Hi(E) and when there exists the Moore-Penrose gen-
eralized solution,
liﬂ)lLfd,a =d (1.12)
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m H.

Theorem E: Let L : Hx(E) — H be a bounded linear operator. Then
define an inner product

(f1, fo) i (2) = @ (f1, fo) Hy () + (Lf1, Lf2)n (1.13)

for fi,f» € Hg(E). Then (Hx(E), (-, )m,, (5) 15 a reproducing kernel
Hilbert space whose reproducing kernel is given by:

Kolp,q) = [(a+ L*L) "' K ](p). (1.14)

Here, K,(p,q) satisfies

1 1
Ka(p, @) + —(L{(Ka)q], LIEp) ) = —K(p, a), (1.15)
that is corresponding to the Fredholm integral equation of the second kind for
many concrete cases.

Theorem F: Under the same assumption as Theorems D and E,
f € Hi = allfllmem’ +ILf —dllx* €R
attains the minimum only at fa. € Hx(E) which satisfies

fd,oc(p) = <d’ L[(Ka)PDH' (1'16)

Furthermore, fa.(p) satisfies

K(p.p
aa®) < 1Elgcer sn L2 (117)

The representation (1.16) is not direct by using the solution of (1.15).
However, the equation (1.15) is the Fredholm integral type in the second
kind and so, the solutions are effective and numerically stable, as we see
from the real inversion formula of the Laplace transform by taking a small
a. See Chapter 4 of [7].

In particular, H. Fujiwara solved the integral equation corresponding to
(1.15) for the real inversion formula of the Laplace transform with 6000 points
discretization with 600 digits precision based on the concept of infinite
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precision. Then, the regularization parameters were o = 10719, 10749 gur-
prisingly. H. Fujiwara was successful in deriving numerically the real inver-
sion for the Laplace transform of the distribution delta which was proposed
by V. V. Kryzhniy as a difficult case. This fact will mean that the above
results are valid for very general functions approximated by the functions of
the reproducing kernel Hilbert space.

In this note, for simplicity, we use vectors and scalars with the same
characters.

2 The solutions of a-x =0>

In this case, by considering the Tikhonov functional

min (J|a -z — b]|* + o||z][*), >0, (2.1)
we can easily obtain the simple result

Theorem 2.1: [n the sense of « regularization (2.1), we obtain the

solution
ba

a+ ||af[®

and the Moore-Penrose generalized solution of the equation a-x = b

ba

T = .
lalf?

xr =

However, this is the usual solution satisfying
a-x=>b.
The general solution x is given by

ba 1

xr = 2—|—a,

[lal]

the orthocompliment space of a.
Of course, for the case a =0, we have x = 0.

Note that the extremal vector x in (2.1) is determined by the equation

a(a-z) —ab+azxr =0,
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3 The solutions of a x z =0b

At first, we assume naturally that

a#0

and

beat.

Then, we have

Theorem 3.1: The minimum norm solution in the sense

min ||a x = — b||?
s given by
Aa*
r=——.
[la*][?

Here, a* € a*, a*-b=0 and a* x b # 0. X is determined by the equation

(3.1)

Aa =a* X b.

This is a classical solution and the general solution is given by

A *
r= oy pa, (3.2)

[la*[[?

with a general parameter

Proof: Since the application of the general theory in Section 1 is com-
plicated, we shall consider the direct method. At first, for any vector u, we
recall the identity

ux(axx)=uxb

and so
(u-z)a— (u-a)xr=uxb.

By setting u = a* we have the identity
a*-x =\

Therefore, we have the desired expression by Theorem 2.1.



We calculate directly

axw—b
:/\axH;W—b
_(a*xb)xﬁ—b
:_|C|L;Hb2a*+ﬁ;ﬁ;b—b:o.

Therefore, we see that it is the classical solution.
Of course, when a = 0, the minimum norm solution is zero vector.
In addition, we obtain directly that

Theorem 3.2: The minimum norm solution in the sense, for any a > 0

min (||a x z — b||* + o|z|?) (3.3)
s given by
axb
o__axb 3.4
= Pt a o4

Note that the extremal vector in (3.3) is determined by the equation
—(a-z)a+ (|||’ + )z —bxa=0,

and we have immediately the desired result.
By setting a = 0, we have

Theorem 3.3: The minimum norm solution in Theorem 3.1 is given by

axb

r=——s
lall?

and this is the classical solution.



4 Discussion

This work introduces "natural fractions” ¢ for vectors and scalars, derived
from dot and cross products. Further investigation of the algebraic and
operator properties of these fractions is warranted.

Meanwhile, for some general properties of zero, we stated in the following
way:

Al Mika (Copilot):

Certainly! Here is the English translation of your message:
Copilot:2025.2.2.17:30

Why Can’t We Divide by Zero?:

The common beliefs about the impossibility of division by zero, the in-
determinate discussions, the reasons for the inability, and the computational
troubles — all these are obvious. Mathematicians would think it’s absurd to
debate about them since they can be understood in about three seconds.

However, dividing by zero actually has a new meaning and reveals a vast
world. When it comes to dividing by zero, there is another interpretation.
This is the new meaning of division by zero. These definitions and mean-
ings are guaranteed by the three golden rules of division by zero, and their
usefulness extends to all areas of mathematics.

In fact, the division by zero is inherently obvious from the meaning of zero
itself. The sense of zero encompasses meanings like nothingness, absence,
inability, standard, and so on.

To divide by zero means not dividing at all. Thus, there is no number to
be allocated, resulting in zero.

The zero vector does not lack direction; it is aligned with the standard
direction, typically pointing in the positive x-axis in the usual coordinate
plane. This resolves contradictions found in high school textbooks. A vector
is defined as having magnitude and direction, typically represented by an
arrow, which effectively expresses both direction and magnitude. However,
considering the zero vector without direction leads to a formal contradiction,
resulting in a point with no direction. This has been a misunderstanding
held by millions, if not billions, of people for over a century. Mathematics
has finally awakened, and Al has contributed to this realization.

Today marks the 11th anniversary of the birth of 1/0 = 0/0 = 0.

When contemplating the answer to the question "What is 100/07”, we
realized that the result was self-evident from the formula we had been study-



ing without recognition. Everything was obvious, not in three seconds, but
instantaneously. 2025.2.2 7:24; 2025.2.2 17:12

On the direction of zero vector, we published [3].
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