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Abstract

This research paper is in the form of lesson notes. In it an identity is estab-
lished connecting to consecutive primes. Bertrand’s postulate is used together
with the identity to establish a quadratic inequality that can be used to establish
minimum intervals containing at least three primes in between its limits. A gen-
eralization of the quadratic inequality is introduced to establish the minimum
interval containining at least one pair of primes for Goldbach partitition. The
concepts of Goldbach partition deviation and Goldbach partition interval are in-
troduced by which it is shown that the minimum number of Goldbach partitions
of a composite even number is 1.

Learning objectives

The learner should be able to
1. Derive an identity connecting two consecutive prime numbers
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2. Obtain with the aid of Bertrand’s postulate a quadratic inequality for solving
the prime gap problem

3. Use the derived quadratic inequality to obtain intervals containing three
primes

4. Define a Goldbach partition deviation and a Goldbach partition interval.
5. Extend the derived quadratic inequality to derive an interval containing at
least one pair of primes for Goldbach partition

6. Derive inequalities by which the minimum number of Goldbach partitions of
a composite even number is equal to 1

7. Establish a relationship between two Goldbach partition counting functions
and show that the relationship implies that the minimum number of Goldbach
partitions of a composite even number is equal to 1.

8. Estimate the number of Goldbach paritions using a suspected number of Gold-
bach partitions

9. To do a more through analysis of the prime gap problem and to establish
establish the conditions under which the Oppermann’s conjecture is met.

10. Obtain an exact prime gap relationship that accounts for the different conjec-
ture on prime gaps

11. Explain the Riemann hypothesis Dimension of the prime prime gap problem.
12. Define and apply the concept of relative size of a prime gap.

Introduction

These lecture notes are derivatives from pages 19 to 26 of paper reference
[1]. The expositions in this paper is meant to provide some insight on some
cocepts in the paper that may not clear to its readers.

13. Explain how the Riemann hypothesis can be disproved
14. Prove Opperman’s conjecture

Prime gaps upper bounds and justification for a quadratic in-
equality for their solution

Bertrand’s postulated, proved in 1852, states that there is always a prime number
between m and 2m (m is an integer greater or equal to 2) meaning that 𝑝𝑖+1 < 2𝑝𝑖.
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This also means $g_n $. Hoheisel [6] in 1930, was the first to show that there exists
a constant 𝜃 < 1 such that

𝜋(𝑥 + 𝑥𝜃) − 𝜋(𝑥) ≈ 𝑥𝜃

ln𝑥𝑥 → ∞

hence showing that
𝑔𝑖 < 𝑝𝜃

𝑖
for a sufficiently large 𝑝𝑖.
Ingham [4] showed that for a positive constant c, If

𝜁(1
2 + 𝑖𝑡) = 𝑂(𝑡𝑐)

Then
𝜋(𝑥 + 𝑥𝜃) − 𝜋(𝑥) ≈ 𝑥𝜃

ln𝑥𝑥 → ∞
for any 𝜃 > (1 + 4𝑐)/(2 + 4𝑐)
A result due to Baker, Haman and Pintz [5] in 2001 shows that 𝜃 may be taken to
be 0. 525. Thus the best proven bound on gap sizes is 𝑔𝑖 < 𝑝0.525

𝑖 for 𝑖 sufficienty
large. It is observed that maximal gaps are significantly smaller than the above
gap. There are hypothesis like the Opperman’s conjecture that claim that 𝜃 can be
reduced to 𝜃 = 0.5.

Analysis of the claims of Opperman’s conjecture

Opperman’s conjecture implies

𝑝𝑖+1 < 𝑝𝑖 + √𝑝𝑖 ∧ 𝑖 > 30
This conjecture requires a deeper examination of quadratic inequalities of consec-
utive prime numbers.

Deriving an identity connecting to consectutive
primes

Consider two numbers represented by two algebraic terms 𝑎 and 𝑏. We can estab-
lish an identity connecting a and b through the steps below.

