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Abstract. In the decimal number system we can find some interesting products, such as
12 = 3 · 4. What is interesting about these products is that if you remove the symbols, the
digits form a sequence 1, 2, 3, 4. Another example is 56 = 7 · 8, where the sequence is 5,
6, 7, 8. The objective of this paper is to prove that, within the constraints of the decimal
number system, these are the only two cases in which this happens. In this paper we also
consider a general case which considers subsequences of mod 10, i.e., 0123456789012345... .

Introduction to the problem
Trivial version of the problem

It is very important to specify what it means to have a sequence of numbers. If we consider
the trivial case (which we shall prove first) we assume the sequence is a finite one,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Note: We place the 0 afterwards, as before it would make no sense as a digit for any number.
Advanced version of the problem

If we assume it is not finite, we get our non-trivial case which is a lot more fun to investigate;
this is, of course, modulo 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, . . .

Notation and Introduction If we adopt the notation where A1 represents the first digit
of the number A then we conjecture that,(
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2 2 INTRODUCTION TO THE PROBLEM

in sequence for only 12 = 3 · 4 and 56 = 7 · 8 in the entire decimal number system.
Here,

• An is the nth number being considered,
• nl is the number of digits the lth number has,
• A1

1A
2
1 · · ·An

1 is a single number (namely, A1) with n many digits.

Proof for the Trivial case
It is very important to realize that the required product is just a partition into groups of a

subsequence of the main sequence, which is

⟨0, 1, 2, 3, 4, 5, 6, 7, 8, 9⟩.

Example for clarity

⟨1, 2, 3, 4⟩ ⊆ ⟨0, 1, 2, 3, 4, 5, 6, 7, 8, 9⟩,

and

⟨1, 2, 3, 4⟩ → 12 = 3 · 4 ← 12 | 3 | 4.

So any valid product is a partition of no more than 6 parts (digits run out) of any subsequence
of our main sequence ⟨0, 1, 2, 3, 4, 5, 6, 7, 8, 9⟩.

Enumerating all possibilities
We consider all subsequences of the main sequence, starting from length 3 (obvious) up to 10.

• There are 8 subsequences of length 3.
• There are 7 subsequences of length 4.
• There are 6 subsequences of length 5.
• There are 5 subsequences of length 6.
• There are 4 subsequences of length 7.
• There are 3 subsequences of length 8.
• There are 2 subsequences of length 9.
• There is 1 subsequence of length 10.

Now, for any subsequence we must have at least 3 parts, and can have up to as many parts
as there are digits (even though most partitions will not yield a valid product). For example:

• The 8 subsequences (of length 3) can be partitioned only one way:

∗ | ∗ | ∗

• The 7 subsequences (of length 4) can be partitioned in 4 ways:

∗ | ∗ | ∗ | ∗, ∗ | ∗ | ∗ ∗, ∗ | ∗ ∗ | ∗, ∗ ∗ | ∗ | ∗ .
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• The 6 subsequences (of length 5) can be partitioned in 11 ways, because

Exactly 2 cuts (3 parts):
(
4

2

)
= 6,

Exactly 3 cuts (4 parts):
(
4

3

)
= 4,

Exactly 4 cuts (5 parts):
(
4

4

)
= 1;

Total: 6 + 4 + 1 = 11.

• For subsequences of length 4, 5, 6, etc., similar combinatorial counts yield totals of 26,
57, 120, 247, and 502 partitions respectively.

Thus, the total number of possibilities to check is

1 · 8 + 4 · 7 + 11 · 6 + 26 · 5 + 57 · 4 + 120 · 3 + 247 · 2 + 502 · 1 = 1816.

Below is the pseudocode that can be used to check for the existence of such subsequences.

Brute-Force Sequential Product Checker

Algorithm 1 Brute-Force Sequential Product Checker

Step 1: Set n← length(S), with S = “0123456789”.
Step 2: For each integer L from 3 to n, do:

For each integer start from 0 to n− L, do:
Set T ← S[start : start + L] (a contiguous subsequence of length L).
For each partition P of T into at least 3 parts, do:

For each integer i from 1 to length(P )− 1, do:
Compute LHS ← concatenate(P [0], P [1], . . . , P [i− 1]).
Compute RHS ← product(P [i], P [i+ 1], . . . , P [end]).
If LHS = RHS, then output the equation:

Equation: concatenate(P [0], . . . , P [i− 1]) = P [i]× · · · ×
P [end].

