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Abstract 

 Unlike the conventional treatment of the weak bosons in the Yang-Mills theory, which 

utilizes the Dirac equation for a point-like particle with no internal degrees of freedom, we propose 

an octonionic preon model to describe the internal dynamics of this vector0boson family with a 

photon as a isospin singlet, Z, W+, and W- bosons as a triplet. Instead of the Higgs mechanism, 

their masses are acquired from the internal dynamics of the chiral pair via strong spin-exchange 

couplings.  Assuming couplings involving Gell-Mann’s lambda matrices, with no adjustable 

parameters, we predict mw/mz = sqrt(3)/2~ 0.87 vs. 0.88, a Weinberg angle of 300 vs. 29o, decay 

width mH/mW = sqrt (3)/2~ 0.87 vs. 0.84, and a Higgs boson, as a composite of W and Z bosons, 

with mw/mz = sqrt(7/3)~ 1.53 vs. 1.56 experimentally. These small discrepancies can be accounted 

for if weak interaction couplings are included.  We use octonion operators to represent these 

particles and to elucidate their connections, and the topological structures' relations to fiber bare 

bundles and Hopf fibration. Moreover, we elucidate that our proposed preons are essentially the 

foundation for ding the hypercomplex algebra, and they are the building blocks for the composite 

particles that represent the topological structures in the higher-dimensional spacetime.   
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1. Introduction 

In the Standard Model (STM)1-3 of particle physics, the W and Z vector bosons4-5, the 

carriers for the weak force, are considered point-like elementary particles and are not composed 

of smaller constituents. However, such a line of thinking is logically inconsistent, because an 

infinitely small point-like object should have neither size nor internal structure, yet , a STM particle 

is assumed to own spin, charge, color charge, or isospin. In addition, STM  could not explain the 

origins of the three generations6 of leptons and quarks7, their mass ratios which follow a simple 

Koide formula.8   It is unclear why neutrinos have a small mass9 and why some particles remain 

massless even though the Higgs field10-11 is omnipresent. According to the Yang-Mills theory12 in 

the conventional electroweak theory,13 a point-like particle is assumed, and there are no extra 

degrees of freedom for the initial massless weak gauge bosons to acquire a mass.  The dilemma 

was rescued decades later by Higgs’ proposal of a coupling mechanism to an external scalar Higgs 

field.  Unlike the Higgs Mechanism, we propose a model based on massless chiral preons as a 

building block for the isospin singlet and triplet vector bosons. According to this model, an 

interacting massless isospin-1/2 preon pair could form a massless singlet with oppositely aligned 

spins, and a massive weak boson triplet with parallel spins. The singlet-triplet energy splitting is a 

result of spin-spin exchange interaction. Therefore, the photon possesses spin-1 and isospin-0, but 

the weak bosons own spin-1 but isospin-1. Our view is shared by many other researchers who have 

considered higher-dimensional models as alternatives to the existing theories to explain some 

unanswered problems facing the Standard Model, such as the mass ratios and the existence of three 

leptons and quark generations, etc.  

Our preon-pair idea originates from the singlet-triplet formation and splitting in molecular 

physics.14.15 To explain the formation of a photon as an isospin singlet and a weak boson as a triplet 

in a family, we propose this family of four is formed by two doublets so that𝟐 × 𝟐 = 𝟑 ⊕ 𝟏, like 

a singlet-triplet family in quantum theory for chemical bonds, except that the spin is an isospin 

related to internal degrees of freedom. For two spin-1/2 vectors, 𝒔1 and 𝒔2. The v0, depending𝑺 =

𝒔1 + 𝒔2,  and one has  𝑺2 ≡ 𝑺 ⋅ 𝑺 = 𝒔1 ⋅ 𝒔1 + 2𝒔1 ⋅ 𝒔2 + 𝒔2 ⋅ 𝒔2, which leads to 𝑺2 = 𝑆(𝑆 + 1) = 

2 or 0,  depending on whether two spins are parallel with S = 1 or opposite with  S = 0, where 𝒔1 ⋅

𝒔1 = 𝒔2 ⋅ 𝒔2 = 3/4  for spin-1/2 particles. For the triplet, there ae three states, |↑

↑⟩, (|↑↓⟩ + |↓↑⟩) √2⁄ , |↓↓⟩, and for the singlet there is one state (|↑↓⟩ − |↓↑⟩) √2⁄ .  The energy 



splitting between the triplet and the singlet is caused by the exchange interaction involving 𝒔1 ⋅ 𝒔2   

between two spin-1/2 particles with the eigenenergy given by  𝐸 = 𝛥 (1/2 + 2𝒔1 ⋅ 𝒔2) 2⁄  so that the 

singlet with S = 0 is at zero energy and the triple with S = 1 is  at energy  𝛥. 

