
The effective algorithm for constant state detection in time series.

Andrei Keino

February 10, 2025

Abstract

The article introduces simple and effective algorithm for constant state detection in time series. The
algorithm, based on sliding window of variable length, searches a sections of time series with some
given minimal length, that have all the values in some given range. It is shown that the computational
complexity of aforementioned algorithm is O(N logN), where N is the length of time series.

Introduction.

Some technical applications of signal processing requires the steady state detection in time series. This
problem has been investigated in many articles. For example, in [3] described a computationally efficient
method for identification of steady state in time series data. But there could exists applications for straight-
forward method, described in this article. The proposed algorithm was described already in [1] , but the the
algorithm description in this article seems not to be clear enough. The aim of the present article to give a
clear description for the presented algorithm for constant state detection in time series.

Author introduces a very basic and simple algorithm for constant state detection, based on the sliding
window with variable length, which have good computational complexity. The aim of this article is to
propose a simple and effective algorithm for identifying the nearly - constant sections in time series.

The introduction to the algorithm.

The algorithm described in the article keeps count of all the unique values for the moving window in the
associative array (AA) structure [2] and updates these values and their count while moving and resizing the
sliding window. The keys in AA are the unique values in the moving window, the value which corresponds
to the key is the count of this unique value (key value) in the moving window. After every movement or
resizing of the moving window, the algorithm takes minimal and maximal key values in the AA and checks
the difference between them. If this difference is less or equal to the minimal window height required,
the algorithms appends the beginning and ending indexes of the window to the array of detected accepted
window positions. As AA have computational complexity of lookup, deletion, insertion O(logM), and on
each step for every point in the time series we have at most two lookup, one insertion and one deletion in
our AA, this is already evident that the algorithm have O(N logN), complexity in the worst case, where N
is the length of time series.

The description of the axiliary functions.

Let us intoduce some axiliary functions (pseudocode):

Function add value to map.

This function adds value to the moving window. If the new value exists already in the window, it increments
the value count, in other case it adds the new value as a key to AA and set its value count to 1.

1



// func t i on add value to map adds value to our AA
// i . e . to the a s s o c i a t i v e array
add value to map (win map , va l t o add )
{

// here <win map> i s the AA;
// <va l to add> = value to add to AA
// add to the AA the value corre spond ing
// to the value o f <va l to add>
// complexity i s the O( log (win map . s i z e ( ) )
key = win map . f i nd key ( va l t o add ) ;
i f ( key . e x i s t s ( ) )
{

key . va lue += 1 ;
}
e l s e
{

key = win map . add key ( va l t o add ) ;
key . va lue = 1 ;

}
}

Function remove value from map.

This function removes value from the moving window. It finds the key that corresponds to the value to
remove from AA and decrements its counter. After that, if the counter is equal to zero (i.e. there is no such
value in the moving window left), the key is removed from AA.

// func t i on remove value from map removes va lue va l to remove
// from our AA i . e . from the a s s o c i a t i v e array
remove value from map (win map , va l to remove )
{

// here <win map> i s the AA; <val to remove> = value
// to femove from AA
// remove from the AA one value cor re spond ing
// to the value o f <val to remove>
// complexity i s the O( log (win map . s i z e ( ) )
key = win map . f i nd key ( va l to remove ) ;
i f ( key . e x i s t s ( ) )
{

key . va lue == 1 ;
i f key . va lue <= 0)
{

win map . remove ( key ) ;
}

}
e l s e
{

// something went wrong
r a i s e except ion (” remove value from map : no such value ” ) ;

}
}

2



Function append bounds.

In the simplest version of this function we just appends found moving window start and finish indexes in
time series to the arrays of start indexes and finish indexes correspondingly. In more sophisticated version
of this function we can do some checks to get the better results of the constant state detection.

// func t i on append bounds ( s ta r t , f i n i s h , s t a r t i d x , end idx )
// appends the boundary indexes f o r the new s e c t i o n
// The new constant s e c t i o n was found ,
// appending the boundary indexes f o r the new s e c t i o n .
append bounds ( s ta r t , f i n i s h , s t a r t i d x , end idx )
{

// append the steady s e c t i o n bounds to the output ar rays :
// <s t a r t> and < f i n i s h> are ar rays to hold
// the s t a r t and f i n i s h po s i t i o n o f the constant s e c t i o n

// <s t a r t i d x >, <end idx> are s t a r t and end indexes ( constant s e c t i o n bounds )
// to append to the output ar rays
// appending the s t a r t and end po in t s

s t a r t . append ( s t a r t i d x ) ;
f i n i s h . append ( end idx ) ;

}

The algorithm description.

Let we have a time series y[i], y ∈ R, i = {1, . . . , N}, where N is the time series size. Let us specify the
minimal window acceptable length LW and its maximal acceptable height HW .

