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Abstract
For the first time, this article introduces the notion of natural equidistant-equiranked prime
numbers (NEEP) which are the only ones to verify the strong Goldbach conjecture naturally in
the set of natural integers. If E is an even  ≥ 4 and E = p + q such that q > p,  NEEP are the
equidistant  primes  which  also  have  the  same ranking  for  p  between  0  and  E/2  and  for  q
between E and E/2. Primes are counted from 0 to E/2 on one hand, and inversely from E to E/2
on the other hand. Therefore, primes having the same ranking face each other on a same line
and if  equidistant  relatively  to  E/2  then their  sum = E.  From the  NEEP,  we calculate  the
deducible equidistant prime numbers (DEP) and it is only from NEEP + DEP that we obtain all
the possible sums of two prime numbers of a given even number. No current algorithm for
converting even numbers to the sum of two prime numbers distinguishes NEEP from DEP.
There are evens like 30 or 90 which don't have NEEP and therefore not satisfying naturally
Goldbach's  strong  conjecture  (GSC)  unless  DEP are  deduced  by calculation.  This  is  a  new
matter of thinking : should GSC be refuted because there are evens not having NEEP ? Is this
conjecture only deducible by calculation ? Normally one expects GSC to be true with NEEP
before getting to DEP. Should the fact that some even numbers not having NEEP be interpreted
as a rejection of the Goldbach' Strong Conjecture? 
The natural presence of NEEP has been exploited here to set up for the first time a system of
coding and deciphering even numbers which allows a calculator to deduce all their possible
sums of two prime numbers. This article then has two originalities not published before which
will certainly be subject to debate 

Keyword.  Goldbach's  strong  conjecture.  Equidistant  primes.  Encoding.  Dicephering.
Cryptology. Prime numbers. Prime number countig function. Algorithm.

Abbreviations.  GSC :  Goldbach's  strong  conjecture.  PN :  prime  number.  NEEP :  natural
equidistant-equiranked primes. DEP : deducible equidistant primes. 

Note. Figures and tables at pages 7 – 13.
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A. Introduction
For a even E ≥ 8 to be sum of two PN p ad q such that q > p ; E/ 2 – p = q – E/2 so that p and q 
are said to be equidistant. However, there is a subtle difference between equidistance and 
equiranking of two PN p and q. First let us recall that the prime number counting function, 
called π(E), which aims to count prime numbers less than or equal to a number E. Calculating 
π(E) allows you to position a prime number in relation to another, by knowing its rank in the 
list of prime numbers. If  π(a) < π(b) then a < b. How to know if p ad q are equiranked ? First 
determine π(E) by the PN counting function, then separate the prime numbers (PN) < E/2 and 
those > E/2. Then draw a table with 3 columns, the first of which is used for PN < E/2; the 
second to note the value of E/2 at each line and the third to mark the PN > E/2. The most 
important thing in this process is that the PN < E/2 are in ascending order and those > E/2 are in
descending order from the top line of the table (Figure 1 and Tables 1A-1F)) because this is how 
the PN add up to give a value closest to E. The smallest PN which is 3 must be opposite the 
largest prime number > E/2. The equiranked primes are those on the same line but they are not 
always equidistant. The postulate of this article is the following "For the GSC to be naturally true
in the set N, there must be two equidistant and equiranked PN". Naturally in mathematics here 
means a fact which appears instantly without recourse to calculation and these equidistant and 
equiranked PNs are designated here NEEP (natural equidistant-equiranked primes). While all 
other equidistant PNs which are not equiranked are called DEP (deducible equidistant primes). 
DEPs require calculation from NEEPs. If not possible, from odd numbers not multiples of 2 and 
3 whose sum makes E (see the next section). This is the first time that these notions are 
published here which distinguishes NEEPs from DEPs.
Therefore, there are two types of equidistant primes: those that occur naturally and are 
equiranked and those that are deducible by calculation. In fact, only natural equidistant-
equiranked PN (NEEP) can be used to prove the GSC in the set N just by following Figure 1 and
Tbles 1A-1F without any calculation.