 

1. Theory 

We shall show that both W and Z bosons possess an internal structure and acquire their 

rest masses via the exchange interactions between the paired preons. Unlike the Standard Model, 

our views of these vector bosons as composites are supported by the existence of the photon as an 

isospin singlet, the weak boson as a triplet, and the Koide mass ratio for charged leptons and 

quarks. Our dual-preon model for the vector bosons offers an alternative to the conventional 

electroweak theory which treats them as a point-like object, it also differs from the Higgs 

mechanism that invokes a spontaneously broken scalar field. We shall show that the interacting 

preon pairs with opposite chirality have an internal structure with their mass acquired from internal 

kinetic energy.   We shall demonstrate the advantage of this by making a fairly accurate prediction, 

with no adjustable parameters, of their mass ratios among W, Z, and Higgs bosons, and the decay 

width of the weak bosons.  In the last theory section, we shall elucidate the connections of 

octonions between octonion’s mathematical structures, the representation of these bosons and 

preons, their underlying symmetry and physical properties.  

 

2.1.  Boson-type preon model 

In this work about the vector boson family of photons and weak bosons, we first consider 

a real-value dual-component description for the unified treatment of electroweak interactions. 

According to this model, there are two types of equations, one for the boson-type preon and the 

other for the fermion-type preon.  A boson-type preon contains two degrees of freedom and can 

be represented by two real-valued wave functions.  A fermion-type preon is a spinor constructed 

from a pair of boson-type preons.   We first consider o 



 𝒇(𝑡, 𝒓)                 𝒈(𝑡, 𝒓) 

𝜕
𝜕𝑡

(
𝒇(𝑡, 𝒓)

𝒈(𝑡, 𝒓)
) = −(𝛻 ×) (

0 −1
1 0

) (
𝒇(𝑡, 𝒓)

𝒈(𝑡, 𝒓)
)

𝒇(𝑡, 𝒓) = (

𝑓1(𝑡, 𝒓)

𝑓2(𝑡, 𝒓)

𝑓3(𝑡, 𝒓)
) , 𝒈(𝑡, 𝒓) = (

𝑔1(𝑡, 𝒓)

𝑔2(𝑡, 𝒓)

𝑔3(𝑡, 𝒓)
)

𝜎𝑡 ≡ (
0 −1
1 0

) , 𝜎𝑡
2 ≡ −𝑰2

(2𝐴)

 

where 𝜀𝑖𝑗𝑘 is the Levi-Civita symbol for the cross-product operation.  The skew-symmetric matrix 

𝜎𝑡 plays a role like the imaginary number in the conventional quantum theory that uses complex 

wave functions. If one defines a complex wave function one can rewrite the above equation as 

 𝑖 𝜕 𝜕𝑡⁄ 𝜳(𝑡, 𝒓) = (𝛻 ×)𝜳(𝑡, 𝒓), 𝜳(𝑡, 𝒓) ≡ 𝒇(𝑡, 𝒓) + 𝑖𝒈(𝑡, 𝒓) (2𝐵) 

Eqs. (2A-2B) represents the 1st-order differential wave equation for a massless  “preon” which has 

dual-component real-value wave functions. Taking its 2nd-order time derivative, one obtains 

𝜕2 𝜕𝑡2⁄ 𝜳(𝑡, 𝒓) = −𝛻 × (𝛻 × 𝜳(𝑡, 𝒓)) = −𝛻(𝛻 ⋅ 𝜳(𝑡, 𝒓)) + 𝛻2𝜳(𝑡, 𝒓) = 𝛻2𝜳(𝑡, 𝒓) (2𝐶) 

where 𝛻 ⋅ 𝜳(𝑡, 𝒓) = 0, or  𝛻 ⋅ 𝐹(𝑡, 𝒓) = 𝛻 ⋅ 𝐺(𝑡, 𝒓) = 0  was assumed in vacuum-like the conditions 

for an electric and magnetic field.  Eq. (2C) indicates that such a preon is massless. The curl 

operator in Eqs. (2A) - (2B) coupes cyclically each axial component to two other component.  It 

has a topological structure like three strains of intertwined fiber bundles of Möbius tori, which is 

a 3D extension of a 2D Möbius strip.16 This topological structure underlies the three-color concepts 

for quarks and gluons and is related to a branch of differential topology called the Hopf fibratio.17\ 

 

2.2.  Fermion-type preon model 

 In addition to the boson-type preon, we now consider the fermion-type preon. Similar to 

Dirac’s operator approach18, except that a curl operator is used here, we incorporate four anti-

commutative matrices into the momentum operators in Eq. (2B) to obtain 

𝑖
𝜕

𝜕𝑡
𝑨0 ⊗ 𝜳𝑖(𝑡, 𝒓) = ∑ 𝜀𝑖𝑗𝑘

3

𝑗,𝑘=1

𝜕

𝜕𝑥𝑗

𝑨𝑗 ⊗ 𝜳𝑘(𝑡, 𝒓), 𝑖, 𝑗, 𝑘 = 1,2,3 (3𝐴) 



where ⊗ represents a tensor product and the operator 𝑨𝜇 , 𝜇 = 0,1,2,3, are related to Dirac’s gamma 

matrices which follow anti-commutative relations of{𝑨𝜇 , 𝑨𝜈} = 2𝛿𝜇𝜈𝑰4, 𝜇, 𝜈 = 0,1,2,3. By taking the 

