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Abstract

We present a unique derivation for photon-electron scattering that operates
exclusively in the laboratory frame of reference. It considers the relativistic principle
and angular dependence of photon and electron. A general equation emerges at the
end which relates the energies of the photon before and after scattering through the
application of energy and momentum conservation laws [4]. Such a laboratory-based
methodology gets rid of the requirement for frame transformations into electron rest
reference frames while providing an integrated approach to understanding both
classical and relativistic regimes [3].
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1. Introduction

Interaction between photons and electrons is a core concept in present-day physics because
it enables our understanding of quantum mechanics alongside astrophysical radiation pro-
cesses. In 1923 Arthur Compton proved light behaved as a particle by examining experi-
ments demonstrating how photons transfer momentum as well as energy to electrons [1].In
high-energy astrophysical jets and particle accelerators, where ultra-relativistic electrons
produce substantial energy gain in photons through a process known as inverse Compton
scattering [2]. A conventional approach involves transforming to an electron rest frame
for simplifying calculation but it introduces difficulties in the lab frame analysis. In this
work, throughout our complete analysis, we utilize an alternative method to establish the
photon energy relation using only laboratory frames of reference.
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Figure 1: This diagram illustrates the scattering process of a photon interacting with a
moving electron in the lab frame. The incoming photon approaches the electron at an

angle (6 + ¢)
2. Derivation

Conservation of Energy.
The total energy before and after an interaction remains conserved:

E,+E =E +E,
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This equation represents the conservation of energy, where:
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e mc? and m’'c? are the energies of the electron before and after interaction.

Squaring Both Sides.
We square both sides to prepare for further manipulations:

E+mc _ h—c—l—m’c 2
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Expanding the Squared Term.

h2 2 h h2 2 h
)\—s + 270mc +m2c? = )\g + 2§m’c + m'%c?

and % are the energies of the incoming and scattered photons.



Conservation of Momentum in the x-Direction.
Momentum in the z-direction must also be conserved:
PP$+P€$:PIQQE+P6/$ (5)

Substituting the Momentum Terms.

h h
3 cos(6) + mu cos(p) = v cos(8') + m'v' cos(¢') (6)
Squaring the Momentum Equation.
h > (h ?
<X cos(0) + mo cos(d))) = (Y cos(0') +m'v cos(¢’)) (7)
Expanding the Squared Terms.
h? h h? h
2 cos2(9)+2xmv cos(8) cos(¢)+m*v? cos?(¢) = 5C cos2(9/)+2ym’v’ cos(6) cos(¢')+m*v"” cos®(¢')

(8)

Conservation of Momentum in the y-Direction.

Py + Py =P, + P, (9)
Substituting the Momentum Terms.
h . : _ho 1T i (]
X sin(f) — mwsin(¢) = Y sin(0") — m'v" sin(¢") (10)

here Y component of electron’s momentum is negative.
Squaring the Momentum Equation in the y-Direction.

h > /h ?
<X sin(6) — mw Sin(gb)) = (y sin(6') —m'v' sin(gb')) (11)
Expanding the Squared Terms.
h2~29 2h’ 9 2,2 22 _h2-29/ 2]1,,,9,, / 12,02 -+ 20 41
3z Sin (0)— P sin(0) sin(¢)+m-v”sin®(¢) = 32 Sin (0")— Y sin(0") sin(¢")+m'“v"* sin*(¢’)
(12)
Adding the x and y Components.
Adding the squared equations for the z- and y-momentum:
h > (h ?
(X cos(6) +mu cos(¢)) + (X sin(f) — mw sin(¢))
h > /h ?
= (y cos(0') + m'' cos(qﬁ')) + (y sin(f") — m'v' sin(qﬁ')) (13)
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%(cos2 0 + sin® 0) + m*v*(cos® ¢ + sin® ¢) + 2 - %mv(cos fcos¢p —sinfsing)  (14)
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h

= ﬁ(cos2 0 +sin? @) +mv"?(cos® ¢’ +sin® ¢') +2- ym’v’(cos 0’ cos ¢’ —sin @' sin ¢') (15)

Using the trigonometric identity:
cos’x +sinx =1 (16)

This simplifies to:
ﬁqu ve 2 va(cos@cosgb—sin@singb) (17)
h? 9 1 h

=t m'“v"? +2- ym’v’(cos 6’ cos ¢’ — sin @' sin ¢') (18)

Using
cos(6) cos(¢) — sin(0) sin(¢) = cos(d + @)
, we simplify:
h? ’

v + m*? + 2§mv cos(f + ¢) = % +m? + Q%m’v' cos(0' + ¢')

Subtracting eq 18) from eq (4).