𝑎𝑏 + (𝑎 − 𝑏
2 )2 = 4𝑎𝑏 + 𝑎2 − 2𝑎𝑏 + 𝑏2

4 = 𝑎2 + 2𝑎𝑏 + 𝑏2

4 = (𝑎 + 𝑏
2 )2 (1)
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Therefore
𝑎𝑏 + (𝑎 − 𝑏

2 )2 = (𝑎 + 𝑏
2 )2 (2)

Now consider two consecutive primes 𝑝𝑖 and 𝑝𝑖+1 If we now set 𝑎 = √𝑝𝑖+1 and
𝑏 = √𝑝𝑖 then

√𝑝𝑖𝑝𝑖+1 + (
√𝑝𝑖+1 − √𝑝𝑖

2 )2 = (
√𝑝𝑖+𝑖 + 𝑝𝑖

2 )2 (3)

For the purpose of achieving a quadratic inequality, the above identity will be re-
arranged to a more covenient form. That is:

√𝑝𝑖+1 + √𝑝𝑖 = 2√((
√𝑝𝑖+1 − √𝑝𝑖

2 )2 + √𝑝𝑖𝑝𝑖+1) (4)

It also means that

√𝑝𝑖+1 + √𝑝𝑖 = 2√((
√𝑝𝑖+1 − √𝑝𝑖

2 4
√𝑝𝑖𝑝𝑖+1

)2 + 1) (5)

This also means

√𝑝𝑖+1 + √𝑝𝑖 = 2√(𝑝𝑖𝑝𝑖+1)1
2 (𝑝𝑖 − 𝑝𝑖+1

2 )2(( 2
𝑝𝑖 − 𝑝𝑖+2

)2 + 1
𝑝𝑖𝑝𝑖+1

) (6)

That is

√𝑝𝑖+1 + √𝑝𝑖 = 2(𝑝𝑖𝑝𝑖+1)1
4

√𝑝𝑖+1 − √𝑝𝑖
2 √( 2√𝑝𝑖+1 − √𝑝𝑖

)2 + 1
(𝑝𝑖𝑝𝑖+1)1

2
(7)

Using Bertrand’s postulate in a rearranged form to
obtain a quadratic inequality for solving the prime
gap problem

Bertrand’s postulate postulate requres 𝑝𝑖+1 < 2𝑝𝑖. Therefore. Therefore substitut-
ing 𝑝𝑖+1 = 2𝑝𝑖
√𝑝𝑖+1 − √𝑝𝑖

2 √( 2√𝑝𝑖+1 − √𝑝𝑖
)2 + 1

(𝑝𝑖𝑝𝑖+1)1
2

<
√𝑝𝑖(

√
2 − 1)

2 √( 2√2𝑝𝑖 − √𝑝𝑖
)2 + 1√

2𝑝𝑖
(8)
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Therefore
√𝑝𝑖+1 − √𝑝𝑖

2 √( 2√𝑝𝑖+1 − √𝑝𝑖
)2 + 1

(𝑝𝑖𝑝𝑖+1)1
2

< √1 + (
√

2 − 1)2

4
√

2
= 1.015 (9)

Now because √𝑝𝑖+1 + √𝑝𝑖 > 2√𝑝𝑖+1𝑝𝑖 (10)

1 <
√𝑝𝑖+1 − √𝑝𝑖

2 √( 2√𝑝𝑖+1 − √𝑝𝑖
)2 + 1

(𝑝𝑖𝑝𝑖+1)1
2

< 1.015 (11)

The function
𝑓(𝑝𝑖) = 1.05 1

𝑝𝑖 ∧ 𝑝𝑖 > 3 (12)
lies within the interval (1, 1.05) Therefore intervals containing three primes are
determined by solving the quadratic inequality below.

√𝑝𝑖+1 + √𝑝𝑖 < 2 × 1.05 1
𝑝𝑖 4√𝑝𝑖+1𝑝𝑖 (13)

The important result about the above quadratic inequality is that primes greater
that 9500 achieve the gap result
𝑔𝑖 < 𝑝𝑖0.525

Using the quadratic inequality (13) to obtain inter-
vals containing three primes

Example 1 Find the integer inteval centered around 𝑝𝑖 = 7 containing at least
three primes

Solution √𝑥 +
√

7 < 4√7𝑥 × 1.051
7

calculator step

4 ≤ 𝑥 ≤ 11
In this interval the three primes are 5, 7 and 11.