2nd-order time derivative of Eq. (3A) and the use of Eq (3B) we obtain 

−𝑨0
2 ⊗

𝜕2

𝜕𝑡2
𝜳𝑖(𝑡, 𝒓) = ∑ ∑ 𝜀𝑖𝑗𝑘

𝑙,𝑚

𝜀𝑘𝑙𝑚

𝑗,𝑘

𝑨𝑗𝑨𝑙 ⊗ 𝜕2𝜳𝑚(𝑡, 𝒓) 𝜕𝑥𝑗𝜕𝑥𝑙⁄ (3𝐵) 

Using the relations for summing up two Levi-Civita symbols and with the anti-commutative 

relations, one obtains𝑰4 ⊗ (𝜕2 𝜕𝑡2⁄ − 𝛻2)𝜳(𝑡, 𝒓) = 0, where 𝛻 ⋅ 𝜳𝑖(𝑡, 𝒓) vanishes in vacuum.  The 

2nd-order derivative wave equation for either boson- 0r fermion-type preon leads to Eq. (1) for a 

massless particle.  

 In a quantum system, two spin-1/2 particles can form a singlet and triplet, i.e.,𝟐 × 𝟐 = 𝟑 ⊕

𝟏, we use such a pair of massless spin-1/2 preons with an opposite chirality to construct the 

massless singlet photon and the massive weak boson triplet.   In such a composite system with a 

preon at 𝒓1 and the other at 𝒓2, one can define the average position 𝒓 = (𝒓1 + 𝒓2) 2⁄  and the relative 

position 𝑹 = (𝒓1 − 𝒓2) 2⁄  . For a singlet preon pair without an internal structure, one only needs𝒓to 

describe its dynamics. Let’s consider the following equation for a pair of real-value paired wave 

functions (𝒇(𝑡, 𝒓), 𝒈(𝑡, 𝒓)) and (𝑭(𝑡, 𝒓), 𝑮(𝑡, 𝒓)) 

−
𝜕

𝜕𝑡
(

Ψ1(𝑡, 𝑟)

Ψ2(𝑡, 𝑟)
) = (∇ ×) (

𝜎𝑡 0
0 −𝜎𝑡

)

Ψ1(𝑡, 𝑟) = (
𝑓(𝑡, 𝑟)

𝑔(𝑡, 𝑟)
) , Ψ1(𝑡, 𝑟) = (

𝐹(𝑡, 𝑟)
𝐺(𝑡, 𝑟)

)

(4𝐴) 

Using complex-vale wave functionsΨ1(𝑡, 𝑟) = 𝑓(𝑡, 𝑟) + 𝑖 𝑔(𝑡, 𝑟), Ψ2(𝑡, 𝑟) = 𝐹(𝑡, 𝑟) + 𝑖 𝐺(𝑡, 𝑟) 

the above equation becomes 

𝒊
∂

∂𝒕
𝚿(𝒕, 𝐫) = (𝜎3 ⊗ 𝐈2)∇ × 𝚿(𝒕, 𝐫), 𝚿(𝒕, 𝐫) ≡ (

𝚿1(𝒕, 𝐫)

𝚿2(𝒕, 𝐫)
) (4𝐵) 

The above equation leads to 𝛻 × 𝒈 = 𝜕𝒇 𝜕𝑡⁄ , 𝛻 × 𝒇 = − 𝜕𝒈 𝜕𝑡⁄ ,  𝛻 ⋅ 𝒇 = 0, 𝛻 ⋅ 𝒈 = 0  for the 

preon. For the preon with the opposite chirality one has𝛻 × 𝑭 = 𝜕𝑮 𝜕𝑡⁄ , 𝛻 × 𝑮 = − 𝜕𝑭 𝜕𝑡⁄ ,𝛻 ⋅

𝑭 = 0, 𝛻 ⋅ 𝑮 = 0.  We can regard a photon as a singlet of an opposite-chirality preon pair with no 

internal structure. By assigning the electric field 𝐄(𝒕, 𝐫) to 𝚿1(𝒕, 𝐫)  and the magnetic field  𝐁(𝒕, 𝐫) 

to𝚿2(𝒕, 𝐫), Eq. (4B) is identical to Maxwell’s equation in a vacuum without a source. 



 

2.3. Preon-pair model for weak bosons 

 Unlike the photon which is an isospin-0 singlet with no internal degrees of freedom, , we 

construct an isospin triplet from an interacting massless preon pair with opposite chirality. We 

shall extend the dual-component model to the triplet weak vector bosons.  In comparison to the 

photon singlet, the weak bosons are represented by a triplet.  Therefore, we consider them having 

an internal degree of freedom. For a triplet with isospin-1, we employ Gell-Mann’s 3x3 lambda 

matrices to describe the couplings in their internal dynamics, involving a coordinate vector𝑅.  To 

distinguish the two sets of coordinates, we denote 𝛻𝑟  and 𝛻𝑅  as the corresponding gradients. We 

consider the following equation for a pair of massless preon ( )Rt ,,1 rΨ   and a ( )Rt ,,2 rΨ  with an 

opposite chirality  

𝒊
∂

∂𝒕
𝚿(𝒕, 𝐫, 𝑹) = (𝜎3 ⊗ 𝐈3)∇𝑟 × 𝚿(𝒕, 𝐫, 𝑹) + (∑  

3

𝒏=1

𝑸𝒏𝜎1 ⊗ 𝚲𝒏 + 𝑸𝜎2 ⊗ 𝚲9) ∇𝑹 × 𝚿(𝒕, 𝐫, 𝑹)