B. Results 
B1.  The natural  equidistant-equiranked primes (NEEP)  and the  deducible  equidistant  primes
(DEP)
The NEEP are colored gray (Tables 1A-F).  The two NEEP p and q appear naturally, so that p + q
= E. The line corresponding to the smallest odd PN which is 3 is coloured yellow. As is well
known, every even number has a number of possible sums p + q, but we don't see all of them
naturally because the density of PN between 0 and E/2 is > that between E/2 and E, which
always results in a mismatch between all  possible equidistant primes when using the prime
counting function. That's why Goldbach's verification must occur naturally with NEEP, since
they're the only ones we can see in the set of integers. However, by calculation, they will give
all the other PED (by deduction). We can see that the number of possible sums p + q is not all
natural, but mostly a result of calculation that we deduce. But how are we going to deduce the
DEP? I explained this method in a more recent article [1-3]. Interested readers can consult it for
more details, but very briefly, there are two categories of PN: 6x - 1 or 6x + 5 and those that are
6x + 1. Between two PN 6x - 1 and between two PN 6x + 1 there is a difference of 6n (n ≥ 1).
But between PN 6x - 1 and 6x + 1 there are variable gaps of 2n (n ≥ 1). 
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There are also three categories of even numbers 6x; 6x + 2 and 6x + 4. The 6x are obtained by 
adding an PN 6x + 1 and another 6x - 1, or vice versa. The 6x + 2 require two 6x + 1 PN. 
Whereas 6x + 4 are also 6x - 2 and require two 6x - 1 PN. In all cases, the GSC always follows 
the 6x ± 1 equations, and the sum of the PN is based on the category of the pair. 
Example of deduction of DEP from NEEP.  Let's take the example of the even number E = 44 
and so E/2 = 22 (Table 1B) has practically three possible sums 3 + 41; 7 + 37 and 13 + 31. 
However,  there is only one pair of NEEP visible in Table 1B and it's 7 + 37 from which we 
deduce the other two. So (7 - 4) + (37 + 4) = 3 + 41. And (7 + 6) + (37 - 6) = 13 + 31. The 
deduction always follows the same calculation: if an even number E = p + q , the deduction is 
made according to  E = (p - 6n) + (q + 6n) or E = (p + 6n) + (q - 6n). Golablement, the deduction 
is made according to E = (p - 2n) + (q + 2n) or E = (p + 2n) + (q - 2n).  In case there are no PEEN,
then we follow the same equation with C being a composite numbers not multiple of 2 and 3 
such that E = C + C'. Hence E = (C - 6n) + (C' + 6n) or E = (C + 6n) + (C' – 6n) on one hand. PO 
the other hand, E = (C - 2n) + (C' + 2n) or E = (C + 2n) + (C' – 2n) ↔ E = p + q. Using this 
process we get all DEP and all possible sums of two primes for a given number E.
There is also another method using the smallest PN < E/2 which is 3 and the largest PN > E/2.
Note in passing that an even number multiple of 3 denoted 3n will have E/2 which is also 3n
and E - 3 will not be prime. On the other hand, a non-3n number could also give a prime or
composite E – 3 number. Now let's take the example of E = 44 and E/2 = 22 (Table 1B). We see
that 3 + 43 = 46 and therefore we have 46 - 44 = 2. We can then remove 2 from the other PNs
for example we have 3 + (43 - 2) = 3 + 41. Or add 2 for example 13 + 29 becomes 13 + (29 + 2) =
13 + 31 = 44. We can easily deduce all the possible sums by following the equations above.
 For example 44 = 9 + 35 = (9 – 6) + (35 + 6)= 3 + 41. Or 44 = 9 + 35 = (9 + 4) + (35 – 4) = 13+ 31.
Use the gaps 6n in E = (C - 6n) + (C' + 6n) or E = (C + 6n) + (C' – 6n) when C and C' are non-3n.
Another example E = 74 et E/2 = 37 (Table 1D)  which has practically 4 possibles p + q sums
including 3 + 71 ; 7 + 67 ; 13 + 61 ; 31 + 43 ; 37 + 37 (in this paper we only focus on two NEEP p
and q such that q > p so the latter sum is excluded). The single NEEP is 13 + 61 = 74 visible in
Table 1D. The DEP can all be deduced from the NEEP like for exampe 13 + 61 = (13 – 10) + (61
+ 10) =  3 + 71 or  13 + 61 = (13 + 18) + (61 - 18) =  31 + 43. This is true for all evens E ≥4. The
table 1A-F show 6 examples used for illusttration.

