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The Navier–Stokes equations are used to describe viscous incompressible fluid
flow. It has been on the list of the Clay Mathematics Institute’s millennium prize
problems to decide whether or not physically reasonable solutions to the Navier–
Stokes equations do in general exist. In this paper, the problem on the existence
and smoothness of the Navier–Stokes equations is solved. It is proven that the
Navier–Stokes equations are globally regular.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in R3,
[1–6]. Let u = u(x, t) ∈ R3 be the fluid velocity and let p = p(x, t) ∈ R be the
fluid pressure, each dependent on position x ∈ R3 and time t > 0. We take the
externally applied force acting on the fluid to be identically zero. The fluid is
assumed to be incompressible with constant viscosity ν > 0 and to fill all of R3.
The Navier–Stokes equations can then be written as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p, (1)

∇ · u = 0 (2)

with initial condition
u(x, 0) = u◦ (3)

where u◦ = u◦(x) ∈ R3. In these equations

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(4)

is the gradient operator and

∇2 =

3∑
i=1

∂2

∂xi
2 (5)

is the Laplacian operator. When ν = 0 equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

u◦(x + ei) = u◦(x) (6)
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for 1 6 i 6 3 where ei is the ith unit vector in R3. The initial condition u◦ is a given
C∞ divergence-free vector field on R3. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

u(x + ei, t) = u(x, t), p(x + ei, t) = p(x, t) (7)

on R3 × [0,∞) for 1 6 i 6 3 and

u, p ∈ C∞
(
R3 × [0,∞)

)
. (8)

2. Solution to the Navier–Stokes problem

Theorem 1. Take ν > 0. Let u◦ be any smooth, divergence-free vector field
satisfying (6). Then there exist smooth functions u, p on R3 × [0,∞) that satisfy
(1), (2), (3), (7), (8).
Proof. We consider a generalised Navier–Stokes equation

∂u
∂t

+ (u · ∇)u = −ν3γu − ∇p (9)

along with (2), (3), (6), (7) where γ > 1. For a Fourier series

f̃ =
∑

L

fLeicL·x (10)

where fL = fL(t) ∈ C3, i =
√
−1, c ∈ R is a constant, and

∑
L denotes the sum over

all L ∈ Z3, we have
3γ f̃ =

∑
L

|cL|γfLeicL·x. (11)

Equation (1) is recovered when γ = 2. Let the Fourier series of u, p be

ũ =
∑

L

uLeikL·x, (12)

p̃ =
∑

L

pLeikL·x (13)

respectively. Here uL = uL(t) ∈ C3, pL = pL(t) ∈ C, and k = 2π to satisfy (7). The
initial condition u◦ is a Fourier series [2] of which is convergent for all x ∈ R3.
Substituting u = ũ, p = p̃ into (9) gives∑

L

∂uL

∂t
eikL·x +

∑
L

∑
M

(uL · ikM)uMeik(L+M)·x

= −
∑

L

ν(k|L|)γuLeikL·x −
∑

L

ikLpLeikL·x. (14)
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Equating like powers of the exponentials in (14) yields

∂uL

∂t
+

∑
M

(uL−M · ikM)uM = −ν(k|L|)γuL − ikLpL (15)

on using the Cauchy product type formula

∞∑
l=−∞

alxl
∞∑

m=−∞

bmxm =

∞∑
l=−∞

∞∑
m=−∞

al−mbmxl (16)

where al, bl are independent of x. Substituting u = ũ into (2) gives∑
L

ikL · uLeikL·x = 0. (17)

Equating like powers of the exponentials in (17) yields

L · uL = 0. (18)

Applying L· to (15) and noting (18) leads to

pL = −
∑

M

(
uL−M · L̂

) (
uM · L̂

)
(19)

where p0 is arbitrary and L̂ = L/|L| is the unit vector in the direction of L. Then
substituting (19) into (15) gives

∂uL

∂t
=

∑
M

L̂ ×
(
L̂ × ((uL−M · ikL)uM)

)
− ν(k|L|)γuL (20)

where u0 = u0(0). Here we have used the a × (b × c) = (c · a)b − (b · a)c vector
identity. Without loss of generality, we take u0 = 0. This is due to the Galilean
invariance property. The equations for uL are to be solved for all L ∈ Z3. For
γ = 1, we can prove by mathematical induction that uL has the form

uL =
∑
l∈S

uL,le−νklt (21)

where uL,l is independent of t, and S denotes the set of sums of positive terms of
the form |Qi| for Qi ∈ Z

