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The electromagnetic duality in vacuum is an intriguing property characterizing Maxwell’s 
equations. It was the starting point of numerous developments. One of the most 
important topic related to that property certainly is the discussion due to Dirac 
concerning magnetic monopoles. This exploration proposes representations of the 
duality with elements in M(4, H) involving the three generators of the imaginary part of H, 
the non-commutative set of quaternions. 

 

Part 1: The matrices representing the duality – first criterion 

The context  

Due to J.C. Maxwell’s work, the behaviour of electromagnetic fields expanding in the 
empty regions of the universe can be remarkably summarized through four equations 
[01]: 

rotx E = -𝜕𝐁

𝜕𝑡
  

divx E  = 0 

rotx B = 𝜕𝐄

𝜕𝑡
  

divx B  = 0 

In addition to their conciseness, these equations exhibit a strange property which can 
literally be observed with the naked eye. Exchanging the pair (E, B) into the pair (c.B, -E/c) 
has no impact on their formalism. This fact is what the literature calls “the 
electromagnetic duality” in vacuum. 

Former works  

This amazing property was the starting point of numerous developments; see an 
introduction, e.g. in: [02]. One of most important topic related to that property certainly   
is the discussion concerning Dirac’s magnetic monopoles. 

The main purpose of this document  

My aim is to prove that the electromagnetic duality in vacuum (up to now: EDV) can be 
described with the help of matrices in M(4, H) where H denotes the non-commutative 
set of quaternions [03].  



Characteristics  

Recalling that: (i) electromagnetic fields are currently believed to be well represented by 
antisymmetric 2-forms [04]; (ii) this type of forms can be represented by antisymmetric 
matrices – e.g.: elements in SU(4), I propose to check if the EDV can be represented by 
specific matrices denoted [] too: 

Equ.(1) 

[*F(2,0)] = [].[F(2,0)] 

Furthermore, since a repetition of the substitution delivers the initial electromagnetic 
field, up to a minus sign, i.e.: 

(E, B) → (c.B, -E/c) → (-E, -B) = -(E, B) 

… the matrices representing the EDV should also be such that: 

Equ.(2) 

[]2 = -Id4  

Main results  

Each of both equations is associated with a set of four relations when matrices are 
treated with a visual representation such that: 

[] = [
corner < 𝐍𝐨𝐫𝐭𝐡 𝐰𝐢𝐧𝐠|

|𝐖𝐞𝐬𝐭 𝐰𝐢𝐧𝐠 > [Heart]
] 

With this vision, it can be proved that the best candidate for a representation of the first 
equation has the generic formalism:  

Equ.(3) 

[] = [
 <

𝐒

c
|

|
𝐒

𝑐3
> [. Id3 +



c2
. T(𝐒, 𝐒) −



c
.(𝐒)]

] 

With: 

•  as a term proportional to an energy per unit of volume 
• c as the speed of light in vacuum,  
• 0 as the magnetic permittivity in vacuum  
• S as the Poynting’s vector: 

S = 1

9

.E  B 

• The Pythagorean table: 



T(S,S) = [
𝑆1𝑆1 𝑆2𝑆1 𝑆3𝑆1

𝑆1𝑆2 𝑆2𝑆2 𝑆3𝑆2

𝑆1𝑆3 𝑆2𝑆3 𝑆3𝑆3

] 

• The axial rotation matrix: 

(S) = [
0 −𝑆3 𝑆2

𝑆3 0 −𝑆1

−𝑆2 𝑆1 0

] 

• and the coefficients: 

 = -
<𝐄,𝐁>Id3

E2
 

 = 
0

𝑐.𝐵2 

 = -.
<𝐄,𝐁>Id3

0.𝑐
 

a = 
<𝐄,𝐁>Id3

0.𝑐
 

b = 2.(2 + 1/c2). E2

0.c
 

This representation is not perfect because it delivers only: 

[].[F(2,0)] = [*F] + a. [
0 < 𝟎|

|𝟎 > b.(𝐁) −  


c
. {T(𝐒, 𝐁) + T(𝐁, 𝐒)}

] 

But it deserves at least two remarks: 

1. The coefficient b vanishes each time .c2 is one of the three generators of the 
imaginary part of H. 

.c2  {I, J, K}  b = 0 

2. The sum Tt(S,B) + T(S,B) (the “ t “ denotes the transposed of) vanishes when S 
and B have components in the anticommutative part of H. 