 
B2. New Cryptological Coding of GSC
The NEEP can also be used to encode even numbers, allowing us to deduce DEP and therefore all
possible p + q sums.  It seems that every even number E ≥4  in the set N has a unique configuration
of NEEP (Figures 2A-F), and even if we find two even numbers E with the same configuration, the
NEEP and DEP will not be the same. This is a good material for cryptology and all those interested
in  it,  as  each  number  is  associated  with  a  specific  configuration  of  its  PN  and  NEEP.
Mathematically, this coding will enable you to deduce all possible sums p + q by calculation or by
using a program that performs E = (p - 6n) + (q + 6n) or E = (p + 6n) + (q - 6n) or E = (p - 2n) + (q
+ 2n) or E = (p + 2n) + (q - 2n). 
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How does this coding work? Let's take two examples from Figure 2. First, the figure is read from
the top ; and the NEEP line is marked with 0, above which the total number of preceding lines is
marked, and so on. For example, E = 24 (Figure 2A) is associated with the number 1000 because
there are three NEEP lines preceded by one PN line devoid of NEEP . The NEEP and PN of the
even numbers E can be used to encode the even number E by associating it with a line and number
configuration.  Afterwards,  a  number  is  associated  with  it,  which,  when  deciphered,  makes  it
possible to deduce all possible sums p + q = E.  Exemple E = 44 et E/2 = 22 (Figure 2B) is coded
203Ø which means that it has a pair of NEEPs marked with 0 preceded by two lines of PN and
followed by 3 lines of PN devoid of NEEP. The Ø sign means that there is a PN < E/2 which has no
PN > E/2 in front of it. Let's not forget that first of all we must put the number as explained in
Figure 1. 

The examples given in the figure will help one to understand this encoding and decryption system.
The Ø sign always corresponds to single PN close to E/2 on both sides.
For example let's decipher the code 12080706øø (Figure 2F) which means that this number has 
12 pairs of PNs (which are not NEEPs) followed by a pair of NEEPs; then 8 pairs of PN ; a NEEP
line marked by zero; then 7 pairs of PN; a third NEEP line; ad finally 6 lines of pairs of PNs, two
of which do not have a PN > E/2 opposite marked with the Ø sign. The reader could practice 
encoding and deciphering numbers. This encoding and decryption system described for the first
time in this paper shows its potential usefulness in a cryptological application. Mathematically, 
it allows you to encode an even number in such a way as to be able to deduce all possible sums 
p + q.
 
