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1 Abstract

It was Paul Erdős, one of the brightest mathematicians of our time, who famously stated
that ’Mathematics is not yet ripe for such questions’, setting the tone for almost all related
mathematical inquiry for the next generation. The notorious Collatz Conjecture has stumped
a plethora of hobbyist and professional mathematicians alike who have tried their hand.
Among many ways in which this problem has been tackled, including [Lag11], [Lag12], and
others, one of them seems most suggestive - strong induction. In this paper, we claim to
show that the inductive step of the Collatz Conjecture is probabilistically true for large odd
seeds. Further, in this paper I put forth a novel reformulation that, if true, would imply the
truth of the Collatz Conjecture.

2 The Setup

Let C be the Collatz map, that is:

C : Z+ → Z
+

C(n) =

{

n
2

, n is even

3n+ 1 , n is odd.

The Collatz conjecture states that, for any positive integer, n, there exists k ≥ 1 such that
Ck(n) = 1.

A Collatz sequence is a sequence of positive integers, ak, such that ak+1 = C(ak).

Let Sk be the k-th odd term in an arbitrary Collatz sequence and bk the number of even
terms in that sequence between Sk and Sk+1, then:

Sk+1 =
3Sk + 1

2bk

Sk =
3Sk−1 + 1

2bk−1

So, recursively, we also have,

Sk+1 =
3kS1

2Bk

+
k−1
∑

i=0

3k−i−1

2Bk−Bi

, (1)

for all k ≥ 1, where Bk =
∑l=k

l=1 bl and b0 = 0. Now, notice that,

3S1 + 1 = 2b1S2 (2)

and, similarly,
3S2 + 1 = 2b2S3 (3)
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and so on and so on, so that, by recursion we know that, for all k ≥ 1,

2Bk =
S1

Sk+1

k
∏

l=1

(

3 +
1

Sl

)

(4)

also, define C to be the largest known number that adheres to the Collatz Conjecture.

3 The Proof

Now, assume by way of contradiction that ’for some S1 > C for all k ≥ 1 we have that
Sk+1 ≥ S1’. Since, for all k ≥ 1,

S1

Sk+1

k
∏

l=1

(

3 +
1

Sl

)

= 2Bk (5)

we see that, for all k ≥ 1,

S1 =
3k−1

∏k

l=1

(

3 + 1
Sl

)

− 3k
·
k−1
∑

i=0

∏i

l=1

(

3 + 1
Sl

)

3i
· S1

Si+1

and further, by assumption, for all k ≥ 1,

(6)

k ≤ S1 ≤
3k−1

∏k

l=1

(

3 + 1
Sl

)

− 3k
·
k−1
∑

i=0

∏i

l=1

(

3 + 1
Sl

)

3i
for all k ∈ [1, S1] (7)

k ≤
∏k−1

l=1

(

3 + 1
Sl

)

∏k

l=1

(

3 + 1
Sl

)

− 3k
· k clearly, (8)

Therefore, for all k ∈ [1, S1],

k
∏

l=1

(

3 +
1

Sl

)

− 3k ≤
k−1
∏

l=1

(

3 +
1

Sl

)

(9)

1− 3k

∏k

l=1

(

3 + 1
Sl

) ≤ 1

3 + 1
Sk

(10)

∏k

l=1

(

3 + 1
Sl

)

3k
<

3

2
(11)

Now, substituting (11) into (6), we see that, for all k ∈ [1, S1]

2





∏k

l=1

(

3 + 1
Sl

)

3k
− 1



 <

k−1
∑

i=0

1

Si+1

(12)
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Moreover, by the Cauchy-Schwarz inequality, we see that, for all k ∈ [1, S1],

3





∏k

l=1

(

3 + 1
Sl

)

3k
− 1



 =
k−1
∑

i=0

∏i

l=1

(

3 + 1
Sl

)

3i
· 1

Si+1

(13)

<

√

√

√

√

√

k−1
∑

i=0





∏i

l=1

(

3 + 1
Sl

)

3i





2
k−1
∑

i=0

(

1

Si+1

)2

(14)

3S1√
k





∏k

l=1

(

3 + 1
Sl

)

3k
− 1



 <

√

√

√

√

√

k−1
∑

i=0





∏i

l=1

(

3 + 1
Sl

)

3i





2

by assumption, (15)

Further, define αk ∈ (0, π
2
) to be the angle in-between,

〈

1,

∏1
l=1

(

3 + 1
Sl

)

31
,

∏2
l=1

(

3 + 1
Sl

)

32
, . . . ,

∏k−1
l=1

(

3 + 1
Sl

)

3k−1

〉

(16)

and,
〈

1

S1

,
1

S2

, . . . ,
1

Sk

〉

(17)

for all k ∈ [1, S1]. Therefore, we know that, since equivalently,

〈

1,

∏1
l=1

(

3 + 1
Sl

)

31
,

∏2
l=1

(

3 + 1
Sl

)

32
, . . . ,

∏k−1
l=1

(

3 + 1
Sl

)

3k−1

〉

·
〈

1

S1

,
1

S2

, . . . ,
1

Sk

〉

(18)

= 3





∏k

l=1

(

3 + 1
Sl

)

