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Abstract. Determining the natural density of Ulam numbers remains an

open question. We denote the sequence of all Ulam numbers by U . In this

paper, we show for the logarithmic density of Ulam numbers

Dlog(U) := lim
n−→∞

1

log x

∑
n≤x
n∈U

1

n
= 0.

1. Introduction

The notion of Ulam numbers was first introduced by the Polish mathematician
Stanislaw Ulam, in 1964 [2]. Let us denote, as is standard, the sequence of Ulam
numbers by (Un), then each term in the sequence of Ulam numbers has the unique
representation as the sum of two prior distinct Ulam numbers, and it is the smallest
such number. More precisely, Ulam numbers is a sequence of distinct numbers of
the form 1, 2, 3, 4, 6, . . . , Ui, Ui+1, . . ., where each term in the sequence is distinct
and has the unique representation Ui = Uj + Uk for i − 1 ≥ j > k and Ui is the
smallest such number. The main problem of the sequence of Ulam numbers is very
much related to their natural density. This problem is now known as the Ulam
density problem, which can be stated as

Question 1. Do the Ulam numbers have positive density?

Ulam is said to have conjectured that the density of these numbers is zero. In
this paper, we answer an analogous version of this question. In particular, we show

Theorem 1.1. Let U denote the sequence of all Ulam numbers. Then

Dlog(U) := lim
x−→∞

1

log x

∑
n≤x
n∈U

1

n
= 0.

In particular, Ulam numbers have a zero logarithmic density.

In the sequel, we review some elementary properties of Ulam numbers. These
properties and their constructions are well known [1].

Lemma 1.2. There are infinitely many Ulam numbers (Um)m≥1.

Proof. Suppose that the first n Ulam numbers have already been determined,
namely 1, 2, 3, 4, . . . , Un−1, Un. Then the representation Un + Un−1 is unique and
the number so represented in this form could be the next Ulam number. If not, then
this number is not the smallest such number, and since there are other numbers
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with such unique representations, we choose the smallest from among them bigger
than Un and assigns to Un+1 as the next Ulam number. This construction can then
be repeated indefinitely, thereby generating an infinite sequence of Ulam numbers.
This completes the proof. �

Lemma 1.3. No Ulam number Um for m > 3 can be the sum of its prior consecutive
Ulam numbers.

Proof. Suppose in contrast that Un−1 +Un = Un+1. Then necessarily the represen-
tation Un + Un−2 must be unique. Suppose it is not unique, then there exist some
Ui < Un−2 and Uj > Un such that

Un + Un−2 = Ui + Uj

> Un+1

= Un + Un−1

and it follows that Un−2 > Un−1, which is absurd. Now we observe that

Un ≤ Un + Un−2 < Un+1

contradicting the fact that Un+1 is the next Ulam number. �

2. The regulators and determiners of an addition chain

In this section, we recall the notion of an addition chain and introduce the notion
of the generators of the chain and their accompanying determiners and regulators.

Definition 2.1. Let n ≥ 3, then by an addition chain of length k− 1 producing n,
we mean the sequence

1, 2, . . . , sk−1, sk

where each term sj (j ≥ 3) in the sequence is the sum of two earlier terms i.e
sk = si + sj (sk > 1) with i ≤ j < k, with the corresponding sequence of partition

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n

where ai+1 = ai + ri and ai+1 = si for 2 ≤ i ≤ k. We call the partition ai + ri the
ith generator of the chain for 2 ≤ i ≤ k. We call ai the determiner and ri the
regulator of the ith generator of the chain. We call the sequence (ri) the regulators
of the addition chain and (ai) the determiners of the chain for 2 ≤ i ≤ k. We call
the subsequence (sjm) for 2 ≤ j ≤ k and 1 ≤ m ≤ t ≤ k a truncated addition chain
producing n.

At any rate, we do not expect the regulators to be a part of the chain, although
the determiners must be the terms in the chain.

