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Preface
The present book is about differential geometry of space curves and surfaces. The for-

mulation and presentation are largely based on a tensor calculus approach, which is the

dominant trend in the modern mathematical literature of this subject, rather than the ge-

ometric approach which is usually found in some old style books. The book is prepared, to

some extent, as part of tutorials about topics and applications related to tensor calculus.

It can therefore be used as part of a course on tensor calculus as well as a textbook or a

reference for an intermediate-level course on differential geometry of curves and surfaces.

Apart from general background knowledge in a number of mathematical branches such

as calculus, geometry and algebra, an important requirement for the reader and user of

this book is familiarity with the terminology, notation and concepts of tensor calculus at

reasonable level since many of the notations and concepts of differential geometry in its

modern style are based on tensor calculus.

The book contains a mathematical background section in the first chapter to outline

some important pre-required mathematical issues. However, this section is restricted to

materials related directly to the contents of differential geometry of the book and hence

the reader and user should not expect this mathematical background section to be com-

prehensive in any way. General mathematical knowledge, plus possible consultation of

mathematical textbooks related to other disciplines of mathematics when needed, should

therefore be considered.

The book is furnished with an index in the end of the book as well as sets of exercises in

the end of each chapter to provide useful revisions and practice. To facilitate linking related

concepts and parts, and hence ensure better understanding of the provided materials, cross

referencing is used extensively throughout the book where these referrals are hyperlinked

in the electronic version of the book for the convenience of the ebook users. The book

also contains a considerable number of graphic illustrations to help the readers and users

to visualize the ideas and understand the abstract concepts.

The materials of differential geometry are strongly interlinked and hence any text about

the subject, like the present one, will face the problem of arranging the materials in a

natural order to ensure gradual development of concepts. In this book we largely followed
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such a scheme. However, this is not always possible and hence in some cases references

are provided to materials in later parts of the book for concepts needed in earlier parts.

Nevertheless, in most cases brief definitions of the main concepts are provided in the first

chapter in anticipation of more detailed definitions and investigations in the subsequent

chapters.

Regarding the preparation of the book, everything is made by the author including all the

graphic illustrations, indexing, typesetting, book cover, as well as overall design. In this

regard, I should acknowledge the use of LATEX typesetting package and the LATEX based

document preparation package LYX which facilitated the typesetting and design of the

book substantially.

Taha Sochi, London, March 2017
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Nomenclature
In the following table, we define some of the common symbols, notations and abbreviations

which are used in the book to provide easy access to the reader.

∇ nabla differential operator

∇2 Laplacian operator

∼ isometric to

, subscript partial derivative with respect to the following index(es)

; subscript covariant derivative with respect to the following index(es)

1D, 2D, 3D, nD one-dimensional, two-dimensional, three-dimensional, n-dimensional

overdot (e.g. ṙ) derivative with respect to general parameter t

prime (e.g. r′) derivative with respect to natural parameter s

δ/δt absolute derivative with respect to t

∂α, ∂i partial derivative with respect to αth and ith variables

a determinant of surface covariant metric tensor

a surface covariant metric tensor

a11, a12, a22 coefficients of surface covariant metric tensor

a11, a12, a22 coefficients of surface contravariant metric tensor

aαβ, aαβ, aβα surface metric tensor or its components

b determinant of surface covariant curvature tensor

b surface covariant curvature tensor

B binormal unit vector of space curve

b11, b12, b22 coefficients of surface covariant curvature tensor

bαβ, bαβ, bβα surface curvature tensor or its components

C curve

C̄B, C̄N, C̄T spherical indicatrices of curve C

Ce, Ci evolute and involute curves

Cn of class n

cαβ, cαβ, cβα tensor of third fundamental form or its components

d Darboux vector

d1, d2 unit vectors in Darboux frame
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det determinant of matrix