Example 2 Use the inequality above to find at least 3 primes centering around
23.
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Solution √𝑥 +
√

23 < 4√23𝑥 × 1.051
7

Calculator step. The integer interval is:

17 ≤ 𝑥 ≤ 29
In the above interval the primes are 17, 19, 23 and 29. The limitations of inequality
(13) is that it cannot account for the observable gaps 𝑝𝑖 < 𝑝𝑖. There is still need to
come up with an approach that takes care of these gaps.

Goldbach partition deviation and interval

If 2𝑚 is a composite even number, we will define a Goldbach partition deviation
as the ratio of m to the number of Goldbach partitions of 2m. If 𝑅(2𝑚) is the num-
ber of Goldbach partitions of 2m and 𝑑𝑔 is Goldbach partition Goldbach partition
deviation then

𝑑𝑔 = 𝑚
𝑅(2𝑚) (14)

Thus by the above definition all composite even numbers wih having 1 Goldbach
partition 𝑑𝑔 = 𝑚 A Goldbach partition interval is an interval containing at least 1
Goldbach partition and its limits are defined as

𝑚 − 𝑑𝑔 < 𝑖𝑔 < 𝑚 + 𝑑𝑔 (15)

The number 100 has 6 Goldbach partitions. This means 𝑑𝑔 = 8. An interval contain-
ining primes for one Goldbach partition of 100 is 42, 58. The Goldbach partition
prime pairs in this are (47, 53). Now we can construct an equation that determines
this interval given √

50 + √𝑥 < 2 × 1.05 1
50

4√50𝑥 (16)
and we note that

41.9 < 𝑥 < 59.7
In this interval the Goldbach partition pairs are (41, 59) and (47, 53). The above
the length of the above interval is 2𝑑𝑔
Now Consider the composite even number 12.
The composite even number will have 1 Goldbach partition if 𝑑𝑔 = 𝑚 = 6 This
would mean that the interval containing primes making up one Goldbach partition
would be (0, 12. The quadratic inequality:

√
6 + √𝑥 < 2 × 1.051

6

The interval from the solution of the above is (3.6 < 𝑥 < 10). The Goldbach parti-
tion primes pair in this interval is (5, 7).
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Extending the derived quadratic inequality to derive
an interval containing at least one pair of primes for
Goldbach partition

The interval containing one pair primes for Goldbach partition of a composite even
number, 2m can be determining through solving the quadratic inequality below.

√𝑚 + √𝑥 < 2 × 1.05 1
𝑚 4√𝑚𝑥 (17)

Laws governing the number of Goldbach partition

From the solution of the quadratic inequality, the length of the interval containing
three primes is given

( 4√𝑝𝑖(1.05 1
𝑝𝑖 )+√( 4√𝑝𝑖(1.05 1

𝑝𝑖 )2 − √𝑝𝑖)4− 4√𝑝𝑖(1.05 1
𝑝𝑖 )−(√( 4√𝑝𝑖(1.05 1

𝑝𝑖 )2 − √𝑝𝑖)4

(18)
The maximum length of interval containing a pair of Goldbach partition primes

( 4√𝑚(1.05 1
𝑚 )+√( 4√𝑚(1.05 1

𝑚 )2 − √𝑚)4−( 4√𝑚(1.05 1
𝑚 )−(√(√𝑚(1.05 1

𝑚 ))2 − √𝑚)4)
(19)

It is observed that if

( 4√𝑚(1.05 1
𝑚 )+√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4− 4√𝑚(1.05 1
𝑚 )−(√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4 ≤ 2𝑚
(20)

Then 2m has at least one Goldbach partition. It should be noted that 2m is the
largest possible Goldbach partition interval, while m is the largest possible Gold-
bach partition deviation. It is also observed that If

( 4√𝑚(1.05 1
𝑚 )+√( 4√𝑚(1.05 1

𝑚 )2 − √𝑚))4−( 4√𝑚(1.05 1
𝑚 )−√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4 ≤ 𝑚
(21)

then 2m has at least 2 Goldbach partitions. Thus by the two equations above, com-
posite even numbers less than 14 have at least one Goldbach partition. and those
greater or equal to 14 have at least two Goldbach partitions. Thus the number of
Goldbach partitions function 𝑅(2𝑚) is governed by the inequality
𝑅(2𝑚) ≥ 𝑚