Lemma 2.2. Let 1, 2, . . . , sk−1, sk be an addition chain producing n ≥ 3 with
associated generators

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n.

Then the following relation for the regulators

k∑
j=2

rj = n− 1

hold.
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Proof. We notice that rk = n− ak. It follows that

rk + rk−1 = n− ak + rk−1

= n− (ak−1 + rk−1) + rk−1

= n− ak−1.
Again we obtain from the following iteration

rk + rk−1 + rk−2 = n− ak−1 + rk−2

= n− (ak−2 + rk−2) + rk−2

= n− ak−2.
By iterating downwards in this manner the relation follows. �

3. Preliminary results

We derive an asymptotic formula for the logarithmic partial sums of terms in an
addition chain.

Theorem 3.1. Let n ≥ 2 be fixed positive integer and let 1, 2, . . . , sδ(n)−1, sδ(n) = n
be an addition chain producing n and of length δ(n), with associated sequence of
generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n

then
δ(n)∑
l=1

log sl = δ(n) log n−O(δ(n)).

Proof. Let n ≥ 2 be a fixed positive integer and consider an addition chain
1, 2, . . . , sδ(n)−1, sδ(n) = n producing n and of length δ(n), with associated sequence
of generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n

and put (aj) and (rj) to be the sequence of determiners and regulators, respectively,
in the chain. We make the following observations: sδ(n)−1 = aδ(n) = aδ(n)−1 +

rδ(n)−1 = sδ(n)−2 + rδ(n)−1 = aδ(n)−2 + rδ(n)−2 + rδ(n)−1 = · · · = 1 +
δ(n)−1∑
j=1

rj =

n + 1 − rδ(n), where we have used Lemma 2.2. Similarly, we can write aδ(n)−1 =

1+
δ(n)−2∑
j=1

= n+1−rδ(n)−rδ(n)−1. Thus by induction, we can write al = n+1−
δ(n)∑
j=l

rj

for each 3 ≤ l ≤ δ(n). We observe that

δ(n)∑
l=1

log sl = log 2 +

δ(n)∑
l=3

log al + log n.

We now analyze the latter sum of the right-hand side involving the determiners of
the addition chain. We can write

δ(n)∑
l=3

log al =

δ(n)∑
l=3

log((n+ 1)−
δ(n)∑
i=l

ri)



4 THEOPHILUS AGAMA

which can be recast as

δ(n)∑
l=3

log al =

δ(n)∑
l=3

log(n+ 1)−
δ(n)∑
l=3

∞∑
v=1

1

v(n+ 1)v

( δ(n)∑
i=l

ri

)v

with
δ(n)∑
i=l

ri < n− 1 for each 3 ≤ l ≤ δ(n) by Lemma 2.2. It is clear that

∞∑
v=1

1

v(n+ 1)v

( δ(n)∑
i=l

ri

)v
� 1

for each 3 ≤ l ≤ δ(n) since
δ(n)∑
i=l

ri < n− 1 for each 3 ≤ l ≤ δ(n) by Lemma 2.2. It

follows that

δ(n)∑
l=1

log sl = log 2 + (δ(n)− 2) log(n+ 1) + log n−O(δ(n)).

This completes the proof of the claimed formula. �

We derive an asymptotic formula for the harmonic partial sums of terms in an
addition chain.

Theorem 3.2. Let n ≥ 2 be fixed positive integer and let 1, 2, . . . , sδ(n)−1, sδ(n) = n
be an addition chain producing n and of length δ(n), with associated sequence of
generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n

then
δ(n)∑
l=1

1

sl
=

3

2
+O(

δ(n)

n
).