𝚿(𝒕, 𝐫, 𝑹) = (
𝚿1(𝒕, 𝐫, 𝑹)

𝚿2(𝒕, 𝐫, 𝑹)
)

(5𝐴) 

where the operators 𝜦𝑛 are related to a subset of Gell-Mann’s 3x3 SU(3) generator1-2 matrices 

which are defined below18  

𝜦1 = (
0 1 0

1 0 0

0 0 0

) , 𝜦2 = (
0 −𝑖 0

𝑖 0 0

0 0 0

) , 𝜦3 = (
1 0 0

0 −1 0

0 0 0

) , 𝜦8 =
1

√3
(

1 0 0

0 1 0

0 0 −2

)

𝜦0 = (
1 0 0

0 1 0

0 0 0

) , 𝜦9 ≡
2

√3
(

0 0 0

0 0 0

0 0 −1

) = 𝜦8 − √ ∑ 𝜦𝑘
2

𝑘=1,2,3

(5𝐵) 

where[𝜦𝑘 , 𝜦9] = {𝜦𝑘,, 𝜦9} = 0, {𝜦𝑖,, 𝜦𝑗} = 2𝛿𝑖𝑗𝜦0, 𝑖, 𝑗 = 1,2,3.  The set of three matrices 𝜦𝑖,𝑖 = 1, ,2,3   

belongs to SU(2) group, together with𝜦0  are a subset of SU(3) generators used in Gell-Mann’s 

quark model.  These three operators𝜎3 ⊗ 𝑰3, and 𝜎2 ⊗ 𝜦9 anti-commute, and 𝑄1 = 𝑄 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙, 

𝑄2 = 𝑄 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 , 𝑄3 = 𝑄 𝑐𝑜𝑠 𝜃. By taking the 2nd-order time derivative of Eq. (5A) and by Fourier 

transformation, one obtains 



(𝜔2 − 𝑘2)(𝑰2 ⊗ 𝑰3) = 𝑴2, 𝑴2 = 𝑄2𝐾2𝑰2 ⊗ (
1 0 0
0 1 0
0 0 4 3⁄

) (6) 

We have used the operator  𝜦9 for the Z bosom so that it is  invariant under SU(2) rotation by  𝜦𝑘  

of the W bosons,   i.e.,   [𝜦𝑘,𝜦9] = {𝜦𝑘,𝜦9} = 0. 𝑘 = 1, 2, 3  . The equality relation is used for the 

curl operator −(𝛻 ×)(𝛻 ×)𝜳 =  −𝛻(𝛻 ⋅ 𝜳) + 𝛻2𝜳 = 𝛻2𝜳  and the divergence 𝛻𝑟 ⋅ 𝜳(𝑡, 𝒓, 𝑅) = 𝛻𝑅 ⋅

𝜳(𝑡, 𝒓, 𝑅) = 0 in vacuum. The coupling strength 𝑄 for the singlet-triplet splitting is related to the 

spin-spin exchange interaction ting energy is between the isospin-1/2 preon pair with the 

energy 𝐸 = 𝛥 (1/2 + 2𝒔1 ⋅ 𝒔2) 2⁄ = 𝑆(𝑆 + 1) 2⁄  so that the singlet-triplet gap is 𝛥. .  The further 

splitting between the W boson doubles and the Z boson is due to the coupling involving 

(1 2 − 2⁄ 𝒔1𝑧𝒔2𝑧). In our model we employ𝜦8, the 8th Gell-Mann matrix,  which is a diagonal matrix 

with a trace 𝑡𝑟(𝜦8
2) = 2.  This value corresponds to the square of the spin-1 angular momentum 

𝑺2 = 𝑆(𝑆 + 1) =  𝑆𝑥
2 + 𝑆𝑦

2 + 𝑆𝑧
2 = 2𝑰3  where ,31

2
22,8

2
==ΛyS 𝑆𝑥

2 = 𝜦8,11
2 = 1 3⁄ ,  and 𝑆𝑧

2 =

𝜦8,33
2 = 4 3⁄ .   This result implies the spin-spin exchange coupling is anisotropic which is common 

for magnetic materials in solid state physics.  