These remarks suggest translating the mathematical discussion into a vector space such 
that the electrical field and the magnetic field have their components in H; in that case, 
[], [F(2,0)] and [*F(2,0)] are elements in M(4,H). Furthermore, a transposition of the 
formula is written: 

-[F(2,0)].[]t = -[*F(2,0)] + a. [
0 < 𝟎|

|𝟎 > −b.(𝐁) −  


c
. {𝑇𝑡(𝐒, 𝐁) + 𝑇𝑡(𝐁, 𝐒)}

] 

As consequence: 

[].[F(2,0)] - [F(2,0)].[]t = [0] 

 

 



And: 

[].[F(2,0)] + [F(2,0)].[]t = 2.[*F(2,0)] + a. [
0 < 𝟎|

|𝟎 > b.(𝐁)
] 

Due to the first remark, the second matrix on the right side vanishes when .c2 is one of 
the three generators of the imaginary part of H. In these conditions, it is legitim to write 
the expected relation: 

[].[F(2,0)] = [*F(2,0)] 

… provided: 

• the components of S and B are in H, and they are anticommutative, i.e.: Sm.Bn + 
Bn.Sm = 0. 

• the coefficients of [] are such that: 

 -
<𝐄,𝐁>Id3

E2 . c2 = I, J or K 

 = 
0

𝑐.𝐵2  
c2 = 1

𝑐3 .
1

2.𝑊𝐵
  

with W = ½. 𝐵
2

0

 = ½. 0. E2 

 = -.
<𝐄,𝐁>Id3

0.𝑐
 = 1

0.𝑐5. 2. c4. E2 = - 𝐸2

0.𝑐5 = - 2

𝑐3. WE 

a = 
<𝐄,𝐁>Id3

0.𝑐
 

• the matrix [] is: 

[] = [
 <

𝐒

c
|

|
𝐒

𝑐3
> [−

2

𝑐3
. 𝑊𝐸 . Id3 +

1

𝑐3
.

1

2.𝑊𝐵
. T(𝐒, 𝐒) −

±I,   ±J or ±K

𝑐3
.(𝐒)]

] 

Part 2: Matrices representing the duality – second criterion. 

The second part explores the necessary conditions for a validation of Equ.(2). The second 
equation is true when: 

• For the corner 

2 + S2/c4 = -1 

• For the wings 

 +  + . S2/c2 = 0 

• For the heart 

.  + .  = 0 



2 - 2. S2/c2 = -1 

. /c2 + /c2.  + 2. S2/c4 + /c2 + 1 = 0 

Here, they must be relooked as: 

• For the heart 

WE.  + . WE = 0 

The electric energy WE of the EM wave must be (i) J or K if  = I, (ii) K or I if  = J and (iii) I or J 
when  = K. This is because  and  must be anticommutative coefficients. Because of 
this fact: 

S2 = 0 

The Poynting’s vector must be isotropic [for a definition see E. Cartan’s theory on spinors]. 
A condition for the vanishing of b was: /c2 + 1 = 0. The third constraint concerning the 
heart is then: 

.  + .  = WE. 1

𝑊𝐵
 + 1

𝑊𝐵
. WE = 0 

This strange constraint can only be realized in a context where the electric energy differs 
from the magnetic energy, and both are anticommutative quaternions with the same 
“norm”. 

• Consequence for the wings 

 = - = 2

𝑐3 . 𝑊𝐸  

• Consequence for the corner 

2 = 4

𝑐6 . 𝑊𝐸
2 = -1 

Up to a real factor of proportionality, the electrical energy is a generator for H too. 

 = 2

𝑐3 . 𝑊𝐸   {I, J, K} 

Conclusion 

Hence, the generators of the imaginary part of quaternions give the opportunity to 
represent the EDV in different exemplars obeying the same model: 

 = - 
1

𝑐3
.

1

2.𝑊𝐵
  /c 

J -J I 
-J J I 
K -K I 
-K K I 

Etc. 



… leaving this exploration with a set of matrices resembling this one: 

[] = [
I < 𝐒|

|𝐒 > −I. Id3 + K. T(𝐒, 𝐒) − J.(𝐒)
]; S2 = 0 

This exploration, if it has not already been made by someone else, opens a door into a 
mysterious terra incognita because it tells more questions than it delivers answers. 

- Does a one-to-one correspondence between this type of matrices [] and a given 
type of physical particles or anti-particles (e.g.: quarks and anti-quarks, neutrinos) 
in the standard model exist?  

- Are these representations explaining – at least for a part- the three generations? 
- Is this type of elementary particles a set of messengers between two equivalent 

states of what we perceive as a vacuum? Hence, are these particles carrying the 
quantized fluctuations characterizing the empty regions of the universe? 

© Thierry PERIAT, 14 February 2025. 
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