Proof of Goldbach’s Conjecture and Bertrand’s Postulate

Using Prime Generator Theory (PGT)
Jabari Zakiya — jzakiva@gmail.com
February 1, 2025
Abstract

Goldbach’s Conjecture states every even integer n > 2 can be
written as the sum of 2 primes, while Bertrand’s Postulate states
for each n > 2 there is at least one prime p such that n <p < 2n.

I show both are essentially statements on the primes distribution,
and their inherent properties when modeled and understood as
the residues of modular groups Z.,. In addition, a much tighter
dynamic bound on p than given by the BP will be presented.

Introduction

In 1742, the Prussian mathematician Christian Goldbach wrote a series of letters to the renowned Swiss
mathematician Leonhard Euler, stating that every even number n > 2 can be written as the sum of prime
numbers. In Goldbach’s time ‘1’ was considered a prime, so some of his conjectures varied between
the sum of 2 or more primes when using it. Its modern statement is: every even number > 2 can be
written as the sum of 2 primes (not necessarily unique). It’s been computer verified to hold for all
even n up to 4 x 10 [1].

In 1845, 23 year old French mathematician Joseph Bertrand stated: for each n > 2, there is a prime p
such that n < p < 2n. Its 1852 proof made it a fundamental theorem of Prime Number Theory.

Prime Generator Theory (PGT) will be the basis of the mathematical framework used to formalize the
properties of modular groups Z, over the even integers n > 2. I provide the minimum necessary axioms
and properties here for the purpose of establishing the validity of the GC. More extensive expositions
of the theory and applications of PGT can be found in my papers on the Twin Prime Conjecture [2], and
my Twin Primes Segmented Sieve algorithm and code [3].

I show Goldbach’s Conjecture (GC) is really a (weak) statement about the inherent properties of primes
when modeled and understood as the residues of modular groups Z,. I also show Bertrand’s Postulate
(BP) falls directly out of it as a necessary (weaker) condition for the GC to be true. You can’t have the
former without the later. I also present a much tighter, and dynamic, bound on p than given by the BP.
But both are fundamentally statements on the distribution of the primes, which do not exist randomly!

The techniques used here will be “modern”, in the sense they don’t use or need the classical conceptual
and numerical approaches used previously to prove the BP, and in the many unsuccessful attempts to
prove the GC. Instead it will use the conceptual framework, logic, math and properties of the residues
of modular groups Z, over the even integers n > 2. In fact, most of what needs to be understood is
purely conceptual in nature, requiring very little number crunching. Finally, I present a simple
algorithm to identify all the prime pairs for any n, its implementation in software, and empirical data.

mailto:jzakiya@gmail.com

Modular Group Residues

Prime Generator Theory is the understanding of prime numbers, their distribution, characteristics, gap
structures, and other relationships, thru the properties of modular groups residues. For even values of n,
it uses the residues of the modular groups Z, to construct Prime Generators, which efficiently generate
every prime that is not a factor of n.

A modular group Z, is constructed from the integers {0...n — 1}, with n the group’s modulus. A Prime
Generator is constructed from its residues, the r; odd values coprime to n e.g. ged(r;, n) = 1. Their r;
values are the: 1) coprime primes p; < n, 2) their powers p;° < n, or 3) their cross-products ry = r;* r; <n.
The number of r; residues in Z, is an even value given by ¢(n), the Euler Totient Function (ETF).

ol = n [2 (1)

p

(2—-1)(3—-1)
2 3

=4

The p; are the j unique prime factors of n. Thus for n = 12: ¢(12) = 12

We can easily identify the 4 residues with a greatest common divisor (gcd) of 1 in Zy,, as: {1, 5, 7, 11}.
Thus the canonical residues of 7, are ‘1’ and the set of odd integer values < n that are not multiples of
its prime factors. Every prime coprime to n exists as a congruent modular value to a residue of Z,.

To identify the residues values of n we do not need to know its prime factors. We can simply do a
gcd(ri, n) = 1 test on the odd integers in the half interval [1, n/2) to identify its ¢(n)/2 residue values.
These are the low-half-residues (lhr) values. The ¢(n)/2 high-half-residues (hhr) are then just their
modular complements.

Modular Complement Properties

A very important property of modular residues is that they exist as modular complement pairs (mcp).

For a modulus n, each r; residue has a modular complement r;, adhering to these 2 modular properties:
re=n-—r; 2)
ri+rf=n 3

Conceptually, a modular complement for an r; is its modular reflection into its opposite half residues.

Looking at the residues {1, 5, 7, 11} for Z1,, when split into their [hr||hhr values, and starting from the

middle 6, we see {5, 7} and {1, 11} are its 2 mcp, which each sum to 12. Thus to identify the ¢(n)
residue values of n, we can just find the ¢(n)/2 values < n/2, and their n—r; complements are the rest.

Also, for every even modulus n > 2, the integers pair {1, n — 1} are automatic mcp residues. For n > 6
the closest odd integers less|greater than the midpoint n/2 are also mcp residues. For Z,, {1, 11} are
mcp of the first type and {5, 7} the latter. Thus we automatically know 4 residues, and 2 mcp, for n > 6.

Mirror Image Symmetry

An analog clock is the simplest form to show the modular complement properties of residues. For the
group size Zi,, we see the parallel horizontal lines connect pairs of hours on the leftright halves of the
clock, and each pair sums to the group size 12. This is true for any even group size representation > 2.

Figure 1.

Here the solid lines connect the two modular complement pair residues {1, 11} and {5, 7}. As the
prime factors of 12 are 2 and 3, the dashed lines connect their non-residue composite values, which
occur as modular composite factors pairs. For p = 2, its composite complements must be a multiple of
itself to have an even sum, but for p = 3 (or any odd prime factor), it must be an odd multiple of itself
to have two odd numbers sum to an even n. Thus each r; must have either an odd prime residue, a
prime residue power, or an odd composite product of prime residues, as their modular complements.

For the lhr {1, 5}, r; = r; mod n, but the hhr {7, 11}, can be thought of and used as, n —r; = —r; mod n.
We can thus write, use, and conceptually understand the hhr as the negative residue values of the lhr.
Thus conceptually for the lhr values 0 < r; < n/2, their —r; equivalents are their modular reflections into
their hhr complements n/2 < —r; <n.

