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Abstract

In the scientific literature, complex numbers comprising a real and an imaginary part are 
represented as a vector in a Gaussian number plane spanned by one coordinate axis representing the
imaginary numbers and another orthogonal coordinate axis representing the real numbers. In the 
following, I show how the imaginary axis and the real axis can be incorporated into a three-
dimensional real coordinate system, thereby creating a fused coordinate system of both, real and 
complex numbers.

Comments

Figure 1 shows the angle bisector lines of the -y/+x, the -x/+y, the -x/-y and the +y/+y quadrants of 
a Cartesian coordinate system.  
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Figure 2 shows the same angle bisectors in top-view. A square in the -y/+x and the -x/+y quadrant 
has the oriented area of -1. The square root of  this square, i. e. one side of it, is √(-1), which is 
commonly designated “i” in mathematics. The diagonal of the square is √(-2), which can be 
rewritten as √(2) √(-1) = √(2) i. Therefore, i can be viewed as a vector in the direction of the 
diagonal of the square -1y/+1x (positive i) or in the direction of the diagonal of a square -1x/1y 
(negative i). The calibration of this diagonal to |1| is the diagonal divided by √(2). The angle 
bisectors of the quadrants +x/+y and -x/-y, which are orthogonal to the imaginary angle bisectors, 
can in a similar manner be calibrated to the real numbers +1 and -1 by dividing the diagonals of the 
squares with area 1 by √2.

We thus get an orthogonal coordinate system that has the same properties as the Gaussian complex 
plane.
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Figure 3 shows how complex numbers (e.g. 2 +5i) are incorporated into this plane. The coordinate 
of the imaginary part is plotted on the angle bisector of -y/x or -x/y, and the real part is plotted on 
the angle bisector of x/y or -y/-x. Then the perpendicular on these two points is erected, and the 
intersection is the complex number represented as a vector.

This way of incorporating the complex Gaussian plane of complex numbers into a 3D coordinate 
system has certain advantages. For example, the real and the imaginary part of parabolas and other 
second order polynomials can be visualized in a single 3D coordinate system. This is shown in 
figure 4.
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Figure 4 shows the diagram of the polynomial F1(x) = x2 + 1. The roots of this function are 
imaginary (x1/2 = +/- √(-1) = +/- i).

In figure 4 the parabola drawn in black is based on the coordinates -/+ x (usual presentation). Then 
a duplicate is rotated by 45° and thereafter turned upside down.  This yields the imaginary parabola 
drawn in red is with the imaginary roots -/+ √(-1) = -/+ i. In this way one gets a two-fold parabola 
comprising the black and red parabola with a co-domain of - ∞ to + ∞. In this way, three-
dimensional complex numbers can be created, namely a two-dimensional  complex number in the 
Gaussian  number plane as shown in Fig. 3 forming an intersection point, to which a parallel line to 
the z-axis of any deliberate length is added as the third dimension. It should be mentioned that in 
certain cases, the lower part of the z-axis may also be imaginary instead of real. One then gets 
complex numbers with two imaginary parts and one real part.
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In figure 5 the initial polynomial F(x) = x2 + 1 shown in blue is drawn over the diagonals of the 
squares with positive area divided by √(2). In there, a rotation of 90° of the initial parabola and 
turning it upside down gives the imaginary parabola (drawn in red). Of course, the diagonals have 
exactly the same measure as the x, y, and z-axis.

Also polynomials with a linear member, such as F2(x) =  x2 + x + 1, can be drawn in such a D3 
coordinate system. Here, the apex is not any longer on the z-axis. For symmetry reasons, it is 
therefore best to  draw the original polynomial over the diagonal of the positive squares, then rotate 
a duplicate by 90° and turn it upside down (unfortunately, my drawing tools are to poor to show this
is a acceptable way). The complex roots of  F2(x) are x1/2 = ½ +/- √(3)i. The apex of the parabola is 
at x= -1/2 and z= ¾. The value of z at x=0 is 1. When you rotate a duplicate as drawn above by 90° 
and turn it upside down, it can be seen that the intersecting points of the two branches of the 
imaginary parabola with the Gaussian number plane, as defined in Fig.3 , are ½ +/- √(3)i.