C. Evens without NEEP might signify mathematical rejection of GSC.

Tables 2A-C show  one number with one NEEP line (3A) and two examples without NEEP (Tables
2B + 2C). The number 40 and E/2 = 20 (3A) has one NEEP line 3 + 37 = 40 from which we can 
deduce all DEP like for example 3 + 37 = (3 + 8) + (37 – 8) = 11 + 29 = (11 + 12) + (29 – 12) = 23 
+ 17 and so on. In contrast the numbers with no NEEP require first putting E = C + C4 such that C 
+ C' are odds composite and non-3n. Let us take the number 30 (2B). For example 30 = 5 + 25 =    
(5 + 6) + (25 – 6) = 11 + 19 = (11 + 6) + (19 – 6) = 17 + 13 ad so one. The same applies to E = 90 
and E/2 = 45 in Table 2C. For their encoding, we can use the first line corresponding to PN = 3 and 
denote it by a capital letter  followed by the total of PN line like for example for 30 we have A4Ø 
meaning the line of PN 3 is followed by four lines one which has only one prime > E/2 (the last 
one). By contrast, if we take two of these numbers (E = 24, E/2 = 12 ; E = 30 ; E/2 = 15) in addition
to a new one (E = 60 ; E/2 = 30) ; and we take all the natural integers from (E/2 - 1) to 1 (decreasing
order) and from (E/2 + 1) to E - 1 (ascending order), we see the equidistant PNs reappear, the sum 
of which is equal to E (Tables 3A-C). But all these equidistant additive PN are not equiranked 
at E/2 and are not true NEEP but DEP (because integers are placed in a specific order before 
and after E/2 and this this positioning that helps recovering equidistant primes. Hence they 
are DEP), and this is the most important point that this article rises. By taking only PN in their 
natural ranks before and after E/2, GSC is merley deducible by calculation and depends upon gaps 
that separate the PNs. But if we take the whole integers, we no longer have equiranked primes 
NEEP, but the equidistant ones at E/2 reapper on the same lines and increase the numbers of p + q 
sums. This result deserves further research for the moment. However, the great advantage is that 
cruptographic encoding of GSC is much more easier as we have many equidistant PN lines and no 
single PN (the sign Ø is thus useless here). Numbers are enough to encode all the information about
equidistant primes and non-equidistant ones.
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This shows that Goldbach' strong conjecture (GSC) is not naturally true in the set N. The GSC
would not be natural in all cases of even numbers, but would be deducible by the calculation as seen
above. The absence of NEEP in numbers like 30 or 90 and probably an infinity of others raises the
question: Is the GSC naturally true? Does it have a meaning since it disappears in some numbers
when we use the counting function of the PNs and their natural orders. If the GSC is absolutely
deducible this means that it could be solved by algorithms and calculation programs looking for a
calculation equation like those seen above. This article is the first to raise this question because if
the GSC is not naturally verified, it is because the equidistant and equiranked PNs are not always
present, and therefore the GSC loses its mathematical meaning at this level.
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C. Discussion
Some and likely an infinity of even numbers E  ≥4 do not have NEEP, and therefore Goldbach's
strong conjecture (GSC) is not naturally true. An even E that doesn't have a NEEP doesn't check
GSC naturally. Current algorithms that provide us with all possible p + q sums in one click confuse
NEEP and DEP, and this article raises this point for the first time. 
But in fact if an even number does not have a NEEP, this means that it does not naturally verify the
GSC. Does GSC need to be demonstrated with NEEP or NEEP+DEP or with one of the two?
In fact, if no NEEP, no natural GSC, and in this case, the GSC would be deduced by the calculation
by looking for the DEPs. But deduction by the calculation will never be proof of its veracity which
explains  why GSC remains  unsolved  for  centuries.  Now the  central  question  that  needs  to  be
addressed further is to determine why some evens do not have NEEP while others do. Very likely
there are some hidden rules that lead to NEEP or not. Another important idea is the fact that GSC is
absolutely a function of gaps between PN or between PN and composite odds that are not multiple
of 3. This is this function that allows us to convert an even lacking or having NEEP in all possible
sums of two primes p + q.
In addition, this article presents for the first time a coding of even numbers having NEEP which
makes it possible to deduce all possible sums either by a calculation or by a computer program.
Another encoding is suggested for evens without NEEPs. This encoding is suggested here for the
first time and mighht very likely be improved with time. 
If we do not use the PN counting function and their natural ordrer, we loose the NEEP but we
increase the possibilities of p + q sums of the evens denoted E because we recover equidistant
primes (that are not equiranked). This result needs more investigation in future.
For numbers having too much NEEPs, we might simply add 0s near the lines of NEEPs which
allows a calculator to know their total number.
This debate deserves close attention in the future.
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Figure 1 : Primes numbers (PN) < E/2 are in ascending order while those > E/2 are in a descending
order from the closest PN to E to E/2. The results obtained with this system are shown in tables 

1A-F.
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Tables 1A-F : Positions of natural equidistant primes (grey) which form the basis of the 
calculation to find the other equidistant primes deducible by the equations 6x ± 1 by gaps of 6 or by 
variable gaps of 2n (n ≥ 1).