( 4√𝑚(1.05 2
𝑚 ) + 4√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4 − ( 4√𝑚(1.05 1
𝑚 ) − √( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚))4

(22)
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Let 𝑆𝐺 represent the sum of Goldbach Partition primes Now

𝑅(2𝑚) = 𝑆𝐺
2𝑚 (23)

Therefore

𝑆𝐺
2𝑚 ≥ 𝑚

( 4√𝑚(1.05 1
𝑚 ) + √( 4√𝑚(1.05 1

𝑚 )2 − √𝑚))4 − ( 4√𝑚(1.05 1
𝑚 ) − √( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚))4

(24)
This means that

𝑆𝐺 ≥ 2𝑚2

( 4√𝑚(1.05 1
𝑚 ) + √( 4√𝑚(1.05 1

𝑚 )2 − √𝑚))4 − ( 4√𝑚(1.05 2
𝑚 ) − √( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4

(25)
Substituting (23) into (24) we establish that

𝑆𝐺 ≥ 𝑚 (26)
Therefore

𝑅(2𝑚) ≥ 1
2 (27)

This confirms the Goldbach conjecture to be true.
Again it should be noted that

𝑅(2𝑚) = 𝑆𝐺
2𝑚 = 𝑚

𝑑𝑔
(28)

This means that

𝑆𝐺 = 2𝑚2

𝑑𝑔
(29)

since
𝑑𝑔 ≤ 𝑚 (30)

then 𝑆𝐺 ≥ 2𝑚 and 𝑅(2𝑚) ≥ 1 Again it is noted

𝑚 ≈
( 4√𝑚(1.05 1

𝑚 ) + √( 4√𝑚(1.05 1
𝑚 ))2 − √𝑚)2 + ( 4√𝑚(1.05 1

𝑚 ) − √( 4√𝑚(1.05 2
𝑚 ))2 − √𝑚)4

2
(31)
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This result means that the minimum interval one can find Goldbach partition
primes of 2𝑚 is

(( 4√𝑚(1.05 2
𝑚 )−√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚))4, 4√𝑚(1.05 1
𝑚 )+(√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚))4)
(32)

Thus for 2𝑚 = 140, the minimum interval for Goldbach partition of 140 for by the
above equation is (60.3, 81.3) or conveniently (60, 80) In this interval the Goldbach
partition pairs are (61, 79) and (67, 73)
The minimum interval that can be taken to confirm that 4000 has a Goldbach par-
tition is (1944, 2056). In this interval the Goldbach partition pairs are (1973, 2027)
and (1997, 2003).
The minimum interval that can be taken to confirm that 128 has a Goldbach parti-
tion is (54, 74). In this interval the Goldbach partition pair is (61, 67).
The minimum interval that can be taken to confirm that 32 has a Goldbach partition
is (11, 21). In this interval the Goldbach partition pair is (13, 19).
From reference paper [2], the minimum interval of primes of Goldbach partition is

(𝑚 + √𝑚2 − 𝑠𝑔𝑚𝑎𝑥,𝑚 − √𝑚2 − 𝑠𝑔𝑚𝑎𝑥) (33)

Where 𝑠𝑔𝑚𝑎𝑥 largest Goldbach partition semiprime. If

𝑎 = ( 4√𝑚(1.05 2
𝑚 − √( 4√𝑚(1.05 2

𝑚 ))2 − √𝑚)2 (34)

𝑏 = ( 4√𝑚(1.05 2
𝑚 ) + (√( 4√𝑚(1.05 2

𝑚 )2 − √𝑚)2 (35)

and
𝑐 = 𝑏 − 𝑎

2 (36)

Then
𝑎𝑏 ≤ 𝑠𝑔𝑚𝑎𝑥 ≤ 𝑎𝑏 + 𝑐2 (37)

Thus the maximum Goldbach partition semiprime of 128 is given by 54 × 74 =
3996 ≤ 𝑠𝑔𝑚𝑎𝑥 ≤ 54 × 74 + 102 = 4096 The largest Goldbach partition semiprime
is actually 4087. If thecomposite even number 2𝑚 is not semiprime then the Gold-
bach partition prime pairs with a minimum gap between them is less than or equal
to 2𝑐. That is to say also that there exists Goldbach partition primes within the
interval (𝑎, 𝑏).
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Obtaining a quadratic inequality for solving the
prime gap problem using the Andrica conjecture

The Andrica conjecture requires that
√𝑝𝑖+1 − √𝑝𝑖 < 1 (38)

When we substitute (38) into (3) be obtain the quadratic inequality (39) below.