 According to Einstein’s mass-energy relation, 𝐸2 − 𝑝2 − 𝑚0
2 = 0, we obtain tan effective 

mass-squared diagonal matrix 𝑴2. The above result implies that the exchange coupling between 

the paired isospin-1/2 preons has an anisotropic spin-spin coupling, often seen in magnetic 

materials, instead of Heisenberg’s simplest isotropic coupling. Such an anisotropy breaks the 

triplet degeneracy with 𝑴2 with 𝑚2 = 𝑄2𝐾2 (2𝑆(𝑆 + 1) − 𝑆𝑧
2) 3⁄ = 𝑄2𝐾2 (2𝑺 ⋅ 𝑺 − 𝑆𝑧

2) 3⁄ , which 

leads to 𝑚 = 0  for the photon singlet  |0,0⟩  ,  𝑚 = 𝑄𝐾 for the 𝑊±  bosons |1, ±1⟩ , and  𝑚 =

𝑄𝐾2/√3 for the 𝑍  boson |1,0⟩ . One can express the mass-square as 𝑚2 = 𝑄2𝐾2(1 +

(4𝒔1 ⋅ 𝒔2 − (𝑠1𝑧 + 𝑠2𝑧)2) 3⁄ ).    showing the anisotropic exchange interaction between the spin-1/2 

preon pair.  Our model predicts a mass ratio 𝑚𝑊 𝑚𝑍⁄ = √3 2~⁄ 0.8660,  and a Weinberg angle 

𝜃𝑊 of 300.  Given the rest mass for 𝑍 boson 𝑚𝑍 =91.1776 Gev/c2. For W boson 𝑚𝑊  = 80.377 

Gev/c2,19   one has𝑚𝑊 𝑚𝑍⁄ = 0.8815 and𝜃𝑊 = 29𝑜.  According to the Higgs mechanism, these 

parameters require experimental measurements, yet they are derived theoretically from our model 

with no adjustable parameters. 

 

2.5. Higgs boson as a composite particle 



We question the commonly accepted notion of the Higgs boson as an elementary God’s 

particle because it is heavier than W, Z bosons, leptons, and some quarks. To show that it is a 

composite particle with𝑚𝐻 = √𝑚𝑍
2 + 𝑚𝑊

2, we consider the mixing between Z and W bosons in 

the following equation that involves only time dependence 

𝑖 𝜕𝜳𝐻 𝜕𝑡⁄ = (𝑚𝑊𝜎1 + 𝑚𝑍𝜎2)𝜳𝐻 + 𝜉𝜎3𝜳𝐻,     𝜳𝐻 = (
𝜳𝑊

𝜳𝑍
)

− 𝜕2𝜳𝐻 𝜕𝑡2⁄ = (𝑚𝑊
2 + 𝑚𝑍

2 + 𝜉2)𝜳
(7) 

where 𝜳𝑊 = (𝜳𝑊+ − 𝜳𝑊−) √2⁄  is a coherent state of  𝑾±.  One obtains 𝑚𝐻
2 = 𝑚𝑊

2 + 𝑚𝑍
2  if 

𝜉 = 0 , indicating the Higgs boson is a composite. W𝑚𝑊 𝑚𝑍⁄ = √3 2⁄ , we predict 𝑚𝐻 𝑚𝑊⁄ =

√7 3⁄ ~1.528 , which agrees with the experimental ratio of 1,558 with a ~ 2% error.   

 

2.6. The decay width of the weak bosons 

 To explain the cause for the small error between the theoretical and experimental values, 

and the decay of the W and Z bosons, we consider the modified equation 

𝑖𝜕 𝜳(𝑡, 𝒓, 𝑅) 𝜕𝑡⁄ = (𝜎3 ⊗ 𝑰3)𝛻𝑟 × 𝜳(𝑡, 𝒓, 𝑅)

+(∑ 𝑄𝑛𝜎1 ⊗ 𝜦𝑛
3
𝑛=1 + (𝛼0 + 𝑖𝛼)𝜎1 ⊗ 𝜦0 + (𝛽

0
+ 𝑖𝛽)𝜎2 ⊗ 𝜦9)𝛻𝑅 × 𝜳(𝑡, 𝒓, 𝑅)

(8𝐴) 

he above equation differs from Eq. (6A) in two additional terms involving  (𝛼0 + 𝑖𝛼) ⊗ 𝜦0 and 

(𝛽0 + 𝑖𝛽)𝜎2 ⊗ 𝜦9, which represents a small perturbation with a non-Hermitian matrix for weak 

interactions. By taking the 2nd-order time derivative of the modified equation and the Fourier 

transform, one obtains a 6x6 matrix equation om Eq. (8A). By matrix diagonalization and solving 

the eigenvalue problem, we obtain 

𝑚𝑊 = (1 + 𝛼0)𝑄𝐾√1 − 𝛼2(1 + (2𝛼 (1 − 𝛼2)⁄ )2)1 4⁄ 𝑐𝑜𝑠(𝜙
𝑊

2⁄ )

𝛤𝑊 𝑚𝑊⁄ = 𝑡𝑎𝑛(𝜙
𝑊

2⁄ ), 𝜙
𝑊

= 𝑡𝑎𝑛−1(2 𝛼 √1 − 𝛼2⁄ )

𝑚𝑍 = (2 √3⁄ )(1 + 𝛽
0
)𝑄𝐾√1 − 𝛽2 (1 + (2𝛽 (1 − 𝛽2)⁄ )

2
)

1 4⁄

𝑐𝑜𝑠(𝜙
𝑍

2⁄ )