This is a modular arithmetic property analogous to the orientation of angles in trigonometry. Positive
angles are defined as counter clockwise (CCW) around the clock, while clockwise (CW) angles are
considered as negative. Here the CW residue values are considered positive, and the same units of
values CCW around the clock can be referred to as negative values mod n. Thus if r; CW units is a
right side residue value, then the same units CCW on the left side are residue values too.

This creates a conceptually and arithmetically consistent structure for performing modular math. Thus
for Zi», its Ihr are 1 =1 mod 12 and 5 = 5 mod 12, while the hhr are: (12 —1) = 11 = -1 mod 12 and
(12-5)=7=-5mod 12. And as n =0 mod n, we have these conceptually simple relationships:

re=n-ri=-r;modn 4)

ritri=rit-ri=n=0modn (5)

Figure 1. is a visual metaphor of the symmetry properties of every even Z, modular group. Thus we
will see Goldbach’s Conjecture can be restated and proven as the properties of the Z, residues and their
modular complement pair relationships. Thus from the residue properties of even Z, modular groups
we will see there is at least one mcp, consisting of primes in each half, that sum to every even n > 6.

Definitions and Axioms
Here I define the terminology and establish the axiomatic mathematical foundation that will be used.

Definitions
Definition 1: A modular group Z,, with modulus n an even integer, is the set of integers {0..n — 1}.

Definition 2: A residue of Z, is an integer r; < n coprime to n, i.e. an integer r; < n e.g. gcd(ri, n) = 1.
Definition 3: A modular complement (mc) of an r;, i.e. r{, is the residue value rje.g. r;=r=n-r.
Definition 4: A modular complement pair (mcp) of Z, are two residues that sum to n.

Definition 5: A prime complement pair (pcp) of Z, is a modular complement pair of two primes.
Definition 6: A trivial prime pair (tpp) is a single prime added to itself, e.g. n=2p =p + p.
Definition 7: The low-half-residues (lhr) are the set of residues in the interval 0 < {r;,} <n/2.

Definition 8: The high-half-residues (hhr) are the set of residues in the interval n/2 < {ry} <n.

Axioms
Axiom 1: The number of residues of Z, is determined by ¢(n), the Euler Totient Function (ETF).

Axiom 2: The number of residues is even, as each odd prime factor p; of n contributes (p; — 1) to ¢(n).
Axiom 3: The set of the ¢(n) residue values {r;} consists of the odd values in {1..n — 1} coprime to n.
Axiom 4: The set of {r;} residues contain all the coprime primes < n.

Axiom 5: The powers of a residue r; < n, i.e. its r < n, are also residues, as they too are coprime to n.
Axiom 6: The products < n of two residues is also a residue, i.e. rx =r; * r; < n is also coprime to n.
Axiom 7: The two residues of an mcp|pcp consist of an r; < n/2 and its complement ri* = n —r; > n/2.
Axiom 8: Each residue can only be the modular complement to one residue in its opposite half.
Axiom 9: There are ¢(n)/2 modular complement pairs for each Z, modular group.

Goldbach’s Conjecture can be restated within the framework of Prime Generator Theory (PGT) as:
every even integer n > 6 has for its modular group Z, at least one prime complement pair (pcp).

Integers 4 and 6 have form n = 2p, and thus single trivial prime pairs, 4 =2 +2 and 6 = 3 +3, to satisfy
the general GC for n > 2. Every other integer of form n = 2p (of the infinitely many) have a similar
tpp, in addition to at least one pcp. The proof, algorithm, code, and data presented herein ignores them.

PGT Proof of Goldbach’s Conjecture

A minimal proof need only show there is at least one pcp prime pair that sums to n for all even n > 6.
This will be established using the residue mirror symmetry|reflection properties of modular groups Zi.
It will be proved, a simply crafted bounded hhr region close to n always contains at least one prime p
whose modular complement is some small p,, lhr prime, which form a {pm, n — pn} pcp prime pair.

Residue Properties
Lemma 1. For residues r; < n/2, their modular complements n — r; cannot be multiples of themselves.

Proof: Assume n—r; = k - r;. Then k = (n —r;)/r; = n/r; — 1, requiring n/r; be an even integer, and r; a
factor of n. But r; is coprime to n, and thus cannot be a factor of n, thus this is a contradiction.
Therefore the modular complements n — r; for the residues r; < n/2 cannot be multiples of themselves.

Lemma 2. For residues r; < n/2, their modular complements n — r; cannot be powers of themselves.

Proof: Assume n—r; = rf. Thusn=r¢+r;=ri(rf " + 1), giving n/r; = (r*" + 1) for e > 2. Then n/r;
must be an integer, requiring r; be a factor of n. But r; is coprime to n, thus this is a contradiction.
Therefore the modular complements n — r; for the residues r; < n/2 cannot be powers of themselves.

Corollary 1.
For the ¢(n)/2 lhr r; < n/2, their hhr modular complements n — r; can only be either:
1) a prime p,, 2) a prime power p/°, or 3) the cross-product r; - ry of residues not including themselves.

Define ro = 1 as the first canonical residue of n.
Define r; = p; as the firstjsmallest prime not a factor of n.

Lemma 3. The set of residues {r;} <r/ i.e.inr; < {r;} <r/? are the coprime primes < r°.

Proof: As r; is the first prime residue, r;” is the first multiple of any residue in Z,.
Thus, every residue in 1 < ry < r;” cannot be a multiple of r;, or any other residue, thus is a prime < r/°.

If r; = 3, then {5, 7} <9 are the next ordered residues if not factors of n. If {5, 7} are factors, the next
residue is r» = r;? = 9 if < n, because 11 is the next larger prime. In this case, if r; = 11, then all the
coprime primes residues {r;} < (rs> = 121) are also primes < n. And we continue in this manner.

We can extend this for all r,, < n/2, to establish all the coprime prime p, < {p.} < p,* are residues to n.
The residues also contain all the powers of the prime residues p, e.g. {p,, p/°..} <n, in addition to the
residue cross-products r;- rx< n. However, once for some r, (nth residue), r,” > n, no larger Ihr r,.;
prime power, or cross-product, can be a residue < n. Then for r,; (previous residue), r*,; is the largest
square that can be a hhr < n. Let’s designate this residue as: rye = ry.; for some Ilr r; < n/2.