We start with:

h? h h? h
<— +mi?+2- —mc) — (— +m*® 4+ 2. PR cos(6 + qb))

A2 A A2
h? h h? h
= (ﬁ +mP2e* 42 ym'c> — <ﬁ +m? + 2. ym’v’ cos(0' + gb/))
m?c —m2v? + 2Emc — 2ﬁmv cos(0+ ¢) = m?c* —mv"? + 2£m'c - 2ﬁm’v’ cos(0' + ¢')
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Taking common terms:

m?(c? —v?) + 2§m(c —wveos(f + ¢)) = m?(® —v”?) + 2%”‘/(0 —v'cos(6' +¢)) (21)



Substituting m = myy and m’ = myy':

( e )(02_02>+2@m(c_ms(0+¢)) = ( moc )(02—1/2)+2ﬁm'(c—v’ cos(8'+'))

02 _ U2 )\ 62 _ ,U/2 )\/
(22)
Dividing by m2c* on both side :
h h / b
QXm(c —wvcos(f + ¢)) = 2ym (c—v'cos(' + ¢')) (23)
Dividing by 2/ on both side and simplifying:
i’_m’cil—%’cos(Q’ﬂqu’) (24)

A me 1—Ycos(fd+9)

Eq (23) relates the wavelength of the photon before and after scattering. Using
m'c = P, and mc = P,:

A P 1 —2cos(f + ¢)

here P and P’ is the relativistic momentum of electron before and after scattering.

N P 1- %cos(@’ +¢)

Writing equation in terms of energy.

taking eq (24) and by putting the value of m and m’; eq (24) can be simplified.

/

1 — % cos(0 + ¢')
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- 1 26
Ay 1—2cos(d+9) (26)

Multiply and divide by hc on the left hand side

’ r]— v 0’ /
N he o 1= Gcos(V+¢) (27)

A he v 1—%cos(0+ ¢)

Since £ = % (energy of a photon), we substitute:

he/A 4 1= Y cos(0 + ¢') (28)

he/X vy 1—2cos(6 + ¢)
Simplify Using Energy Relation.

B _ 4 1- 2 cos(0 + ¢') (29)
E' v 1—%cos(f+ o)

Final Expression in Terms of Energy.

1-2 0
pop. ). 1oeos@0+9) (30)
v 1—%cos(f +¢)

eq (30) relates the energy of the photon before and after scattering.




3. Small-Angle Scattering

Small-angle scattering occurs when the photon scatters at a shallow angle relative to its
original trajectory. In this regime, the angles §+ ¢ (incoming photon direction) and 6’ + ¢’
(outgoing photon direction) are close to zero, and the cosine terms approach unity:

cos(+ @)~ 1, cos(0 +¢') ~ 1.

Additionally, the electron velocity and Lorentz factor remain approximately unchanged
during the interaction:
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Substituting these approximations into the general equation for photon-electron scat-

tering:
1 —2cos(f+ o)

1 %’cos(&’+gz5’)’

E =F-
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We simplify the terms as follows:

1. For small angles, cos(f + ¢) ~ 1 and cos(6' + ¢') = 1, so:

!/ /
1—2COS(9+(}5)%1—E, 1—U—cos(0’+¢’)z1—v—.
c c c c

2. Since v’ &~ v, the numerator and denominator cancel out:
b

1 —
1 —
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3. Similarly, since 7’ & ~, the prefactor % ~ 1.
Thus, the final result for small-angle scattering is:
E' ~ F.

The photon sustains almost all of its initial energy while showing minimal energy
transfer between an electron. Here the photon trajectory changes slightly due to its weak
interaction with an electron.

4. Conclusion

This research introduces an innovative outlook to examine photon-electron scattering
phenomena. By leveraging conservation laws, we derive a general equation that captures
the interplay between photon energy, electron motion, and scattering angles [4]. Future
work could explore specific cases like ultra-relativistic limits and their applications in
astrophysics and high-energy physics. Recalling a classic problem with a novel approach,
this work underscores the enduring richness of photon-electron interactions.
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