3k
− 1



 (19)

we see that, for all k ∈ [1, S1]

√

√

√

√

√

k−1
∑

i=0





∏i

l=1

(

3 + 1
Sl

)

3i





2
k−1
∑

i=0

(

1

Si+1

)2

cos(αk) (20)

= 3





∏k

l=1

(

3 + 1
Sl

)

3k
− 1



 (21)

(22)
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So that, by (15),

cos(αk) <

√
k

S1

√

∑k−1
i=0

(

1
Si+1

)2
(23)

=
1

S1

√

∑

k−1

i=0

(

1

Si+1

)2

k

(24)

≤ k

S1

∑k−1
i=0

1
Si+1

by QM-AM, (25)

<
k

2S1

[

∏

k

l=1

(

3+ 1

Sl

)

3k
− 1

] by (12) (26)

and since αk ∈ (0, π
2
) and cos(t) is concave along t ∈ (0, π

2
) we know that,

1− 2

π
αk < cos(αk) (27)

Therefore, we see that, for all k ∈ [1, S1]

αk >
π

2









1− 1

2S1

k

[

∏

k

l=1

(

3+ 1

Sl

)

3k
− 1

]









(28)

Further, since cos(t) is decreasing along t ∈ (0, π
2
), we see that, for all k ∈ [1, S1],

3





∏k

l=1

(

3 + 1
Sl

)

3k
− 1



 <

√

√

√

√

√

k−1
∑

i=0





∏i

l=1

(

3 + 1
Sl

)

3i





2
k−1
∑

i=0

(

1

Si+1

)2

cos









π

2









1− 1

2S1

k

[

∏

k

l=1

(

3+ 1

Sl

)

3k
− 1

]

















(29)

<
3k

2S1

cos









π

2









1− 1

2S1

k

[

∏

k

l=1

(

3+ 1

Sl

)

3k
− 1

]

















by (11) and our assumption,

(30)

≤ 3

2
cos









π

2









1− 1

2

[

∏

k

l=1

(

3+ 1

Sl

)

3k
− 1

]

















since cos(t) is decreasing in t ∈ [0, π/2]

(31)
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Now, denote Rk =
∏

k

l=1

(

3+ 1

Sl

)

3k
− 1 ∈ (0, 1

2
) for all k ∈ [1, S1], and let R0 = 0. Therefore, we

see that, for all k ∈ [1, S1], noting Rk+1 > Rk for all k ∈ [1, S1 − 1],

3Rk <
3

2
cos

(

π

2

(

1− 1

2Rk

))

(32)

2Rk < sin

(

π

4Rk

)

(33)

(34)

Now, let Ti =
{

all x ∈ [Ri,
1
2
] : 2x < sin

(

π
4x

)}

, and let (X1, X2, . . . , XS1
)

i.i.d.∼ U[0, 1
2
]. Now,

sort Xi to become X(i) such that, X(i+1) > X(i) for all i ∈ [1, S1 − 1], and suppose Ri = X(i)

for all i ∈ [1, S1]. Therefore,

P

(

S1
⋃

i=1

{Ri 6∈ T0}
)

= 1−
S1
∏

i=1

P(Ri ∈ T0) (35)

= 1−
S1
∏

i=1

(

Li

1
2
−Ri

)

where Li = µ(Ti) ∈
[

0,
1

2
−Ri

]

for i ∈ [1, S1], clearly,

(36)

≈ 1 for large S1 > C, since
Li

1
2
−Ri

≤ 1 for all i ∈ [1, S1] (37)

So, as we consider larger S1 > C, assuming Rk is assigned the value of the kth ordered
random variable X(k) for k ∈ [1, S1], we see, clearly, the probability that ’for some S1 > C
for all k ≥ 1 we have that Sk+1 ≥ S1’ is a contradiction approaches 1. We conclude that the
inductive step of the Collatz Conjecture is probabilistically true for large odd seeds. That
is to say, we conclude that ’for all S1 > C for some k ≥ 1 we have that Sk+1 < S1’ is
probabilistically true for large odd seeds, all assuming Rk is assigned the value of the kth
ordered random variable X(k) for k ∈ [1, S1].

4 A push forward reformulation

In this section, I detail a novel reformulation of the Collatz Conjecture. So, we begin exactly
as from (1) to (11). That is, assuming by way of contradiction that ’for some S1 > C for all
k ≥ 1 we have that Sk+1 ≥ S1’, we have that, by substituting k = S1 into (11),

3S1

∏S1

l=1

(

3 + 1
Sl

) >
2

3
(38)

Now, it is required to show that, in actuality,

3S1

∏S1

l=1

(

3 + 1
Sl

) ≤ 2

3
(39)
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For all S1 ≥ M for some M ≥ 1, and this is our reformulation. As numerically supported, I
conjecture that this is the case for all S1 > 31. Moreover, if one were to tackle this conjecture
of my own, one would naturally gravitate towards a kind of induction. Unfortunately, the

data would suggest that 3S1

∏S1
l=1

(

3+ 1

Sl

) is not always greater than nor always less than 3S
′

1

∏S′

1
l=1

(

3+ 1

S′

l

)

where S ′

1 = S1 + 2, so, another approach is most likely required.
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