Thus the hhr in r’pe < {p:||[r,,} < n can only be p, primes or cross-products of the type rop, = Fax Fmax+s
With Finax. < Fmax @0d Finaxs > Tmax. Thus no larger Thr power can be a residue e.g r’ne< r < n, for e > 2.

When n is small, only primes exist in the region. As n increases, cross-products, and more primes, will
populate it, as a function of the prime factorization of n. When the cross-products and prime powers
are filtered out, only the primes in both halves are left, and form the pcp prime pairs for even n > 6.

Optimum Bounded Regions
The optimum bounded hhr region that contains prime residues that always form at least one pcp is:

Pua < {p:} <n (6)

It dynamically adjusts to create the smallest bounded hhr region of pcp primes, and has generic form:
LowBound < {p;} < HighBound (7)

High Bound Limit
Normally the hhr high bound is just n. But we want the smallest region a prime hhr can exist within.

Because n — 1 is the modular complement for ry = 1, whether its prime or not, it cannot be part of a pcp.
We thus set the hhr high bound to n — 2, the next smaller even value from n. Thus any hhr ri <n -2
can possibly be a prime hhr that can form a pcp with a small [hr prime.

Low Bound Limit
From the low bound of (6), the largest Ihr value whose square satisfies r’,, < n— 2, is given by:

I'max = isqrt(n — 2) (8)
where isqrt(x) is the integer square root of x. Ex: isqrt(8) = 2, isqrt(9) = 3, isqrt(15) = 3, isqrt(16) = 4.

Applying Modular Reflection

We now know that rie sets the limit as to how large a lhr can be; an odd lhr value e.g. r; < e < n/2.
Because 1 is computed 2 hhr units below n, its lhr region high bound reflection must do so too:

HighBoundi, = Ima + 2 ©)

We now determine its hhr modular (negative) reflection. Starting at the top of the Figure 1. clock, the
equivalent region extends down . CCW units. Again, because we computed the value from n — 2, and
not n, the hhr region extends rmq units below it. Thus the hhr region low bound is:

LowBoundpy, = (n — 2) — Fnax (10)

Thus the smallest bounded hhr region which a prime residue exists within whose Ihr mc forms a pcp is:

n-=2)—rmex<pr<n-2 (11)

We use < p, vs < p, because LowBound can be an odd|prime value, while odd p. < n — 2 is always true.
The equivalent [hr bounded region is then:
2<pr<maxt 2 (12)

We use pr < I'max VS Pr < I'max here t00, as rmq can be odd, making the right side odd.

These bounded regions produce a pcp prime pair for all even n > 6. As n increases, and its factorization
includes more and larger primes, other pcp prime pairs will be created, whose total will greatly exceed
those coming from them alone. However, the analysis of these regions alone proves the GC’s validity.
In fact, these optimally adjusting dynamic bounds have implications far beyond Goldbach’s Conjecture.

Bounded Bonding of Primes
Shown again are the parameters of the Ihr and hhr bounded regions that produce at least one pcp.

I'max hhr bounds lhr bounds
isqrt(n — 2) nM-2)—rmax<pr<n-2 2<pr<rmat?2 (13)

The modular complement and symmetry relationships between the residues are inherent and immutable
properties of Z, modular groups. These properties define the distribution of the residues, which means
they define the distribution of the primes, whose values and relationships constitute them.

Let’s start with the integers 4 and 6. They have ¢(2||4) = 2 residues, {1, 3} and {1, 5}, which are their
single mcp. In Goldbach’s time they would have been considered a prime pair by some.

Looking at 8 = 23, its residues are all the primes < 8, {1, 3, 5, 7}, whose mcp are {1, 7} and {3, 5}.
Here rma = 2, giving the bounded regions 4 <5<6and 2 <3 <4. For10it’s,6 <7<8and 2 <3 <4.
And we see the bounds dynamically adjusting to give the smallest possible regions the pcp exist within.

The residues for 10 = 2-5 are {1, 3, 7, 9}, with mcp {1, 9 = 3*}. But unlike for 4, 6, and 8, it wouldn’t
have been considered a prime pair even in Goldbach’s time. But this explicitly illustrates why we set
the hhr upper limit to n — 2 and not n. Integers 8, 10, 12, 14, and 38 are the only ones with one pcp.

Metaphorically, to understand the primes we must understand there is a clear deterministic chemistry
that exists within the residue properties of modular groups that defines their behavior. Part of that
chemistry tells us the primes bond in pairs, and with other relationships, that are built into the structure
of modular groups. (For example, verification of Polignac’s|Twin Primes conjectures [2]).

The primes, as the primary residues of modular groups, are their fundamental building block elements.
And their powers and cross-products are their molecules. And like with the chemical elements, there
are defined ways we know they can and must move and interact, and ways they can’t.

The pcp are the symmetric load bearing beams of the structure of these modular groups. They are the
bonding forces that hold everything together. It is part of the chemistry of the primes that they bond in
this manner. As n grows so do the pcp, in a structured way that is a function of the factorization of n.
We can conceptually determine the number of pcp bounded by 1. from the following formula:

#pCp(rmax) = #IAr(Fmay) — #hhr(rma) _trep — #IAr(Fma) _Tep||pr° (14)

However, the actual algorithm to determine the number and values of the pcp, within the ry..bounded
regions and for all n, is quite simple and short, easy to do by hand, and translates easily into software.

Again, the ability to determine the number and values of the pcp, and to create optimum dynamically
adjusting boundary conditions, is based on the understanding of the properties of how the primes exist
as the residues of these simple Z, modular groups. Thus the GC is really a (weak) statement on the
distribution of the primes, whose structure requires they bond in the group patterns Goldbach imagined.

We will also see Bertrand’s Postulate is another (weaker) statement on the distribution of the primes.

7

Bertrand’s Postulate
Bertrand’s Postulate (BP) states: for each n > 2, there is a prime p such that n <p < 2n.

For a prime complement pairs (pcp) to exist their must be a prime p; e.g. 2 < p; < n/2 and another p; e.g.
n/2 < p; < n. The later requirement is just a restatement of the BP that n < p < 2n. We previously

established the optimum low bounds to identify at least one pcp prime within LowBound < p < n to be:

LowBound.») = (n — 2) —isqrt(n — 2) (15)

We can make the bound less strict to mimic the BP, to identify at least one prime, not necessarily a pcp.