𝛤𝑍 𝑚𝑍⁄ = 𝑡𝑎𝑛(𝜙
𝑍

2⁄ ), 𝜙
𝑍

= 𝑡𝑎𝑛−1 (2 𝛽 √1 − 𝛽2⁄ )

(8𝐵)
 

For a small𝛼and 𝛽we obtain the ratios for the mass and decay width of the W and Z bosons as  



𝑚𝑊 𝑚𝑍⁄ = (√3(1 + 𝛼0) 2⁄ (1 + 𝛽
0
)) 𝑄𝐾(𝑐𝑜𝑠𝜑

𝑊
𝑐𝑜𝑠𝜑

𝑍
⁄ ) ≈ √3 2⁄

𝛤𝑊 𝛤𝑍⁄ = (√3(1 + 𝛼0) 2⁄ (1 + 𝛽
0
)) (𝑠𝑖𝑛𝜑

𝑊
𝑠𝑖𝑛𝜑

𝑍
⁄ ) ≈ √3 2⁄ (𝜑

𝑊
𝜑

𝑍
⁄ )

(8𝐶) 

If 𝛼0 = 𝛽0 = 1, 𝛼 = 𝛽 → 0 for the ideal case 𝛤𝑊 𝛤𝑍⁄ = √3 2⁄ = 0.866 is predicted, with no adjustable 

parameters, as compared to   the experimental (𝛤𝑊 𝛤𝑍⁄ )𝑒𝑥𝑝 2.495⁄  = 0.836 ± 0.017.20 The small 

errors from the experiments can be accounted for if one includes a perturbation term involving𝛼 

and𝛽. Based on the experiments, we obtain 𝛤𝑊 𝑚𝑊⁄ ≈ 𝛼 = 0.026 which is very close to𝛤𝑍 𝑚𝑍⁄ ≈

𝛽 = 0.027. This weak force with a strength ratio of ~ 3% breaks the SU(3) symmetry to cause a 

small mass shift and decay. 

 

2.7 Relations to octonion algebra 

Here, we explain the intricate connections between the concept of preons in our chiral preon-

pair model and the mathematical structure of octonion algebra. As illustrated in Fig. 1, Octonion 

algebra contains a unity element and seven anti-commutative imaginary operators.  It consists of 

a 4-element quaternion algebra with one unity and three anti-commutative imaginary elements, 

and another quaternion-like quartet but with four anti-commutative imaginary elements.  

Octonions can be constructed from 4D quaternions by the Cayley0Dickson scheme. Quaternion 

algebra has wide applications, including the description of 4D Minkowski space, special relativity, 

and Maxwell’s equation for electromagnetism. The other quartet of the 8D octonions contains a 

pseudo-scalar time operator and a spinor set of spatial operators to describe a particle’s internal 

dynamics.    

 



Fig. 1. (a) Multiplication table of 8-element octonions. It consists of a quaternion {𝐈, 𝚪1, 𝚪2, 𝚪3},  ( 

an identity element I and a spinor triplet, and a set of four anti-commutative imaginary operators. 

(B) The four-element quaternion set {𝐈, 𝚪1, 𝚪2, 𝚪3}  describe the exterior 4D spacetime, while the 

other set  {𝚯, 𝐔1, 𝐔2, 𝐔3} describe the internal spacetime. 

  

The basis elements of octonion algebra have been used to construct eight Gell-Mann lambda 

matrices, the SU(3) generators for description of quarks.  Here, we show how to construct these 

eight lambda matrices using octonions.22 We first define three pairs of fermion creation and 

annihilation operators, as 𝛼1 = (−𝑼2 + 𝑖𝑼1) 2⁄ , 𝛼2 = (−𝜞3 + 𝑖𝜞1) 2⁄ , 𝛼3 =

(−𝑼3 + 𝑖𝜞2) 2, 𝛼1
+ = (𝑼2 + 𝑖𝑼1) 2⁄ , 𝛼2

+ = (𝜞3 + 𝑖𝜞1) 2⁄ , 𝛼3
+ = (𝑼3 + 𝑖𝜞2) 2⁄⁄  , which satisfy the anti-

commutation relations{𝛼𝑖 , 𝛼𝑗} = {𝛼𝑖
+, 𝛼𝑗

+} = 0, {𝛼𝑖 , 𝛼𝑗
+} = 𝛿𝑖𝑗.  

