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Abstract

Here is proposed to confirm the Riemann hypothesis.

1. Introduction

Bernhard Riemann made the hypothesis, that is here proposed to confirm,
that the complex xi (ξ) function zeros are real [2] (p.139). The eta (η)
Dirichlet function will also be proposed to be used for a proof that the
Riemann zeta function nontrivial zeros, which are linked to the xi zeros,
have real part equal to 1

2 .

2.The zeros of ξ

Theorem 2.1. There exists a real sequence (an)n∈N such that the Riemann

ξ function can be written such as, for t ∈ C : ξ(t) =
∞∑
n=0

(−1)n|an|t2n.

Proof. According to Riemann [2] (p.138), for t ∈ C:

ξ(t) = 4

∫ ∞

1

d(x
3
2ψ′(x))

dx
x−

1
4 cos(

1

2
t log(x)) dx.

So, as Riemann typed: “Diese Function... ...lässt sich nach Potenzen von
tt in eine... ...convergirende Reihe entwickeln.”, which can be translated
as “This function... ...allows itself to be developed in powers of tt... ...as
a converging series.”, the Riemann ξ function can be such as, for t ∈ C:

ξ(t) =

∞∑
n=0

an(t
2)n, where for n ∈ N :

an = 4
(−1)n

22n(2n)!

∫ ∞

1

d(x
3
2ψ′(x))

dx
x−

1
4 (log(x))2n dx.
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The function
d(x

3
2ψ′(x))

dx
= πx

1
2

∞∑
n=1

(
n2πx− 3

2

)
n2e−n2πx being positive

on (1;+∞), and having a finite limit at 1+, for all n ∈ N, (−1)nan > 0,
which gives the theorem 2.1.

Noting for z ∈ C, Arg(z) as the principal argument of z being in (−π;π],
(un(t))n∈N = (ant

2n)n∈N, follows this theorem:

Theorem 2.2. For any t in C such that ℜ(t) ̸= 0, ℑ(t) ∈ (−1
2 ,

1
2) and

ξ(t) = 0, t is real.

Proof. Let be t = a + ib ∈ C such that a ̸= 0, b ∈ (−1
2 ;

1
2), and ξ(t) = 0.

Thus,
∞∑
n=0

un+1 = −a0. (1)

Let us name z =
∞∑
n=0

|un+1(t)|eiArg(un(t)) (convergence confirmed below). We

have:

ℑ(z) = ℑ

( ∞∑
n=0

|un+1(t)|ei
1
2
Arg(u2

n(t))

)

= ℑ

( ∞∑
n=0

|un+1(t)|e
i 1
2
Arg

((
un(t)

un+1(t)

)2
u2
n+1(t)

))

= ℑ

( ∞∑
n=0

|un+1(t)|ei
1
2
Arg(t−4u2

n+1(t))

)

= ℑ

( ∞∑
n=0

|un+1(t)|eiArg(t−2un+1(t))

)

= ℑ

( ∞∑
n=0

un+1(t)e
iArg(t−2)

)
= ℑ

(
−a0eiArg(t−2)

)
from the equation (1)

ℑ(z) = −a0 sin(Arg(t−2)). (2)
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And:

ℑ(z) = ℑ

( ∞∑
n=0

|un+1(t)|eiArg(un(t))

)

= ℑ

( ∞∑
n=0

un+1(t)e
iArg

(
un(t)

un+1(t)

))

= ℑ

( ∞∑
n=0

un+1(t)e
iArg(−t−2)

)
= ℑ

(
−a0eiArg(−t−2)

)
from the equation (1)

ℑ(z) = a0 sin(Arg(t
−2)). (3)

Thus, thanks to the equations (2) and (3): a0 sin(Arg(t
−2)) = 0. Then,

t2 = a2 − b2 + i2ab is real, b = 0 because a ̸= 0, and t is real.

Therefore, as Riemann typed [2] (p.138) “...so kann die Function ξ(t)
nur verschwinden, wenn der imaginäre Theil von t zwischen 1

2 i und −1
2 i

liegt.”, which can be translated as “...it follows that the function ξ(t) can
only vanish if the imaginary part of t lies between 1

2 i and −1
2 i”, with the

lemma 2.1 is proposed that the Riemann hypothesis is confirmed.

Lemma 2.1. For any t in C such that ℜ(t) = 0 and ℑ(t) ∈ (−1
2 ,

1
2), ξ(t)

is not null.

Proof. We proceed by contradiction. Let be t in C such that ℜ(t) = 0,

ℑ(t) ∈ (−1
2 ,

1
2) and ξ(t) = 0. Then, ξ(t) =

∞∑
n=0

|an|(ℑ(t))n. Because of the

symmetry of the zeros about the real axis (which can be proved by saying
that ξ(t̄) = 0 using the polar form of the xi expression of the theorem 2.1),
a0 = 0. But a0 is positive. We have the lemma 2.1.