LowBound, = n — isqrt(n) (16)

Let’s compare the two bounds for the first few even values of n, and the pcp prime pairs identified.

n LowBound,y < p < n PCP Prime Pairs LowBound.,y £ p < n-2

6 4 <p<6 :p=5 {3,3}* 2<p<4 :p=3

8 6 <p<8 :p=17 {3,5} 4 <p<6 :p=5

10 7<p<10 : p =7 {3,7} 6<p<8 :p=7

12 9<sp<12 :p =11 {5,7} 7<p<10:p =17

14 11 < p < 14 : p = {11,13} {3,11} 9<p<12 : p =11

16 12 < p <16 : p = 13 {5,11}, {3,13} 11 < p < 14 : p = {11,13}
18 16 < p < 18 : p = 17 {5,13} 12 < p <16 : p = 13

20 16 < p <20 : p = {17,19} {3,17} 14 < p <18 : p = 17

22 18 <p <22 :p =19 {5,17},{3,19} 16 < p <20 : p = {17,19}
24 20<p<24:p=23 {5,19} 18 < p<22:p=19

26 21 < p <26 :p =23 {3,283} 20 < p<24 :p =23

28 23 <p<28:p=23 {5, 23} 21 <p<26:p=23
30 25 < p <30 :p=29 {7,23} 23 < p<28:p=23
32 27 £ p <32 :p={29,31} {3,29} 25 < p<30:p=29
34 29 <p <34 :p={2931} {5,29}, {3,31} 27 < p <32 :p={29,31}
36 30 <p<36:p-=31 {7,29},{5,31} 29 < p <34 :p={29,31}
38 32 <p<38:p=37 {7,31} 30 < p<36 :p=31
40 34 < p <40 : p = 37 {3,37} 32 <p<38:p=37
42 36 < p < 42 : p = {37,41} {5,37} 34 < p <40 : p = 37
44 38 < p < 44 : p = {41,43} {7,37}, {3, 41} 36 < p <42 : p = {37,41}
46 40 < p < 46 : p = {41,43} {5,41},{83,43} 38 < p < 44 : p = {41,43}
48 42 < p < 48 : p = {43,47} {7,41}, {5, 43} 40 < p < 46 : p = {41,43}
50 43 < p < 50 : p = {43,47} {7,43}, {3,47} 42 < p < 48 : p = {43,47}

As n increases, the lower bounds dynamically grow, creating much tighter bounds on p than the BP.

100 90 97 {11, 89},{3, 97} 89 <p <98 : p = {89, 97}

256 240 {241,151} {17,239},{5,251} 239 < p < 254 : p = {239,241,251}
For 256, the bounded primes are {239, 241, 251}, and cross-products {243, 245, 247, 249, 253}. The
mc for 241 is 15 = 3-5, but 5 forms the pcp with 251. The mc for 3 is 253 = 11-23, mc to 245 and 233,
and the mc for 247 is 9 = 3%. Now 243 = 3°, but 3|3’ < (rm=15), and 3°3* are residues too, so 243 really
is 3-81 and 9-27. For 245 = 5-77, then 5|7 < ryq multiply residues 49|35, and 249 = 3-83, a product of
primes. Also, 256 has 6 other pcp below this region. In comparison, the BP bound is: 128 < p < 256.

p <100 : p
p <256 :p

<
<

Thus the BP structurally falls out of the GC, as its necessarily true for the GC to be true. But the GC
doesn’t need it, as seen here, as much tighter bounds on p can be created using the various properties of
modular groups. The BP is a mere consequence of the GC being true, and states a weaker bound on p.

Prime Pairs Algorithm

An algorithm to identify all the pcp prime pairs is very short and simple, which is demonstrated here.
It merely removes (filters out) the composite non-pcp residues, leaving only the prime residues of pcp.

1) For even n treat as Zn, and identify its low-half-residues (lhr) < n/2.
The residue values r are odd integers coprime to n, e.g. gcd(r, n) = 1.
The 1st canonical residue is 1, but 1 is not prime, so it can't be part of
a prime pair, so test the odds numbers from 3 < n/2 to identify the pcp lhr.
2) Store in lhr_mults the powers of ri in lrh < n-2; these are composite residues.
We test up to n-2 because n-1 is the mcp for 1, which can't be part of a pcp.
Once the square of an ri (i.e. rin2) > n-2, exit process, as all other rj are > n-2.
We test against the nth roots of n-2 to prevent arithmetic overflow possibilities.
3) Store in lhr_mults the cross-products ri*rj < n-2.
Starting with smallest ri lhr, test cross-products with all larger lhr.
If ri > sqrt(n-2), exit process, as rin2, and all other ri lhr cross-products, are > n-2.
If for next larger residue rj, ri*rj > n-2, exit process, as no others are < n-2.
Otherwise save in lhr_mults cross-product ri*rj < n-2, repeat for the next larger rj 1lhr.
lhr_mults now has all the non-prime composite residue values < n-2.
4) Remove from the lhr the non-pcp lhr_mults values. The pcp prime pairs remain.
a) For lhr_mults values r > n/2, convert to their mcp values n-r.
b) A1l now are non-pcp values < n/2; remove their values from 1lhr list.

The lhr list now contains all prime residues whose mcp make a pcp prime pair.
For the remaining primes pn, the pcp for n are the prime pairs [pn, n - pn].

Let’s now do a non-trivial example that performs all the algorithmic parts.
Example: Find the pcp prime pairs for n = 50 = 2*5* 5,
1) Identify the 1lhr values < n/2.
Write out 1list of odd numbers from 3 to < 25 = 50/2
[3 5 7 9 11 13 15 17 19 21 23]
The 1lhr are values r coprime (share no factors) to n; i.e gcd(r,50) = 1.
[3 7 9 11 13 17 19 21 23]
Thus: 1lhr = [3, 7, 9, 11, 13, 17, 19, 21, 23]

2) Store in lhr_mults the powers of the lhr < 48 = 50-2.

a) for 3: 1lhr_mults = []
3 * 3: lhr_mults = [9], as 9 < 48
3 * 9: Tlhr_mults = [9, 27], as 27 < 48

3 * 27: stop powers for 3, as 81 > 48
b) for 7: exit powers process; as 7 * 7 = 49 > 48; no other 1lhr power can be < 48.

