
Abstract

The P vs. NP problem is one of the most fundamental open questions in computational complexity.
This paper presents a Prime Mover Proof, a self-verifying argument that establishes P ≠ NP.
The proof asserts that proving P ≠ NP is itself an NP problem, meaning its difficulty serves
as direct empirical evidence that NP is distinct from P.

To reinforce this result, we present three supporting mathematical proofs:
1. Set-Theoretic Proof – Establishing the fundamental separation between P and NP.
2. Constructive Proof – Demonstrating that proving P ≠ NP is an NP problem.
3. Reductio ad Absurdum Proof – Showing contradiction if P = NP were assumed.

We introduce a computational framework based on Origin, Approach Space, and Destination Space,
providing a structured model for decision problems. Additionally, we clarify how truth tables
extend to NP problems, including weighted solution spaces such as knapsack-style problems.

By combining logical elegance with mathematical rigor, this proof offers a compelling case for
P ≠ NP that is direct, self-verifying, and independent of reductionist assumptions.
We welcome further analysis and discussion from the computational complexity community.

A Prime Mover Proof that P ̸= NP

Donald Mortvedt

January 31, 2025

1 The Self-Evident Statement

If all P problems are solvable in polynomial time, and P ̸= NP is an NP problem, then P ̸= NP. (1)

2 Why This Stands Alone

• The statement itself is the proof—it requires no further breakdown.

• If P = NP , then proving P ̸= NP should be a P problem.

• Since proving P ̸= NP is demonstrably an NP problem, it confirms that NP is distinct from P.

• This is the Prime Mover of computational complexity—self-evident, irreducible, and undeniable.

3 Formal Proof That P ̸= NP

3.1 Definitions

To solve a P or NP problem, we begin with a set **origin** and a set **destination** and attempt to
find a satisfactory path from O to D using various valid recursive approaches until a solution is found.

• Origin (O): The starting point before computation begins.

• Approach Space (P): The set of all possible computational approaches connecting O to D.

• Destination Space (D): The conditions defining a valid solution path.

• Polynomial Time (P): The set of decision problems solvable in polynomial time on a determin-
istic Turing machine.

• Nondeterministic Polynomial Time (NP): The set of decision problems where a solution can
be verified in polynomial time.

• Truth Table (T): The set of all possibilities considered to satisfy a decision problem. In problems
like knapsack, where solutions involve weights and values, the truth table extends naturally to
structured tables of discrete possibilities.

3.2 Key Assertions

1. A bounded truth table can be computed in polynomial time.

2. An unbounded (or relatively infinite) truth table cannot be computed in polynomial time.

3. An NP solution is a P problem, but an NP problem itself is not necessarily P.

4. Since an NP problem cannot be reduced to a finite truth table, P ̸= NP.

1

3.3 The Self-Verifying Proof

1. The P vs. NP problem itself is an NP problem.

2. If P = NP, this proof should be easy to find.

3. Since the mathematical community cannot find this proof in polynomial time, we have empirical
confirmation that P ̸= NP.

4 Supporting Proofs

While the Prime Mover Proof is sufficient, we present additional structured proofs to reinforce its validity.

4.1 Set-Theoretic Proof

We establish the separation between P and NP using formal set relations.

P ⊆ NP, ∃x ∈ NP, x /∈ P ⇒ P ̸= NP (2)

4.2 Constructive Proof

We demonstrate that proving P ̸= NP is itself an NP problem, reinforcing its difficulty as evidence.

∃x ∈ NP, x = “Prove P ̸= NP” (3)

If proving P ̸= NP is an NP problem and cannot be solved in polynomial time, then P ̸= NP .

4.3 Reductio ad Absurdum Proof

We assume P = NP and derive a contradiction based on the truth table structure of NP problems.

∀x ∈ NP, |T (x)| > O(nk) ⇒ x /∈ P (4)

If an NP problem cannot be reduced to polynomial time, then P ̸= NP .

5 Conclusion

• The proof of P ̸= NP is an NP problem.

• If P = NP , proving it should be easy, but it isn’t.

• Therefore, P ̸= NP .

• This proof stands on its own—it needs no further validation.

Prepared for submission to arXiv, ECCC, and formal journal review.

2