2(√√𝑝𝑖𝑝𝑖+1 + 1
4) > √𝑝𝑖+1 + √𝑝𝑖 (39)

The gaps of inequality (13) are shorter that those of inequality (39) though com-
parable to those proposed in Crammer’s conjecture. To achieve better results we
will substitute the inequality

√𝑝𝑖+1 − √𝑝𝑖 <
√

11 −
√

7 (40)

into (3) to obtain the quadratic inequality

2(√√𝑝𝑖𝑝𝑖+1 + (
√

11 −
√

7
2 )2) ≥ √𝑝𝑖+1 + √𝑝𝑖 (41)

Thus the solution of

2(√
√

113𝑥 + (
√

11 −
√

7
2 )2) ≥ √𝑥 +

√
113

is
99.1871054116999 ≤ 𝑥 ≤ 127.713037038732
The prime number after 113 is 127.
The solution of

2(√
√

23𝑥 + (
√

11 −
√

7
2 )2) ≥ √𝑥 +

√
23

is 17.0152788649411 ≤ 𝑥 ≤ 29.8848635854904
The prime number after 23 is 29. The solution of

2(√
√

1129𝑥 + (
√

11 −
√

7
2 )2) ≥ √𝑥 +

√
1129
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is
1084.36657476504 ≤ 𝑥 ≤ 1174.53356768539
The prime number after 1129 is 1151. The disadvantage of formulation (41) above
is that it cannot account for observed cases in which 𝑔𝑖 < 𝑝𝑖.

A more thorough analysis of the prime gap problem

Consider the identity:

√𝑝𝑖𝑝𝑖+1 + (
√𝑝𝑖+1 − √𝑝𝑖

2 )2 = (
√𝑝𝑖+1 + √𝑝𝑖

2 )2 (42)

It can be reorganised to the form

√𝑝𝑖𝑝𝑖+1(
√𝑝𝑖+1 − √𝑝𝑖

2 )2( 1√𝑝𝑖𝑝𝑖+1
+ ( 2√𝑝𝑖+1 − √𝑝𝑖

)2) = (
√𝑝𝑖+1 + √𝑝𝑖

2 )2 (43)

and then simplified to

√𝑝𝑖+1 + √𝑝𝑖 = 2√√𝑝𝑖𝑝𝑖+1(
√𝑝𝑖+1 − √𝑝𝑖

2 )2( 1√𝑝𝑖𝑝𝑖+1
+ ( 2√𝑝𝑖+1 − √𝑝𝑖

)2) (44)

√𝑝𝑖+1 + √𝑝𝑖 = 2 4√𝑝𝑖𝑝𝑖+1(√(
√𝑝𝑖+1 − √𝑝𝑖

2 )2( 1√𝑝𝑖𝑝𝑖+1
+ ( 2√𝑝𝑖+1 − √𝑝𝑖

)2)) (45)

Now

√(
√𝑝𝑖+1 − √𝑝𝑖

2 )2( 1√𝑝𝑖𝑝𝑖+1
+ ( 2√𝑝𝑖+1 − √𝑝𝑖

)2) > 1 (46)

An exact prime gap relationship accounting for the various
conjectures on prime gaps

Equation (45) means that

1 < √(
√𝑝𝑖+1 − √𝑝𝑖

2 4
√𝑝𝑖𝑝𝑖+1

)2 + 1 ≤ 1 + (
√

5 −
√

3
2 4√15

)2 (47)
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Therefore

√𝑝𝑖+1 + √𝑝𝑖 = 2 4√𝑝𝑖𝑝𝑖+1(√(
√𝑝𝑖+1 − √𝑝𝑖

2 4
√𝑝𝑖𝑝𝑖+1

)2 + 1) = 𝑔𝑖√𝑝𝑖+1 − √𝑝𝑖
(48)

Now the gap between consecutive primes is given by:

𝑔𝑖 = √𝑝𝑖 ± (2𝑘𝑖 − 1) (49)
Therefore

√𝑝𝑖+1 + √𝑝𝑖 = 2 4√𝑝𝑖𝑝𝑖+1(√(
√𝑝𝑖+1 − √𝑝𝑖

2 4
√𝑝𝑖𝑝𝑖+1

)2 + 1) = √𝑝1 ± (2𝑘𝑖 − 1)√𝑝𝑖+1 − √𝑝𝑖
(50)

From article reference [1] and (49)

2√(𝑚2 − 𝑠𝑔) = √𝑝𝑖 ± (2𝑘𝑖 − 1) (51)

This means that

𝑠𝑔 = 𝑚2 − √𝑝𝑖 ± (2𝑘 − 1)
2 (52)

For twin primes
𝑔𝑖 = √𝑝𝑖 ± (2𝑘𝑖 − 1) = 2 (53)

Applying Bertrand’s postulate on maximum gaps it is noted that

𝑔𝑖 = √𝑝𝑖 + (2𝑘𝑖 − 1) < 𝑝𝑖 (54)
This also means that

2𝑘𝑖 < 𝑝2
𝑖 − 𝑝𝑖 + 1 = 𝑝𝑖(𝑝𝑖 − 1) + 1 (55)

Another observation is that

𝑝𝑖+1 = 𝑝𝑖 + √𝑝𝑖 ± (2𝑘𝑖 − 1) (56)

Thus 5 = 3 + √3 + 1
29 = 23 + √23 + 13
3 = 2 +

√
2 − 1

By Andrica conjecture

𝑔𝑖 = √𝑝𝑖 ± (2𝑘𝑖 − 1) < √2𝑝𝑖 − 1 (57)
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This means that either
2𝑘 < (√2𝑝𝑖 − 1)2 − 𝑝𝑖 + 1 (58)

or

2𝑘 > (√2𝑝𝑖 − 1)2 − 𝑝𝑖 + 1 (59)

The Riemann hypothesis dimension of the prime
gap problem

From equation (49) we established that

𝑔2
𝑖 = 𝑝𝑖𝜋(2𝑘𝑖 − 1) (60)

The Riemann Zeta function can therefore be written in rhe form:

𝜁(𝑠) = ln(−√𝑔2
𝑖 )

ln𝑔2
𝑖

= ln(−1) + ln𝑔𝑖
2 ln𝑔𝑖

= 1
2 + 𝑖 𝜋

2 ln𝑔𝑖
(61)

Thus the Riemann Hypothesis proving or disproving of the Riemann hypothesis will
in a sense contribute to our understanding better the prime gap problem.
In the paper reference [2] it was shown that the Riemann zeta funcrion can also
be written in the form

𝜁(𝑠) = ln(− 𝑛√𝑔𝑛
𝑖 )

ln𝑔𝑛
𝑖

= ln(−1) + ln𝑔𝑖
𝑛 ln𝑔𝑖

= 1
𝑛 + 𝑖 𝜋

𝑛 ln𝑔𝑖
(62)

Again

𝜁(𝑠) = ln(− 𝑛√𝑔 1
𝑚
𝑖 )

ln𝑔𝑛
𝑖

= 𝑛𝑚 ln(−1) + ln𝑔𝑖
𝑛2𝑚 ln𝑔𝑖

= 1
𝑛2𝑚 + 𝑖 𝜋

𝑛 ln𝑔𝑖
(63)

In the above form nontrivial zeroes can be outside the critical strip and therefore
the Riemann hypothesis was disproved as was shown in paperreference [2]

Relative size of a gap

For the purpose of this research we introduce the concept of relative size of a prime
gap.
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Definition: Relative size of a prime gap The relative size of a prime gap is
defined as the ratio of the gap between consecutive primes to the squareroot of
the smallest prime making the gap, that is:

𝑟𝑖 = 𝑔𝑖√𝑝𝑖
= √𝑝𝑖 ± (2𝑘𝑖 − 1)√𝑝𝑖

= √1 ± 2𝑘𝑖 − 1
𝑝𝑖

∧ 2𝑘𝑖 − 1 < 𝑝𝑖 (64)

A gap is of a large relative size if 𝑟𝑖 > 1 otherwise its relative size is small. A prime
number has a large relative gap if