3) Store in lhr_mults the 1lhr cross-products < 48.

a) for 3: 1lhr_mults = [9, 27]
3 * 7: lhr_mults = [9, 27, 21], as 21 < 48
3 *9: 1lhr_mults = [9, 27, 21, 27], as 27 < 48
3 * 11: lhr_mults = [9, 27, 21, 27, 33], as 33 < 48
3 * 13: lhr_mults = [9, 27, 21, 27, 33, 39], as 39 < 48
3 * 17: stop cross-products process for 3, as 3 * 17 = 51 > 48

b) for 7: 1lhr_mults = [9, 27, 21, 27, 33, 39]
7 * 9: exit total cross-product process, as 7 * 9 = 63 > 48;

4) Remove from the lhr the lhr_mults values
lthr = [3, 7, 9, 11, 13, 17, 19, 21, 23]
lhr_mults = [9, 27, 21, 27, 33, 39]

a) Convert lhr_mults values > 25 = 50/2 to their modular complement value 50-r
lhr_mults = [9, 23, 21, 23, 17, 11]

b) Remove from lhr values in lhr_mults
lthr = [3, 7, 9, 11, 13, 17, 19, 21, 23]
lhr_mults = [9, 23, 21, 23, 17, 11]

b1) For lhr_mults val 9; remove from lhr:
lhr_mults = [9, 23, 21, 23, 17, 11]

N
lhr = [3, 7, 11, 13, 17, 19, 21, 23]
b2) For 1lhr_mults val 23; remove from lhr:
lhr_mults = [9, 23, 21, 23, 17, 11]
N
lthr = [3, 7, 11, 13, 17, 19, 21]

b3) For lhr_mults val 21; remove from lhr:

lhr_mults = [9, 23, 21, 23, 17, 11]
N
lhr = [3, 7, 11, 13, 19]

b4) For lhr_mults val 17; remove from lhr:

lhr_mults = [9, 23, 21, 23, 17, 11]
N
lhr = [3, 7, 11, 13, 19]

b5) For lhr_mults val 11; remove from lhr:

lhr_mults = [9, 23, 21, 23, 17, 11]
N
lhr = [3, 7, 13, 19]

lhr list of only primes now exists; as original lhr composite residues have been removed.

Thus lhr = [3, 7, 13, 19] now contains 4 prime pcp residues for n = 50.

Their 4 pcp prime pairs values for 50 are:

pcp for 3: [3, 50 - 3] = [3, 47]
pcp for 7: [7, 50 - 7] = [7, 43]
pcp for 13: [13, 50 - 13] = [13, 37]
pcp for 19: [19, 50 - 19] = [19, 31]

Every even integer n > 6 has at least one pcp prime pair.
This is a property of modular groups Zn over even integers n.

10

Prime Pairs Code

The code below is a Ruby language version of the prime pairs algorithm. Ruby is a dynamic language
that has various VM (Virtual Machine) implementations, with JRuby and Truffleruby prominent others.
Ruby’s robust language constructs allows for a short|efficient translation of the algorithm into code.

Enable YJIT if using CRuby >= 3.3"
RubyVM: :YJIT.enable if RUBY_ENGINE == "ruby" and RUBY_VERSION.to_f >= 3.3

def prime_pairs_lohi(n)
return puts "Input not even n > 2" unless n.even? & n > 2
return (pp [n, 1]; pp [n/2, n/2]; pp [n/2, n/2]) if n <= 6

generate the low-half-residues (lhr) r < n/2

lhr = 3.step(n/2, 2).select { |r| r if r.gcd(n) == 1 }

ndiv2, rhi = n/2, n-2 # lhr:hhr midpoint, max residue limit
lhr_mults = [] # for lhr values not part of a pcp

store all the powers of the lhr members < n-2

lhr.each do |r| # step thru the 1lhr members
r_pwr =r # set to first power of r
break if r > rhi / r_pwr # exit if rA2 > n-2, as all others are too
while r <rhi / r_pwr # while rhe < n-2
lhr_mults << (r_pwr *=r) # store its current power of r
end
end

store all the cross-products of the lhr members < n-2
lhr_dup = lhr.dup # make copy of the 1lhr members list
while (r = 1lhr_dup.shift) && !'lhr_dup.empty? # do mults of 1st list r w/others

ri_max = rhi / r # ri can't multiply r with values > this
break if 1lhr_dup[@] > ri_max # exit if product of consecutive r’s > n-2
lhr_dup.each do |ri| # for each residue in reduced list
break if ri > ri_max # exit for r if cross-product with ri > n-2
lhr_mults << r * ri # store value if < n-2
end # check cross-products of next lhr member
end

convert lhr_mults vals > n/2 to their lhr complements n-r,
store them, those < n/2, in lhr_del; it now holds non-pcp lhr values
lhr_del = lhr_mults.map { |r_del| (r_del > ndiv2 ? n - r_del : r_del) }

pp [n, (lhr -= lhr_del).size] # show n and pcp prime pairs count

pp [lhr.first, n-1lhr.first] # show first pcp prime pair of n

pp [lhr.last, n-1lhr.last] # show last pcp prime pair of n
end

def tm; t = Time.now; yield; Time.now - t end # to time runtime execution

n = ARGV[0].to_i # get n input from terminal
puts tm { prime_pairs_1lohi(n) } # show execution runtime as last output

By placing the code a file named prime_pairs_lohi.rb, it can be run as shown.

$ ruby primes_pairs_lohi.rb 12_345_678 $ ruby primes_pairs_lohi.rb 123_456_780
[12345678, 71169] [123456780, 717906]

[31, 12345647] [19, 123456761]

[6172799, 6172879] [61728367, 61728413]

1.854008033 15.993202831

11

Empirical Data Table 1.