3 where for each of these sums we have
∑

i Qi = L but not
every Qi are in the same direction to each other unless there is only one. The basis
step is

u0 = 0. (22)
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The inductive step is to assume uL for all L , N has the form (21). Then for
L = N we find that (20) with γ = 1 implies

∂
(
eνk|N|tuN

)
∂t

= eνk|N|t
∑

M

N̂ ×
(
N̂ × ((uN−M · ikN)uM)

)
. (23)

The right hand side of (23) contains no uN since u0 = 0. The powers of the
exponentials in the right hand side of (23) can not be zero due to the inductive
assumption and the triangle inequality

|a + b| 6 |a| + |b| (24)

where equality holds if a and b are in the same direction. Then (23) implies that

uN = e−νk|N|t
∫ t

0
eνk|N|τ

∑
M

N̂ ×
(
N̂ × ((uN−M(τ) · ikN)uM(τ))

)
dτ + uN(0)

 (25)

which has the form (21). A chain of deductive reasoning can be seen to occur on
considering a lexicographic type ordering of vectors L in uL which proves (21).
Then for γ = 1 we find ũ has the form

ũ =
∑

L

∑
l∈S

uL,le−νklteikL·x. (26)

We have that ũ converges for all t > 0 and x ∈ R3 due to Abel’s criterion. Likewise
the enstrophy [5] is bounded since∑

L

|L|2|uL|
2 < ∞. (27)

For the case γ > 1, we let
uL = aL + ibL, (28)

pL = cL + idL (29)

where aL = aL(t) ∈ R3, bL = bL(t) ∈ R3, cL = cL(t) ∈ R, and dL = dL(t) ∈ R.
Substituting (28), (29) into (15) gives

∂aL

∂t
+ i

∂bL

∂t
+

∑
M

((aL−M + ibL−M) · ikM)(aM + ibM)

= −ν(k|L|)γ(aL + ibL) − ikL(cL + idL). (30)

Equating real and imaginary parts in (30) yields

∂aL

∂t
+

∑
M

(−(aL−M · kM)bM − (bL−M · kM)aM) = −ν(k|L|)γaL + kLdL, (31)
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∂bL

∂t
+

∑
M

((aL−M · kM)aM − (bL−M · kM)bM) = −ν(k|L|)γbL − kLcL. (32)

Substituting (28) into (18) gives

L · (aL + ibL) = 0. (33)

Equating real and imaginary parts in (33) yields

L · aL = 0, (34)

L · bL = 0. (35)

From (31) and in light of (34) we have

∂aL

∂t
· âL +

∑
M

(−(aL−M · kM)bM − (bL−M · kM)aM) · âL = −ν(k|L|)γaL · âL (36)

where âL = aL/|aL| is the unit vector in the direction of aL. Then (36) implies

∂|aL|

∂t
+

∑
M

(−(aL−M · kM)bM − (bL−M · kM)aM) · âL = −ν(k|L|)γ|aL|. (37)

Equation (37) leads to

∂|aL|

∂t
6

∑
M

(|aL−M|k|M||bM| + |bL−M|k|M||aM|) − ν(k|L|)γ|aL| (38)

on using the Cauchy–Schwarz inequality

|a · b| 6 |a||b|. (39)

From (32) and in light of (35) we have

∂bL

∂t
· b̂L +

∑
M

((aL−M · kM)aM − (bL−M · kM)bM) · b̂L = −ν(k|L|)γbL · b̂L (40)

where b̂L = bL/|bL| is the unit vector in the direction of bL. Then (40) implies

∂|bL|

∂t
+

∑
M

((aL−M · kM)aM − (bL−M · kM)bM) · b̂L = −ν(k|L|)γ|bL|. (41)

Equation (41) leads to

∂|bL|

∂t
6

∑
M

(|aL−M|k|M||aM| + |bL−M|k|M||bM|) − ν(k|L|)γ|bL| (42)
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on using the Cauchy–Schwarz inequality. We then have∑
L

|L|2|uL|
2 =

∑
L

|L|2
(
|aL|

2 + |bL|
2
)

(43)

along with

∂|aL|

∂t
6

∑
M

(|aL−M|k|M||bM| + |bL−M|k|M||aM|) − ν(k|L|)δ|aL|, (44)

∂|bL|

∂t
6

∑
M

(|aL−M|k|M||aM| + |bL−M|k|M||bM|) − ν(k|L|)δ|bL| (45)

for any δ < γ. We have already shown that
∑

L |L|2|uL|
2 < ∞ when γ = 1.

Therefore from (43), (44), (45) we find that
∑

L |L|2|uL|
2 < ∞ when γ > 1. It then

follows that the Navier–Stokes equations are globally regular. �
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