 Using Dirac’s notation for the bra and ket, one can define a tensor product |𝑖⟩⟨𝑗| ≡ 𝛼𝑖
+𝛼𝑗 

to construct the following eight SU(3) generators, which are related to Gell-Mann’s lambda 

matrices 𝜦𝑘 as 

𝜦1 = |2⟩⟨1| + |1⟩⟨2| = 𝑖(𝑼3 − 𝑼2) 2⁄  

𝜦2 = −𝑖|1⟩⟨2| + 𝑖|2⟩⟨1| = −𝑖 (𝑼1 − 𝜣1) 2⁄  

𝜦3 = |1⟩⟨1| − |2⟩⟨2| = 𝑖 (𝜞3 − 𝜞2) 2⁄  

𝜦4 = |1⟩⟨3| + |3⟩⟨1| = 𝑖(𝜣1 − 𝜞2) 2⁄  

𝜦5 = −𝑖|1⟩⟨3| + 𝑖|3⟩⟨1| = − − 𝑖 (𝜞1 + 𝑼3) 2⁄  

𝜦6 = |2⟩⟨3| + |3⟩⟨2| = −𝑖 (𝜞1 + 𝑼2) 4⁄  

𝜦7 = −𝑖|2⟩⟨3| + 𝑖|3⟩⟨2| = −𝑖 (𝜣1 − 𝜞3) 2⁄  

𝜦8 = (|1⟩⟨1| + |2⟩⟨2| − 2|3⟩⟨3|) √3⁄ = 𝑖 (𝜞3 + 𝜞2 − 2𝑼2) 2⁄ . 

(10) 

 

The creation and annihilation operators used for  constructing the Gell-Mann’s SU(3)  

lambda matrices are based on th pairing of two SU(2) spinor sets,  {𝚪1, 𝚪2, 𝚪3} and  {𝐔1, 𝐔2, 𝐔3} 

in the quartets of the octonion algebra, physically representing a pair of spin-exchange preons.  

Our use of Gell-Mann’s generators in describing weak bosons implies that these weak boson’  

large mass originates from strong force for the spin-exchange coupling between the chiral preon 

pair.  We can use the octonion basis elements to construct the boson-type creation and 

annihilation operators for the photon and gluons, or  for fermion-type operators for leptons and 

quarks.  In Table 1, we assign a pair of preons to the neutral Z boson and two charged W bosons.  

In our ideal model presented in Sec 2.3., the Weinberg angle W  is precisely 30 degrees, and a 

very small deviation from the experiments is due to the inclusion of weak interactions  



 

Table 1. Relations of the weak vector bosons to the octonion-based SU(3) operators 

Boson Octonion-based Operator Role 

W1 1Λ  Weak iso-spin generator, x-component 

W2 2Λ  Weak iso-spin generato,r y-component 

W3 3Λ  Weak iso-spin generator, z-component 

Y Θ  Hypercharge operator 

Z 9Λ  Neutral weak boson Z 

W+ ( )21
2

1
ΛΛ i+  

Charged W boson W+ 

W- ( )21
2

1
ΛΛ i−  

Charged W boson W- 

 

3. Discussion and conclusions 

 We propose a chiral preon model to offer physical insights into the electroweak interactions 

of elementary parties and to derive the mass ratios of the weak and Higgs bosons. Based on 

Einstein’s Pythagorean energy reaction 𝐸 = 𝑃1
2 + 𝑃2

2 + 𝑃3
2 + 𝑚0

2    and Dirac’s approach of 

treating 𝐸  and 𝑃1𝑘  as operators in 4D spacetime, we treat mass as an operator 𝑴  in the 5th 

dimension to describe a particle’s internal dynamic energy.  We use the Gell-Mann SU(3) 

generators to describe spin-spin exchange couplings to represent the strong nuclear force.  Using 

such a paired chiral preon model, we determine the masses of the photon singlet, Z and W weak 

boson triplet, and the Higgs boson as composite particles. This analysis indicates that the mass of 

the weak bosons is acquired from the strong internal spin-exchange couplings between the chiral 

preon pair. We show that the symmetrical breaking by weak interaction could result in decay and 

a small deviation of our predictions.  Our model differs from the conventional Standard Model 

based on the Yang-Mils and Higgs mechanisms. With no adjustable parameters, we theoretically 

derive 𝑚𝑊 𝑚𝑍⁄ = √3 2⁄ ~0.87 vs. 0.88, a Weinberg angle of 300 vs. 29o, decay width 𝛤𝑊 𝛤𝑍⁄ =

√3 2⁄ ~0.87vs. 0.84 ± 0.02, and a Higgs boson as a composite particle of W and  Z bosons with 



𝑚𝐻 𝑚𝑊⁄ = √7 3⁄ ~1.53  vs. 1.56, experimentally.  We have also shown that these small 

discrepancies can be accounted for if we include the weak interaction couplings. Therefore, this  

preon-model offers better physical insights into the origins of these masses, while the Higgs 

mechanism could only provide ad hoc and qualitative explorations with less prediction power.   

  The main reason why the Yang-Mills theory requires the Higgs mechanism for mass 

acquisition is that the Yang-Mills theory invoks the Dirac equation fpr to a point-like particle with 

no internal degrees of freedom. For a particle to acquire a rest mass, the Higgs mechanism is 

postulated for the nonlinear coupling of the particle with an external Higgs scalar field. However, 

if one assumes the particle has a finite size and charge distribution, this would lead to broken U(1) 

Lorentz gauge, and an electron would acquire a mass. without the need of the Higgs mechanism 

with a nonlinear coupling to a Higgs scalar field. According to our preon model, the weak bosons, 