The data shown here is: # residues < n/2, primes cnt < n/2|n, pcps, pcps % of primes, and 1st|last pcps.

n

@(n)/2

n(n/2)

m(n)

PCP

% PCP(n/2|n)

First Prime Pair

Last Prime Pair

1,000,000

200,000

41,538

78,498

5,402

13.00

13.76

[17,

999983]

[499943,

500057]

2,000,000

400,000

78,498

148,933

9,720

12.38

13.05

[7,

1999993]

[999961,

1000039]

3,000,000

400,000

114,155

216,816

27,502

24.09

25.37

[43,

2999957]

[1499857,

1500143]

4,000,000

800,000

148,933

283,146

17,630

11.84

12.45

[29,

3999971]

[1999853,

2000147]

5,000,000

1,000,000

183,072

348,513

21,290

11.63

12.22

[37,

4999963]

[2499949,

2500051]

6,000,000

800,000

216,816

412,849

49,783

22.96

24.12

[7,

5999993]

[2999911,

3000089]

7,000,000

1,200,000

250,150

476,648

34,284

13.71

14.39

(3,

6999997]

[3499967,

3500033]

8,000,000

1,600,000

283,146

539,777

31,753

11.21

11.77

[7,

7999993]

[3999763,

4000237]

9,000,000

1,200,000

315,948

602,489

70,619

22.35

23.44

[7,

8999993]

[4499953,

4500047]

10,000,000

2,000,000

348,513

664,579

38,807

11.14

11.68

[29,

9999971]

[4999913,

5000087]

11,000,000

2,000,000

380,800

726,517

46,812

12.29

12.89

(3,

10999997]

[5499979,

5500021]

12,000,000

1,600,000

412,849

788,060

90,877

22.01

23.06

(11,

11999989]

[5999947,

6000053]

13,000,000

2,400,000

444,757

849,252

53,398

12.01

12.58

(3,

12999997]

[6499841,

6500159]

14,000,000

2,400,000

476,648

910,077

62,026

13.01

13.63

[19,

13999981]

[6999997,

7000003]

15,000,000

2,000,000

508,261

970,704

110,140

21.67

22.69

[19,

14999981]

[7499939,

7500061]

16,000,000

3,200,000

539,777

1,031,130

58,383

10.82

11.32

[11,

15999989]

[7999913,

8000087]

17,000,000

3,200,000

571,119

1,091,314

65,592

11.48

12.02

[37,

16999963]

[8499979,

8500021]

18,000,000

2,400,000

602,489

1,151,367

129,501

21.49

22.49

[13,

17999987]

(8999777,

9000223]

19,000,000

3,600,000

633,578

1,211,050

71,656

11.31

11.83

(3,

18999997]

[9499811,

9500189]

20,000,000

4,000,000

664,579

1,270,607

70,730

10.64

11.13

[19,

19999981]

[9999739, 10000261]

21,000,000

2,400,000

695,609

1,329,943

177,440

25.51

26.68

[23,

20999977]

[10499963, 10500037]

22,000,000

4,000,000

726,517

1,389,261

85,476

11.77

12.31

[23,

21999977]

[10999811, 11000189]

23,000,000

4,400,000

757,288

1,448,221

83,727

11.06

11.56

[7,

22999993]

[11499949, 11500051]

24,000,000

3,200,000

788,060

1,507,122

165,922

21.05

22.02

[19,

23999981]

[11999927, 12000073]

25,000,000

5,000,000

818,703

1,565,927

85,838

10.48

10.96

[17,

24999983]

[12499481, 12500519]

26,000,000

4,800,000

849,252

1,624,527

97,209

11.45

11.97

[67,

25999933]

[12999919, 13000081]

27,000,000

3,600,000

879,640

1,683,065

184,050

20.92

21.87

[19,

26999981]

[13499939, 13500061]

28,000,000

4,800,000

910,077

1,741,430

113,922

12.52

13.08

[101,

27999899]

[13999691, 14000309]

29,000,000

5,600,000

940,455

1,799,676

101,387

10.78

11.27

[61,

28999939]

[14499973, 14500027]

30,000,000

4,000,000

970,704

1,857,859

202,166

20.83

21.76

[11,

29999989]

[14999969, 15000031]

31,000,000

6,000,000

1,000,862

1,915,979

107,710

10.76

11.24

[11,

30999989]

[15499943, 15500057]

32,000,000

6,400,000

1,031,130

1,973,815

106,627

10.34

10.80

[61,

31999939]

[15999871, 16000129}

33,000,000

4,000,000

1,061,198

2,031,667

243,780

22.97

23.99

[17,

32999983]

[16499939, 16500061]

34,000,000

6,400,000

1,091,314

2,089,379

120,272

11.02

11.51

[107,

33999893]

[16999859, 17000141]

35,000,000

6,000,000

1,121,389

2,146,775

138,452

12.35

12.89

[31,

34999969]

[17499793, 17500207]

Table 1.

12

The Tale of Table 1.

The variance seen in the pcp numbers is due to the number and characteristics of the residues ¢(n),
which is due to the number, size, and values of the prime factors for each n, as shown here.

$ ruby prime_pairs_lohi.rb 148_000_006
[148000006, 436612]

[3, 148000003]

[73999643, 74000363]

32.511435635

$ ruby prime_pairs_lohi.rb 150_000_006
[150000006, 708844]

[5, 150000001]

[74999959, 75000047]

24.,097201574

While close in size, 148,000,006 has substantially fewer pcp, which take 33% more time to process.
That’s because its residues produce more prime powers and cross-products that have to be filtered out.
And that’s due to the difference in their prime factors, which determine their Z, groups residue values.

148_000_006.factors 150_000_006.factors

[[2, 1], [7, 1], [11, 1], [19, 1], [50581, 1]] [[2, 1], [3, 1], [13, 2], [29, 1], [5101, 1]]
¢(148,000,006) = (2—1) (7 —1) (11— 1) (19 — 1) (50581 — 1) = 54,626,400
0(150,000,006) = 13 (2 - 1) 3 - 1) (13- 1) 29— 1) (5101 — 1) = 44,553,600

So n values with relatively larger pcp counts have fewer residues, with relatively larger values. They
produce relatively fewer prime factors and cross-products, leaving more lhr primes to form pcp with.

However, the much more interesting phenomena is what the data reveals in the two % PCP columns.
These are the percentages of all the primes m(n) less than n, and in low half n(n/2), that form the pcp.
% PCP(n/2) = (pcp / m(n/2)) - 100

% PCP(n) =(2-pcp / m(n)) - 100 17)

The interesting phenomena that’s revealed is, the pcp appear to bond in quantized ratios! And the affect
is stronger among all the primes < n versus just those < n/2. So as the primes density decreases as n
grows, the bonding between all the possible p; < n is slightly stronger|larger than just for those < n/2.