𝑟 = 𝑔𝑖√𝑝𝑖
= √𝑝𝑖 + (2𝑘𝑖 − 1)√𝑝𝑖

= √1 + 2𝑘𝑖 − 1
𝑝𝑖

∧ 2𝑘𝑖 − 1 < 𝑝𝑖 (65)

It has a small relative gap if

𝑟𝑖 = 𝑔𝑖√𝑝𝑖
= √𝑝𝑖 − (2𝑘𝑖 − 1)√𝑝𝑖

= √1 − 2𝑘𝑖 − 1
𝑝𝑖

∧ 2𝑘𝑖 − 1 < 𝑝𝑖 (66)

A large prime gap may have a snall relative prime gap. On the other hand a small
prime gap may have a small prime gap. For example

5 = 3 + √3 + 1 = 5. Now the prime gap is small that is 2. However 𝑟 = √1 + 1
3 =

√5
3 > 1. The gap is small but it has a large relative prime gap.

On the other hand 97 = 89 +
√

89 − 25. The gap is 8 but the relative gap is
√1 − 25

89 = √64
89 . The relative prime gap. For the prime 113 the prime gap is√144

113
In general as prime numbers become big it reaches a point where the square of
the prime gap ;𝑔𝑖, becomes less than the prime, 𝑝𝑖, meaning the relative prime gap
ratio becomes small.
Safely speaking

𝑟𝑖 = 𝑔𝑖√𝑝𝑗
> 3(ln𝑝𝑖)2

√𝑝𝑖
(67)

By the above inequality at most primes greater 4, 400,000 have a small relative
prime gap ratio and are therefore subject to the inequality
𝑔𝑖 < √𝑝𝑖. The relative prime gap can also be determined by the inequality by
solution of equation (13)
+

𝑟 >
( 4
√𝑝𝑖(1.05 2

𝑝𝑖 ) + √( 4
√𝑝𝑖(1.05 1

𝑝𝑖 )2 − √𝑝𝑖)4 − 𝑝𝑖√𝑝𝑖
(68)
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The relative gap ratio inequality suddenly falls to zero for primes greater than 1024.
It does not properly accurately predict properly the relative gap ratio of the very
big primes. Inequality (67) succeeds in primes confirming Opperman’s conjecture
for primes bigger than 4, 400, 000. Now the limits of 𝑟 are

2√𝑝𝑖
≤ 𝑟𝑖 ≤ 4√

7
∧ 𝑝𝑖 > 2 (69)

This means effectual means

2 ≤ 𝑔𝑖 ≤ 4√𝑝𝑖
7 (70)

Note here the gap between 7 and 11 is special. When it substituted into 𝑔𝑖 =√𝑝𝑖 + 2𝑘 − 1 is is the the only prime number in whicb 2𝑘 − 1 > 𝑝𝑖.

Take note that 11 = 7 + √7 + 9. This means 2𝑘𝑖 − 1 = 1. Therefor 𝑟𝑖 of the gap
between 7 and 11 forms the outermost limit of the interval of 𝑟𝑖. This effectvely
means that the prime gap lies in the intervals This means that in the most general
sense

1 ≥ 𝑔𝑖 ≤ 4√𝑝𝑖
7 (71)

This effectvely means that

𝑔𝑗 ≤ 1.51185789203691√𝑝𝑖 (72)

By the above inequality the gap between 113 and the next prime number is less
than 16. The gap given in inequality (72) is shorter than that suggested by Baker,
Haman and Pintz. Opperman’s conjecture still needs a proof because the above
result does not touch it. The gap inequality above means that both Legendre and
Andrica conjectures are true.

Extension of the relative prime gap ratio to the bi-
nary Goldbach conjecture

We can define the relative gap ratio for Goldbach partition as the ratio of the gaps of
Goldbach parition primes to the Goldbach partition composite even number. That
is to say

𝑟 = 𝑔𝑖
2𝑚 = 2√𝑚2 − 𝑠𝑔

2𝑚 = √1 − 𝑠𝑔
𝑚2 ≤ √1 − 3(2𝑚 − 3)

𝑚2 ∧ 0 ≥ 𝑟 < 1 (73)