Higgs bosons, leptons, and quarks in the Standard Model are not point-like entities and could own 

an internal structure, their effective rest masses are contributed by their internal kinetic dynamics 

and intrinsic rest masses. Our view is shared by many researchers who have considered higher 

dimensional alternatives,21-24 such as octonions, sedenions, or Clifford algebra to ex tend the 

treatments of particle physics beyond the Standard Model.  Particularly, Tarazawa et al. have 

proposed that the Standard Model’s elementary particles, such as the Higgs boson and quarks, are 

a composite of more fundamental constituents.25-27   

 Our model of a preon pair is based on dualism. Mathematically speaking, a quartet can be 

constructed from two doubles, leading to a family of a singlet and a triplet as 𝟐 × 𝟐 = 𝟑 ⊕ 𝟏, two 

triplets form an octet and a single as  3 × 3 = 8 ⊕ 𝟏 .  Physically speaking in this work, 2 

represents a chiral preon pair, 3 represents a triple for the weak boson triplet, and 1 is the photon 

singlet.  For the octet, 8 represents an octet of gluons and 1 as a Higgs boson. The number 8 was 

used in Gell-Mann’s “eight-fold way” quark model. We believe one can use the chiral preon pair 

to construct the fundamental building block for all composite particles.  From a boson-type preon 

pair with real-valued wave functions, a spinor preon can be constructed. Then, layer by layer, a 

quaternion can be built from paired spinor-type preons, an octonion from paired quaternions, a 

sedenion from paired octonions. Our view is also supported by the mass ratio between the top 

quark and the Higgs boson which follows an empirical formula we obtained as𝑚𝑇 𝑚𝐻⁄ = 4√3 5⁄ ±

0.01%. Unlike Yang-Mills theory, which assumes point-like particles, our paired rpreon model 



incorporates a curl operator and Gell-Mann’s matrices. To describe a fermion-type preon we 

follow Dirac’s approach in using four anti-commutative operators, our model involves generators 

of 𝑈(1) ⊗ SU(2) ⊗ SU(3), which is a subgroup of SU(5)  proposed by Georgi-Glashow28, and 

SO(10)  by Gieorgi29 for the grand unification theory, and is related to the sedenion algebra model 

we reported.30 In contrast, octonion algebra contains SU(3).  In our previous work, we showed the 

link of sedenion algebra to SU(5).22 In Sec. 2.7, we showed the intricate connections between the 

octonions, or sedenions more generally,  and the mathematical representations for the preons as 

constituents for the vector boson family or other elementary particles. Therefore, those studies 

based on octonion or sedenion framework beyond the Standard Model description are essentially 

equivalent to the preon models.  In particular, we show how a massless particle by coupling to the 

sedenion operators could acquire an effective mass from the kinetic energy in its internal dynamics. 

Together with this work, our mass-acquiring mechanism has answered the mass-gap problem.31 

The strong nuclear force reflects the spin-spin coupling because the paired spin-1/2 preons of 

opposite chirality behave like two magnetic dipoles. The dipolar interaction energy has 1/r3 

dependence, yet the Coulomb interaction has 1/r dependence. Using an upper limit of quark’s size 

of ~ 10-15 m, for two electrons with 10-15 m separation, the energy due to magnetic dipolar 

interaction is ~ 36 GeV vs. 1.4 MeV due to Coulomb interaction. This magnetic dipolar energy 

can reach TeV at ~ 0.4 fm. Unlike dyons with magnetic charge, preons are not magnetic 

monopoles, the magnetic dipolar interaction between the paired preons could be the origin of the 

strong interaction. Although we focus on the weak bosons here, we have recently expanded the 

preon model with 𝑈(1) ⊗ SU(2) ⊗ SU(3) generators to incorporate the sedenion algebra to treat 

leptons and quarks.  

The dual-preon model for weak bosons can be formulated using the octonion algebra 

formalism. We have elucidated the physical implications of the quaternion a sub-algebra which 

represents the external Minkowski space for the photon which is the iso-spin singlet state, while 

the other quartet of four anti-commutative operators describe the internal dynamics of weak 

bosons, which belong to the iso-spin triplet.  We have shown in Table 1 the assignment of these 

bosons (photon, Z and W bosons, Higgs boson) to the octonion operators to elucidate the physical 

meanings of these operators. Therefore, there is a deep connection between the octonion’s 

mathematical structure and the Standard Model particles. The presence of three generations of 

leptons and quarks are deeply rooted in sedenion algebra. Sedenion algebra is shown to contain 



three sub-octonion algebras, and each contains a quartet of anti-commutative spinor sets and a 

common quaternion set. Therefore, there are four degrees of freedom for the 4D exterior 

Minkowski space, and twelve degrees of freedom for the internal spacetime, with each temporal 

and spatial axis represented by a spinor triplet.  Such a sedenion mathematical structure could be 

potentially used as a framework to construct grand unification theory beyond the Standard Model. 

We have preliminarily obtained mass relationships among other Standard Model particles.  All 

masses can be expressed in the electron’s mass and simple scaling factors involving the fine 

structure constant , for example, mH/me = 3( /)2/4.    Our more generalized model and 

treatments of all other elementary particles, based on preon as a building block, will be published 

elsewhere. 
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