Proof. Let n ≥ 2 be fixed positive integer and consider an addition chain
1, 2, . . . , sδ(n)−1, sδ(n) = n producing n and of length δ(n), with associated sequence
of generators

1 + 1, s2 = a2 + r2, . . . , sδ(n)−1 = aδ(n)−1 + rδ(n)−1, sδ(n) = aδ(n) + rδ(n) = n

and put (aj) and (rj) to be the sequence of determiners and regulators, respectively,
in the chain. We make the following observations: sδ(n)−1 = aδ(n) = aδ(n)−1 +

rδ(n)−1 = sδ(n)−2 + rδ(n)−1 = aδ(n)−2 + rδ(n)−2 + rδ(n)−1 = · · · = 1 +
δ(n)−1∑
j=1

rj =

n + 1 − rδ(n), where we have used Lemma 2.2. Similarly, we can write aδ(n)−1 =

1+
δ(n)−2∑
j=1

= n+1−rδ(n)−rδ(n)−1. Thus by induction, we can write al = n+1−
δ(n)∑
j=l

rj

for each 3 ≤ l ≤ δ(n). We observe that

δ(n)∑
l=1

1

sl
=

3

2
+

δ(n)∑
l=3

1

al
+

1

n
.
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We now analyze the latter sum of the right-hand side involving the determiners of
the addition chain. We can write

δ(n)∑
l=3

1

al
=

δ(n)∑
l=3

1

(n+ 1)−
δ(n)∑
i=l

ri

which can be recast as

δ(n)∑
l=3

1

al
=

δ(n)∑
l=3

1

n+ 1
+

δ(n)∑
l=3

∞∑
v=1

1

(n+ 1)v+1

( δ(n)∑
i=l

ri

)v

with
δ(n)∑
i=l

ri < n− 1 for each 3 ≤ l ≤ δ(n) by Lemma 2.2. It follows that

δ(n)∑
l=1

1

sl
=

3

2
+

δ(n)

n+ 1
+

δ(n)∑
l=3

∞∑
v=1

1

(n+ 1)v+1

( δ(n)∑
i=l

ri

)v
+O(

1

n
)

where
δ(n)∑
i=l

ri < n− 1 by Lemma 2.2 for each 3 ≤ l ≤ δ(n). It is clear that

∞∑
v=1

1

(n+ 1)v

( δ(n)∑
i=l

ri

)v
� 1

for each 3 ≤ l ≤ δ(n) since
δ(n)∑
i=l

ri < n − 1 for each 3 ≤ l ≤ δ(n) by Lemma 2.2.

This completes the proof of the claimed formula. �

4. The notion of Ulam numbers

In this section, we recall the concept of Ulam numbers and show its profound
connection to the concept of an addition chain. The principal goal of this section is
to show that any finite sequence of Ulam numbers can be appropriately ”inserted”
into some addition chain. First, we recall the following definitions.

Definition 4.1. Ulam numbers is a sequence of distinct numbers of the form
1, 2, 3, 4, 6, . . . , Ui, Ui+1, . . ., where each term in the sequence is distinct and has the
unique representation Ui = Uj + Uk for i − 1 ≥ j > k and each Ui is the smallest
such number.

Next, we show that we can ”confine” any finite sequence of Ulam numbers (Un)
into a certain addition chain by carefully choosing the regulators of the chain. In
fact, this ”covering” can be done in a global sense so that our addition chains can
be extended to contain any finite sequence of Ulam numbers.

Proposition 4.1. Let (Um)nm=1 be a finite sequence of Ulam numbers. Then there
exist an addition chain (sk) producing Un such that

(Um)nm=1 ⊆ (sk).
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Proof. Let 1, 2, 3, 4, . . . , Un be a finite sequence of Ulam numbers. Then for each
term Um for m ≥ 1, we choose the regulator rj ≥ 1 such that Um + rj ≤ Um+1.
If it is the case that Um + rj = Um+1 then the consecutive sequence Um, Um+1 is
also a consecutive sequence in the desired addition chain. If not, then we continue
this process by choosing the regulator ri ≥ 1 such that Um + rj + ri = Um+1.
Then in such a case the consecutive Ulam numbers Um, Um+1 are not consecutive
numbers in the corresponding addition chain. This construction can be carried out
to generate an addition chain producing Un yet covering the finite sequence of Ulam
numbers. This completes the proof of the proposition. �

4.1. Main result.

Theorem 4.2. Let U denote the sequence of all Ulam numbers. Then

Dlog(U) := lim
x−→∞

1

log x

∑
n≤x
n∈U

1

n
= 0.