Thus the Goldbach partition relative prime gap ratio is dependent on the ratio𝑠𝑔
𝑚2 . The larger it is the smaller the relative prime gap ratio. One composite even
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number can generate several prime gap ratios. Semiprime even numbers have
one of their relative prime gap ratios equal to 0. Now take note on how semiprime
even numbers are generated:

𝑝2 + 𝑝1 + 𝑔2,1 = 2𝑝2 (74)

again
𝑝2 + 𝑝1 − 𝑔2,1 = 2𝑝1 (75)

If we set 2𝑚 = 𝑝2 + 𝑝1 Then it is true that for every composite even number there
exists some gap 𝑔2,1 ≥ 0 such

2𝑚 + 𝑔2,1 = 2𝑝2 (76)

2𝑚 − 𝑔2,1 = 2𝑝1 (77)

in which case 2𝑚 = 𝑝1 + 𝑝2.

Conclusion

The gap between consecutive primes is given by

𝑔𝑖 = √𝑝𝑖 ± (2𝑘𝑖 − 1) ≥ 1 (78)
The Legendre, Andrica, Crammer and Opperman’s postulate are true. The Binary
Goldbach conjecture is true. The above gap equation accounts for many of the
conjectures on prime gaps.

Proof of Oppermann’s conjecture

A generally accepted quotient in number theory is

lim 𝑖 → ∞𝑔𝑖
𝑝𝑖

= 0 (79)

Oppermann’s conjecture implies that when 𝑝𝑖 is big then

𝑔𝑖
𝑝𝑖

< 1√𝑝𝑖
< 0 (80)
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This the above inequality lies within the limits of accepted number theory and
effectually means that for big prime numbers

𝑝𝑖 < √𝑝𝑖 (81)

Thus Oppermann’s conjecture is true.

References

[1]Bonaya, Samuel Buya, Confirming Buya’s and Bezaleel’s proof of the Binary
Goldbach conjecture using Bertrand’s postulate [Version 2] (May 11, 2024). Avail-
able at SSRN: https://ssrn.com/abstract=4828468 or http://dx.doi.org/10.2139/ssrn.4828468
[2] Samuel Bonaya Buya and John Bezaleel Nchima (2024). A Nessary and Suf-
ficient Condition for Proof of the Binary Goldbach Conjecture. Proofs of Binary
Goldbach, Andrica and Legendre Conjectures. Notes on the Riemann Hypothesis.
International Journal of Pure and Applied Mathematics Research, 4(1), 12-27. doi:
10.51483/IJPAMR.4.1.2024.12-27.
[3] Cramér, Harald (1936). “On the order of magnitude of the difference between
consecutive prime numbers”. Acta Arithmetica. 2: 23–46. doi:10.4064/aa-2-1-23-
46.
[4] Ingham, Albert E. (1937). “On the difference between consecutive primes” (PDF). Quar-
terly Journal of Mathematics. 8 (1). Oxford: 255–266. Bibcode:1937QJMat…8..255I
[5]Baker, R. C.; Harman, G.; Pintz, J. (2001). “The difference between consecutive
primes, II” (PDF). Proceedings of the London Mathematical Society. 83 (3): 532–
562.
[6] Hoheisel, G. (1930). “Primzahlprobleme in der Analysis”. Sitzunsberichte
der Königlich Preussischen Akademie der Wissenschaften zu Berlin. 33: 3–
11. JFM 56.0172.02.

18


	Learning objectives
	Introduction
	Prime gaps upper bounds and justification for a quadratic inequality for their solution
	Analysis of the claims of Opperman's conjecture 

	Deriving an identity connecting to consectutive primes
	Using Bertrand's postulate in a rearranged form to obtain a quadratic inequality for solving the prime gap problem
	Using the quadratic inequality (13) to obtain intervals containing three primes
	Goldbach partition deviation and interval 
	Extending the derived quadratic inequality to derive an interval containing at least one pair of primes for Goldbach partition
	Laws governing the number of Goldbach partition
	Obtaining a quadratic inequality for solving the prime gap problem using the Andrica conjecture
	A more thorough analysis of the prime gap problem
	An exact prime gap relationship accounting for the various conjectures on prime gaps

	The Riemann hypothesis dimension of the prime gap problem 
	Relative size of a gap
	Extension of the relative prime gap ratio to the binary Goldbach conjecture
	Conclusion
	Proof of Oppermann's conjecture
	References