3.The nontrivial zeros of ζ

In 1859, Riemann wrote: Γ( s2+1)(s−1)π
−s
2 ζ(s) = ξ(t) where s = 1

2+it. Let
us now propose to use the Dirichlet eta (η) function, present in an analytic
continuation expression of ζ, on 0 < ℜ(s) < 1, where are its nontrivial zeros.
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Lemma 3.1. For any a in (0,∞), any n in N, any s in C, if ℜ(s) is in

(0, 1) and ζ(s) = 0, then

∫ ∞

0

xs−1

exa−4n + 1
dx = 0.

Proof. Let be a a positive real number, n in N, and s in C, such that
ℜ(s) ∈ (0, 1) and ζ(s) = 0. Lang [1] (p.157) and Spiegel [3] (line 15.82) give,
for ℜ(s) > 0:

ζ(s) =
η(s)

1− 21−s
and η(s) =

1

Γ(s)

∫ ∞

0

xs−1

ex + 1
dx.

Then, ζ(s) = 0 implies that

∫ ∞

0

xs−1

ex + 1
dx = 0, and the variable change

x = ua−4n gives the lemma 3.1.

Theorem 3.1. For any s in C, if ℜ(s) is in (0, 1), ℑ(s) ̸= 0 and ζ(s) = 0,
then ℜ(s) = 1

2 .

Proof. Let be s = σ + it a nontrivial zero, with σ in (0, 1) and t a positive

real number, and let be a = exp
( π
2t

)
. The lemma 3.1 gives that:∫ 1

0

xs−1

exa−4n + 1
dx = −

∫ ∞

1

xs−1

exa−4n + 1
dx

n going to infinity, the dominated convergence theorem makes the left
term converge to 1

2s . Thus,

ℜ
(

1

2s

)
+ o(1)

n→∞
= ℜ

(
−
∫ +∞

1

xs−1

exa−4n + 1
dx

)
= −1− σ

σ

∫ ∞

1

x−σ cos
(
t 1−σ

σ ln(x)
)

1 + exp
(
a−4n x

1−σ
σ

) dx,with the variable change x = u
1−σ
σ

=
1− σ

σ

∫ 1

0

x−σ cos
(
t 1−σ

σ ln(x)
)

1 + exp
(
a−4n x

1−σ
σ

) dx
with the same variable change applied to ℜ

(∫ ∞

0

xs−1

exa−4n + 1
dx

)
= 0.

n going to infinity, the dominated convergence theorem makes this last
term converge to

1

2

1− σ

σ

∫ 1

0
x−σ cos

(
t
1− σ

σ
ln(x)

)
dx,
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which equals
1

2

1− σ

σ

(1− σ)2

σ

1

(1− σ)2 + t2
. Then, because this term

equals ℜ
(

1
2s

)
:

1− σ

σ

(1− σ)2

σ

1

(1− σ)2 + t2
=

σ

σ2 + t2

⇔ 1− σ

σ
(1− σ)2 (σ2 + t2) = σ2((1− σ)2 + t2) multiplying by σ((1− σ)2 + t2)(σ2 + t2)

⇔ t2
(
(1− σ)2

(
1− σ

σ

)
− σ2

)
=

(
1− 1− σ

σ

)
σ2(1− σ)2 factorizing by t2 and σ2(1− σ)2

⇔
(

t

1− σ

)2
((

1− σ

σ

)3

− 1

)
=

(
1− 1− σ

σ

)
dividing by σ2(1− σ)2

⇔
(

t

1− σ

)2(1− σ

σ
− 1

)(
1 +

1− σ

σ
+

(
1− σ

σ

)2
)

=

(
1− 1− σ

σ

)
factorizing by

(
1− σ

σ
− 1

)

⇔
(
1− σ

σ
− 1

)((
t

1− σ

)2
(
1 +

1− σ

σ
+

(
1− σ

σ

)2
)

+ 1

)
= 0 factorizing by

(
1− σ

σ
− 1

)

⇔
(
1− σ

σ
− 1

)
= 0 the term

(
t

1− σ

)2
(
1 +

1− σ

σ
+

(
1− σ

σ

)2
)

+ 1 being positive

⇔ σ =
1

2
.

The zeta nontrivial zeros being symmetric about the real axis, which can be

proved saying that ζ(s̄) = 0 using η(s̄) =
∞∑
n=0

(−1)n−1

ns̄
, with the lemma 3.2

is proposed that the Riemann hypothesis is confirmed.

Lemma 3.2. For any s in C such that ℑ(s) = 0, and ℜ(s) in (0, 1), ζ(s) is
not null.

Proof. We proceed by contradiction. Let be s ∈ C such that ℜ(s) = σ ∈

(0; 1),ℑ(s) = 0, and ζ(s) = 0. Then η(s) =
+∞∑
n=1

(−1)n−1

nσ
= 0 and the series(

m∑
n=0

(2n+ 2)−σ − (2n+ 1)−σ

)
m∈N∗

converges to 0, but is a sum of only

positive terms. We have the lemma 3.2.
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