As we can see from the pseudocode below, on the every step of algorithm AA contains only the keys for
all the values that exists in the moving window. So, to find the maximal and minimal value in the moving
window it’s enough to get the maximal and minimal key values in AA and as we know, that operation in
associative array has O(1) computational complexity.

The proposed algorithm works as follows (pseudocode):

// HW i s the maximum window acceptab l e he ight
// L W i s the the minimal window acceptab l e l ength
win he ight = HW
win map = AA( ) ;
w in l en = L W
s t a r t = Array ( ) ;
f i n i s h = Array ( ) ;

// i n i t i a l i z e the window o f l ength L W

fo r i = 0 . . w in l en = 1
{

add value to map (win map , y [ i ] ) )
}

3



s t a r t i d x = 0 ;
end idx = win len = 1 ;

whi l e (1 )
{

max = win map . max key ( ) ;
min = win map . min key ( ) ;

i f ( (max = min) > win he ight )
{

i f ( end idx = s t a r t i d x + 1 > win len )
{

// moving the l e f t boundary o f the moving window
// one po int to the r i gh t
remove value from map (win map , y [ s t a r t i d x ] ) ;
s t a r t i d x += 1 ;

}
e l s e
{

// moving the r i g h t and l e f t boundar ies o f the moving window
// one po int to the r i gh t
i f ( end idx >= y . s i z e ( ) = 1)
{

// the end o f time s e r i e s i s reached ,
// stopping the a lgor i thm
break ;

}
remove value from map (win map , y [ s t a r t i d x ] ) ;
s t a r t i d x += 1 ;
end idx += 1 ;
add value to map (win map , y [ end idx ] ) ;

}
}
e l s e // case ( (max = min) <= win he ight )
{

append bounds ( s ta r t , f i n i s h , s t a r t i d x , end idx ) ;
// moving the r i g h t boundary o f the moving window
// one po int to the r i gh t
end idx += 1 ;
i f ( end idx >= y . s i z e ( ) )
{

// stop the cy c l e
break ;

}
// add value to a map
add value to map (win map , y [ end idx ] ) ;

}

} // end o f cy c l e whi l e (1 )

4



The algorithm complexity.

Theorem

Complexity of aforementioned algorithm is O(N logN).

Proof:

Complexity of lookup, deletion, insertion, of key - value pairs in AA is O(logM), where M is the count
of items in AA [2]. As AA is ordered, the complexity of finding key maxima and minima is O(1). The
complexity of appending the boundaries is O(1) also. Let N (look) and C(look) are the number of lookups
for the key value in AA and some constant value respectfully, N (del) and C(del) are the number of deletions
from AA and the some constant value respectfully, N (ins) and C(ins) are the same for operation of insertion

in AA, M
(AA)
i is the i - th count of keys in AA, N (op) is the overall number of operations.

Then, neglecting the operations with complexity O(1), we have:

N (op) ≤
N(look)∑
i=1

C(look) log(M
(AA)
i ) +

N(del)∑
i=1

C(del) log(M
(AA)
i ) +

N(ins)∑
i=1

C(ins) log(M
(AA)
i )

≤
(
2C(look) + C(del) + C(ins)

)
N log(N)

The last line of the upper equation means that the complexity of presented algorithm is O(N logN).

Some results.

Figure 1: Results of steady state detection for sine time series. Number of sine periods is 2, number
of points in time series is 20,000, minimal window length is 1,000, maximal window height is 0.1.

5



Discussion.

As it’s easy to suppose, the sections found can overlap. This issue can be resolved by post-processing
the sections found, with the computational complexity O(N). Also this issue can be partially resolved by
enhancing the function

append_bounds(start, finish, start_idx, end_idx)

The enhanced version of this function was used for obtaining results shown in Figure 1. For some post-
processing techniques, online versions of the described algorithm with the same computational complexity
O(N logN) can be implemented.

Similar algorithm could be developed for detection the sections with the constant slope and intercept
with the help of linear regression. The computational complexity of such algorithm is expected to be O(N).

References

[1] Andrei Keino. Simple and effective algorithm for constant state detection in time series. URL: https:
//vixra.org/abs/2110.0094.

[2] Associative arrays. URL: https://en.wikipedia.org/wiki/Associative_array.

[3] Øyvind Øksnes Dalheim; Sverre Steen. A computationally efficient method for identification of steady
state in time series data from ship monitoring. URL: https://www.sciencedirect.com/science/

article/pii/S2468013320300103.

6

https://vixra.org/abs/2110.0094
https://vixra.org/abs/2110.0094
https://en.wikipedia.org/wiki/Associative_array
https://www.sciencedirect.com/science/article/pii/S2468013320300103
https://www.sciencedirect.com/science/article/pii/S2468013320300103