                                                                      Table 1A

                                                          Table 1B

                                                          Table 1C

                                                          Table 1D
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p E/2 q

3 12 23
5 12 19
7 12 17

11 12 13

p E/2 q
3 37 79
5 37 73
7 37 71
11 37 67
13 37 61
17 37 59
19 37 53
23 37 47
29 37 43
31 37 41
37 37 37

p E/2 q

3 24 47
5 24 43
7 24 41

11 24 37
13 24 31
17 24 29
19 24 ø
23 24 ø

p E/2 q

3 22 43

5 22 41

7 22 37

11 22 31

13 22 29

17 22 23

19 22



                                                          Table 1E
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p E/2 q
3 80 179
5 80 173
7 80 167
11 80 163
13 80 157
17 80 151
19 80 149
23 80 139
29 80 137
31 80 131
37 80 127
41 80 113
43 80 109
47 80 107
53 80 103
59 80 101
61 80 97
67 80 89
71 80 Ø
73 80 Ø
79 80 Ø



                                                          Table 1F
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p E/2 q
3 180 397
5 180 389
7 180 383
11 180 379
13 180 373
17 180 367
19 180 359
23 180 353
29 180 349
31 180 347
37 180 337
41 180 331
43 180 317
47 180 313
53 180 311
59 180 307
61 180 293
67 180 283
71 180 281
73 180 277
79 180 271
89 180 269
97 180 263
101 180 257
103 180 251
107 180 241
109 180 239
113 180 233
127 180 229
131 180 227
137 180 223
139 180 211
149 180 199
151 180 197
157 180 193
163 180 191
167 180 181
173 180 Ø
179 180 Ø



Figure 2 : Coding and deciphering of even numbers based on GSC.
The figures correspond in order to Tables 1A-F. It is read from top to bottom.
Each line marked with 0 corresponds to a NEEP pair. The number at the bottom or top of the line
gives the number of PN pairs that precede or follow the NEEP pair. The x sign means that there is
no PN on the right, i.e. > E/2. The coded number at the bottom brings together all the information
about  the  even  number.  We  speak  of  coding  because  with  the  coded  number  an  independent
calculator can deduce all the possible sums p + q satisfying the GSC. The encoding number is
obtained by reading the figure from top to bottom.
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Tables 2A-C. Two evens that do not have NEEPs (B and C). For comparison, an even having a pair
of NEEPs (A). This shows that Goldbach's strong conjecture is not naturally true for all evens if we
use prime counting function and their natural ranks.
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A C
p E/2 q p E/2 q
3 20 37 3 45 89
5 20 31 5 45 83
7 20 29 7 45 79
11 20 23 11 45 73
13 20 ɸ 13 45 71
17 20 ɸ 17 45 67
19 20 ɸ 19 45 61

23 45 59
B 29 45 53

p E/2 q 31 45 47
3 15 29 37 45 ɸ
5 15 23 41 45 ɸ
7 15 19 43 45 ɸ
11 15 17
13 15 ɸ



Table 3A-C. Numbers not having NEEP (B, 30 ; and C, 60) can give sums of two primes when not
only prime numbers are taken in function of their natural rank. Integers before and after E/2 should
placed as shown. The cryptograhic encoding remains the same as with NEEP, but it is much more
easy. For instance Table 3A (E = 24, E = 12) is encoded 030104  whereas 3B (E = 30) is encoded
1010306. The table C (E = 60) is encoded 050301030506. Note this time we have no longer  Ø
because there are similar lengths of integers on the first and third columns.
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A B
E/2 E/2

11 12 13 29 30 31
10 12 14 28 30 32
9 12 15 27 30 33
8 12 16 26 30 34
7 12 17 25 30 35
6 12 18 24 30 36
5 12 19 23 30 37
4 12 20 22 30 38
3 12 21 21 30 39
2 12 22 20 30 40
1 12 23 19 30 41

 18 30 42
17 30 43

C 16 30 44
E/2 15 30 45

14 15 16 14 30 46
13 15 17 13 30 47
12 15 18 12 30 48
11 15 19 11 30 49
10 15 20 10 30 50
9 15 21 9 30 51
8 15 22 8 30 52
7 15 23 7 30 53
6 15 24 6 30 54
5 15 25 5 30 55
4 15 26 4 30 56
3 15 27 3 30 57
2 15 28 2 30 58
1 15 29 1 30 59

11 → 1 13 → 23 29 → 1 31 → 60

14 → 1 16 → 29
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