This code will output 12 = 3·4, 56 = 7·8 and 012 = 3·4. (The distinction between 012 = 3·4
and 12 = 3 · 4 can be treated either as two separate cases or made trivial.)

Proof for the General Case
Define the infinite sequence

S = (sk)k≥1 with s1 = 1, s2 = 2, s3 = 3, s4 = 4, s5 = 5, s6 = 6, s7 = 7, s8 = 8, s9 = 9, s10 = 0,

and for all integers n ≥ 0 and 1 ≤ i ≤ 10 let

s10n+i = si.

A finite sequence of digits
T = (t1, t2, . . . , tL)
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is said to be a contiguous block of S if there exists an index k ≥ 1 such that

t1 = sk, t2 = sk+1, . . . , tL = sk+L−1.

We now recall our notation for an equation. If(
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forms a contiguous block of S.
Our aim is to prove that, aside from trivial variants (e.g., those involving a leading zero),

the only solutions in the decimal system with the sequential digits property are

12 = 3 · 4 and 56 = 7 · 8.

Reduction via Cyclic Rotation
Let

C = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0)

denote the base 10-digit cycle. We first prove the following lemma.
Lemma (Cyclic Rotation). Let T = (t1, t2, . . . , tL) be a contiguous block of S. Then

there exists a cyclic rotation of C such that T appears as a contiguous block in that rotated
copy (if L > 10, T will span more than one copy, but its structure is completely determined by
its starting point).

Proof. If T is entirely contained in one copy of C, the claim is immediate. Otherwise, suppose
T “wraps around” from the end of one copy of C to the beginning of the next. Let r be the
residue modulo 10 of the index at which T begins in S. Then by cyclically rotating C so that
it starts with the digit sr, the block T appears contiguously in the rotated cycle. □

Thus, without loss of generality, if the overall concatenated digit sequence
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forms a contiguous block of S, then by applying an appropriate cyclic rotation we may assume
that D is (up to extension by complete copies when L > 10) derived from the finite sequence
C. (For convenience we adopt the convention that the digit 0 is placed last.)

Finite Enumeration of Possibilities
Any valid equation must consist of at least three groups (for example, one group on one side
of the equation and at least two groups forming the product on the other side). Hence, if we
let L be the total number of digits in D, we have

3 ≤ L ≤ 10,

when we restrict to the case where D is drawn from one copy of C. (If L > 10, then by
periodicity the sequence repeats and the sequential property would degenerate.)

For each L ∈ {3, 4, . . . , 10} there is a finite number of ways to partition the L digits into
groups corresponding to the numbers in the equation. (For instance, when L = 4 the only
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possible partition into three parts is obtained by inserting two cuts between the digits; when
L = 5 one can insert the cuts in (

4
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)
+
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+
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4
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= 26

ways, etc.) A direct combinatorial computation shows that the total number of partitions that
must be examined is exactly 1816.

Exhaustion and Verification
Since there are only 1816 possibilities, one may verify—either by an exhaustive computer search
or by a rigorous combinatorial argument—that the only partitions which yield a valid equation(
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such that the concatenation of all digits (in one of the two orders specified) forms a contiguous
block of S are (up to the trivial variant involving a leading zero)

12 = 3 · 4 and 56 = 7 · 8.
No other partition of any contiguous block of C produces an equation that satisfies both the
numerical equality and the sequential digits property.

Conclusion
Since any contiguous block of digits in the infinite cyclic sequence S is, by the above Lemma,
equivalent (up to cyclic rotation) to a contiguous block taken from C, the finite enumeration
and verification implies that there are no other solutions. Therefore, even in the general case
the only (non-trivial) product equations in the decimal system having the sequential digits
property are

12 = 3 · 4 and 56 = 7 · 8.

Remark 1. It is worth noting that our analysis is independent of the particular presentation
of the infinite cyclic sequence. In this paper we have used the cyclic sequence

S = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, . . . ,

i.e., with the digit 0 appearing after 9. However, one could equally well consider the sequence

S′ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, . . . ,

or any cyclic permutation thereof. Since the sequential digits property is invariant under cyclic
rotation, our proofs and conclusions remain unchanged regardless of whether the 0 appears at
the beginning or after the 9.
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