The n values in Table 1. only end in ‘0’, so the table below shows results for larger consecutive even n
that end in each even digit, and have the same number of n(n) primes for those values.

n o(n)/2 n(n) PCP % PCP| First Prime Pair Last Prime Pair

900,000,000

120,000,000

46,009,215

4,132,595

17.96

[37, 899999963]

[449999993, 450000007]

900,000,002

204,211,920

46,009,215

1,724,113

7.49

[73, 899999929]

[449999981, 450000121]

900,000,004

224,969,472

46,009,215

1,550,567

6.74

[41, 899999963]

[449999887, 450000117]

900,000,006

150,000,000

46,009,215

3,099,095

13.47

[43, 899999963]

[449999783, 450000223]

900,000,008

224,956,800

46,009,215

1,550,273

6.74

[79, 899999929]

[449999731, 450000277]

Table 1a.
We still see this quantizing phenomena, and that the largest number of pcp for n have the highest ratios.
Now that it’s been revealed, hopefully more research will be pursued to study and characterize it.

What is seen here is a deterministic pattern in the primes distribution, that facilitates they form prime
pairs in such numbers, and in such ratios. This would not be possible if the primes existed randomly.
Thus the data also illustrates again from this property, the primes do not exist randomly!

13

Empirical Data Table 2.

Here we see the [hr data variance in the region bounded by rue+2. While ry. linearly increases with n,
the number of residues and pcp prime pairs in still predominantly a function of the factorization of n.

14

n Fmax + 2 [Ihr(Fmax+) | M(Fmax+)| PCP(Fmax+) | % PCP(Fmax+) | First Prime Pair | Last Prime Pair(rmax+)
1,000,000 | 1,001 400 168 20 11.90 [17, 999983] [977, 999023]
2,000,000 | 1,416 565 223 24 10.76 [7, 1999993] [1321, 1998679]
3,000,000 | 1,734 462 270 63 23.33 [43, 2999957] [1721, 2998279]
4,000,000 | 2,001 800 303 34 11.22 [29, 3999971] [1997, 3998003]
5,000,000 | 2,238 894 332 39 11.75 [37, 4999963] [2113, 4997887]
6,000,000 | 2,451 653 363 84 23.14 [7, 5999993] [2447, 5997553]
7,000,000 | 2,647 907 383 54 14.09 [3, 6999997] [2621, 6997379]
8,000,000 | 2,830 | 1,131 | 410 45 10.98 [7, 7999993] [2797, 7997203]
9,000,000 | 3,001 800 431 96 22.27 [7, 8999993] [2917, 8997083]
10,000,000 | 3,164 | 1,265 | 447 44 9.84 [29, 9999971] [2633, 9997367]
11,000,000 | 3,318 | 1,205 | 466 51 10.94 [3, 10999997] [3271, 10996729]
12,000,000 | 3,466 923 485 100 10.62 [11, 11999989] [3461, 11996539]
13,000,000 | 3,607 | 1,331 504 68 13.39 [3, 12999997] [3461, 12996539]
14,000,000 | 3,743 | 1,283 522 82 15.71 [19, 13999981] [3739, 13996261]
15,000,000 | 3,874 | 1,032 536 111 20.71 [19, 14999981] [3847, 14996153]
16,000,000 | 4,001 1,600 551 61 11.07 [11, 15999989] [3989, 15996011]
17,000,000 | 4,125 | 1,552 566 68 12.01 [37, 16999963] [4093, 16995907]
18,000,000 | 4,244 1,131 582 112 19.24 [13, 17999987 [4241, 17995759]
19,000,000 | 4,360 | 1,651 595 66 11.09 [3, 18999997] [4271, 18995729]
20,000,000 | 4,474 | 1,789 | 607 62 10.21 [19, 19999981] [4363, 19995637]
21,000,000 | 4,584 | 1,047 | 620 141 22.74 [23, 20999977] [4561, 20995439]
22,000,000 | 4,692 1,706 | 634 70 11.04 [23, 21999977] [4547, 21995453]
23,000,000 | 4,797 | 1,835 | 645 63 9.77 [7, 22999993] [4723, 22995277]
24,000,000 | 4,900 | 1,305 | 654 129 19.72 [19, 23999981] [4703, 23995297]
25,000,000 | 5,001 | 2,000 | 669 71 10.61 [17, 24999983] [4889, 24995111]
26,000,000 | 5,101 1,883 | 682 76 11.14 [67, 25999933] [4999, 25995001]
27,000,000 | 5,198 | 1,385 | 692 153 22.11 [19, 26999981] [5171, 26994829]
28,000,000 | 5,293 | 1,815 701 91 12.98 [101, 27999899] [5279, 27994721]
29,000,000 | 5,387 | 2,080 710 75 10.56 [61, 28999939] [5347, 28994653]
30,000,000 | 5,479 | 1,461 724 148 20.44 [11, 29999989] [5443, 29994557]
31,000,000 | 5,569 | 2,155 735 83 11.29 [11, 30999989] [5501, 30994499]
32,000,000 | 5,658 | 2,262 745 73 9.79 [61, 31999939] [5647, 31994353]
33,000,000 | 5,746 | 1,392 756 173 22.88 [17, 32999983] [5693, 32994307]
34,000,000 | 5,832 | 2,194 | 765 85 11.11 [107, 33999893] [5813, 33994187]
35,000,000 | 5,918 | 2,028 777 81 10.42 [31, 34999969] [5791, 34994209]

Table 2.

The Tale of Table 2.

Here % PCP(rma) = (pcp / m(rmax+)) 100 is the percentage of primes as pcp <= rmq+2, and other parameters
Fmax+ for lhr <= rpa+2. We see the % PCP values for n in both tables closely match, though the bounded
regions become a smaller percentage of n/2 as n grows. Code to generate the r,., data is given below.