In particular, Ulam numbers have a zero logarithmic density.

Proof. Set (Ui)
n
i=1 to be the sequence of the first n Ulam numbers. By Proposition

4.1 there exists an addition chain (sk) leading to Un such that (Ui)
n
i=1 ⊂ (sk). In

keeping with the notation of the background study, we denote by δ(Un) the length
of the addition chain (sk) leading to Un ≤ x for a fixed x ≥ 2. By using Theorem
3.2, we deduce the inequality

∑
j≤x
j∈U

1

j
≤
δ(x)∑
l=1

1

sl
=

3

2
+O(

δ(x)

x
).

It follows that

Dlog(U) := lim
x−→∞

1

log x

∑
j≤x
j∈U

1

j
≤ lim
x−→∞

1

log x

δ(x)∑
l=1

1

sl
= 0

demonstrating that the logarithmic density of Ulam number is zero. �

5. Further remarks

The primary objective of this study was to establish a comprehensive framework
for understanding Ulam numbers, specifically focusing on their structural properties
and their embedding into addition chains. In doing so, we developed a method to
cover any finite sequence of Ulam numbers with a suitably constructed addition
chain, thereby revealing an essential connection between the two concepts. This
result is encapsulated in Proposition 4.1, where we demonstrated that any finite
sequence of Ulam numbers can be appropriately inserted into an addition chain,
creating a seamless bridge between these two important mathematical structures.

We further extended our investigation by exploring the asymptotic behavior of
Ulam numbers, particularly their logarithmic density. The main theorem (Theorem
5.2) provided a critical insight into the sparsity of Ulam numbers, proving that they
possess a zero logarithmic density. This result, combined with the method of em-
bedding Ulam numbers into addition chains, establishes a powerful understanding
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of their growth and distribution, shedding light on the subtle intricacies of their
behavior as they grow larger.

The results presented here significantly enhance the existing body of knowledge
about Ulam numbers, addition chains, and their interrelation. By providing ex-
plicit constructions for embedding Ulam numbers into addition chains, we offer
a constructive method for analyzing and generating Ulam numbers that could be
useful for various applications in number theory and combinatorics. This work also
adds to the broader discussion of the asymptotic properties of sequences, specifi-
cally focusing on their logarithmic density and the connection between arithmetic
structures and additive properties.

The connection between Ulam numbers and addition chains offers new perspec-
tives for researchers working in related areas, particularly in the study of additive
number theory, combinatorial number theory, and computational complexity. Ad-
ditionally, the result regarding the logarithmic density of Ulam numbers contributes
to ongoing discussions surrounding the growth rates of special sequences and their
comparison to other well-known sequences, such as the primes and Fibonacci num-
bers.

This work contributes to our understanding of Ulam numbers and their proper-
ties in the context of addition chains, providing a rigorous framework for analyzing
their asymptotic behavior and embedding them into well-defined structures. The
study of logarithmic density, in particular, has offered insight into the sparsity of
Ulam numbers, enriching our understanding of their distribution in the natural
numbers. Although many questions remain open, the results of this work offer a
solid foundation for further investigation into the deep connections between these
mathematical objects.

In conclusion, this study has both clarified the structure of Ulam numbers and
presented new methods for embedding them in addition chains, while also con-
tributing to our understanding of their asymptotic properties. The research opens
up new avenues for exploration and invites further inquiry into the fundamental
structures of number theory, combinatorics, and their intersections.
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