Enable YJIT if using CRuby >= 3.3"

RubyVM: :YJIT.enable if RUBY_ENGINE == "ruby" and RUBY_VERSION.to_f >= 3.3

def prime_pairs_rmax(n)

return puts "Input not even n > 6" unless n.even? & n > 6

generate the low-half-residues (lhr) r < n/2

lhr = 3.step(n/2, 2).select {
ndiv2, rhi = n/2, n-2
lhr_mults = []

Iri

store all the powers of the lhr members < n-2

step thru the lhr members

set to first power of r

exit if rA2 > n-2, as all others are too
while rfe < n-2

store its current power of r

lhr.each do |r| #
r_pwr =r #
break if r > rhi / r_pwr #
while r < rhi / r_pwr #
lhr_mults << (r_pwr *=r) #
end
end

r if r.gcd(n)
lhr:hhr midpoint, max residue limit
for lhr values not part of a pcp

::1}

store all the cross-products of the lhr members < n-2

lhr_dup = lhr.dup
while (r =
rimax =rhi / r
break if lhr_dup[0] > ri_max
lhr_dup.each do |ri|
break if ri > ri_max
lhr_mults << r * ri
end
end

HoH O

make copy of the 1lhr members list
lhr_dup.shift) && !lhr_dup.empty? # do mults of 1st list r w/others
ri can't multiply r with values > this

exit if product of consecutive r’s > n-2
for each residue in reduced list

exit for r if cross-product with ri > n-2
store value if < n-2

check cross-products of next lhr member

convert lhr_mults vals > n/2 to their 1lhr complements n-r,
store them, those < n/2, in lhr_del; it now holds non-pcp lhr vals

lhr_del = lhr_mults.map { |r_del|]
lhr_rmax = Integer.sqrt(n-2) + 2
lhr_rmax_cnt = lhr.count { |r|
lhr -= lhr_del

pcp_rmax = lhr.select { |r|

pp [n, lhr_rmax, lhr_rmax_cnt,

pp [pcp_rmax.first,

pp [pcp_rmax.last,
end

n-pcp_rmax.first]
n-pcp_rmax. last]
def tm; t = Time.now; yield; Time.now - t end

n = ARGV[0].to_1i
puts tm { prime_pairs_rmax(n) }

(r_del > ndiv2 ? n - r_del :

r <= lhr_rmax }
r if r <= lhr_rmax }

pcp_rmax.size]

r_del) }

the lhr_rmax high bound

count of lhr <= lhr_rmax

1lhr pcp prime residues

lhr pcp prime residues <= lhr_rmax

show n, lhr_rmax, lhr_max_cnt,
show first pcp prime pair of n
show last pcp prime pair <= rmax

pcp count
#
to time runtime execution

get n value from terminal
show execution runtime as last output

$ ruby primes_pairs_rmax.rb 12_345_678
[12345678, 3515, 1146, 86]

[31, 12345647]

[3511, 12342167]

1.929410993

15

$ ruby primes_pairs_rmax.rb 123_456_780
[123456780, 11113, 2900, 268]

[19, 123456761]

[11113, 123445667]

17.027832421

Conclusion

Prime Generator Theory (PGT) provides the most powerful and conceptually simple mathematical
framework for understanding the nature, characteristics, and distribution of the primes. By treating
even values of n as modular groups Z,, we apply the properties of residues to easily identify the prime
pairs of n, which deterministically exist as the modular complement pairs (mcp) of strictly primes, i.e.
they exist as the prime complement pair (pcp) residues of Z,.

From this framework we establish every even integer n > 6 will (must) have at least one pcp prime pair.
The properties of this framework can then be algorithmically constructed to identify all the pcp prime
pairs. This simple algorithm is then translated into software that provides the total count of pcp prime
pairs of n, and displays their values as desired. This is done without the need to perform any explicit
prime searches or tests. The structure of the Z, residues guarantees identification of the primes.

We also see Bertrand’s Postulate is just a necessary condition that falls out of the modular symmetry of
the pcp. There always must be a prime in the intervals n/2 < p < n in order for there to be prime pairs.
As an extra bonus, we’re able to create much smaller (tighter) dynamically adjusting bounds for p,
compared to the wider static BP bounds, which become relatively larger as n increases. Thus we now
have a much better understanding of the distribution of the primes.

Finally, empirical data is provided for an increasing range of n values, showing their total pcp counts,
and their first and last prime pairs values. It shows large variances in the pcp counts for close n values,
as a functions of their factorization profiles. We also see the ratios of the pcp primes as a percentage of
all the primes < n occur in quantized bands. Thus the pcp increase as n does, verifying that Goldbach’s
Conjecture is correct, but also revealing so much more to the story than was previously known.

References

[1] Oliveiria e Silva, Herzog, and Pardi — Empirical Verification Of The Even Goldbach Conjecture
And Computation Of Prime Gaps Up To 4-10'%, Journal: Math. Comp. 83 (2014), 2033-2060.
https://www.ams.org/journals/mcom/2014-83-288/S0025-5718-2013-02787-1/S0025-5718-2013-

02787-1.pdf

[2] Jabari Zakiya — On The Infinity of Twin Primes and other K-tuples, International Journal of
Mathematics and Computer Research (IJMCR), Vol 13 No 1 (2025), 4739-4761.
https://ijmcr.in/index.php/ijmcr/article/view/867/678 (pdf)

[3] Jabari Zakiya — Twin Primes Segmented Sieve of Zakiya (SSoZ) Explained, J Curr Trends Comp
Sci Res 2(2), 119 - 147, 2023.
https://www.opastpublishers.com/open-access-articles/twin-primes-segmented-sieve-of-zakiya-
ssoz-explained.pdf

16

https://www.opastpublishers.com/open-access-articles/twin-primes-segmented-sieve-of-zakiya-ssoz-explained.pdf
https://www.opastpublishers.com/open-access-articles/twin-primes-segmented-sieve-of-zakiya-
https://ijmcr.in/index.php/ijmcr/article/view/867/678
https://www.ams.org/journals/mcom/2014-83-288/S0025-5718-2013-02787-1/S0025-5718-2013-02787-1.pdf
https://www.ams.org/journals/mcom/2014-83-288/S0025-5718-2013-02787-1/S0025-5718-2013-

	Introduction
	Modular Group Residues
	Modular Complement Properties
	Mirror Image Symmetry
	Definitions and Axioms
	Definitions
	Axioms

	PGT Proof of Goldbach’s Conjecture
	Residue Properties
	Optimum Bounded Regions
	High Bound Limit
	Low Bound Limit
	Applying Modular Reflection
	Bounded Bonding of Primes

	Bertrand’s Postulate
	Prime Pairs Algorithm
	Prime Pairs Code
	Empirical Data Table 1.
	The Tale of Table 1.
	Empirical Data Table 2.
	Table 2.
	The Tale of Table 2.
	Conclusion
	References