ds length of infinitesimal element of curve

dsB, dsN, dsT length of line element in binormal, normal and tangent directions

dσ area of infinitesimal element of surface

e, f, g coefficients of second fundamental form

E,F,G coefficients of first fundamental form

E , F , V number of edges, faces and vertices of polyhedron

Ei, Ej covariant and contravariant space basis vectors

Eα, Eβ covariant and contravariant surface basis vectors

Eq./Eqs. Equation/Equations

f function

Fig./Figs. Figure/Figures

g topological genus of closed surface

gij, gij space metric tensor or its components

H mean curvature

IS, IIS, IIIS first, second and third fundamental forms

IS, IIS tensors of first and second fundamental forms

iff if and only if

J Jacobian of transformation between two coordinate systems

J Jacobian matrix

K Gaussian curvature

Kt total curvature

L length of curve

n normal unit vector to surface

N principal normal unit vector to curve

P point

r, R radius

R Ricci curvature scalar

r position vector

rα, rαβ 1st and 2nd partial derivative of r with respect to subscripted variables

R1, R2 principal radii of curvature

Rn n-dimensional space (usually Euclidean)
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Rij, Ri
j Ricci curvature tensor of 1st and 2nd kind for space

Rαβ, Rα
β Ricci curvature tensor of 1st and 2nd kind for surface

Rijkl Riemann-Christoffel curvature tensor of 1st kind for space

Rαβγδ Riemann-Christoffel curvature tensor of 1st kind for surface

Ri
jkl Riemann-Christoffel curvature tensor of 2nd kind for space

Rα
βγδ Riemann-Christoffel curvature tensor of 2nd kind for surface

Rκ radius of curvature

Rτ radius of torsion

r, θ, φ spherical coordinates of 3D space

s natural parameter of curve representing arc length

S surface

ST tangent surface of space curve

t general parameter of curve

T function period

T tangent unit vector of space curve

TPS tangent space of surface S at point P

tr trace of matrix

u geodesic normal vector

u1, u2 surface coordinates

uα surface coordinate

u, v surface coordinates

xi space coordinate

xiα surface basis vector in full tensor notation

x, y, z coordinates in 3D space (usually Cartesian)

[ij, k] Christoffel symbol of 1st kind for space

[αβ, γ] Christoffel symbol of 1st kind for surface

Γkij Christoffel symbol of 2nd kind for space

Γγαβ Christoffel symbol of 2nd kind for surface

δij, δij, δji covariant, contravariant and mixed Kronecker delta

δijkl generalized Kronecker delta

∆ discriminant of quadratic equation

εi1...in , εi1...in covariant and contravariant relative permutation tensor in nD space
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εi1...in , ε
i1...in covariant and contravariant absolute permutation tensor in nD space

θ angle or parameter

θs sum of interior angles of polygon

κ curvature of curve

κ1, κ2 principal curvatures of surface at a given point

κB, κT curvature of binormal and tangent spherical indicatrices

κg, κn geodesic and normal curvatures

κgu, κgv geodesic curvatures of u and v coordinate curves

κnu, κnv normal curvatures of u and v coordinate curves

K curvature vector

Kg, Kn geodesic and normal components of curvature vector

λ direction parameter of surface

ξ real parameter

ρ pseudo-radius of pseudo-sphere

ρ, φ polar coordinates of plane

ρ, φ, z cylindrical coordinates of 3D space

σ area of surface patch

τ torsion of curve

τB, τT torsion of binormal and tangent spherical indicatrices

τg geodesic torsion

φ angle or parameter

χ Euler characteristic

ω real parameter
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Chapter 1

Preliminaries

In this chapter, we provide preliminary materials in the form of a general introduction

about differential geometry, remarks about the conventions and notations used in this

book, classification of the properties of curves and surfaces, and a general mathematical

background related to differential geometry of curves and surfaces.

1.1 Differential Geometry

Differential geometry is a branch of mathematics that largely employs methods and tech-

niques of other branches of mathematics such as differential and integral calculus, topology

and tensor analysis to investigate geometrical issues related to abstract objects, such as

space curves and surfaces, and their properties where these investigations are mostly fo-

cused on these properties at small scales. The investigations of differential geometry also

include characterizing categories of these objects. There is also a close link between dif-

ferential geometry and the disciplines of differential topology and differential equations.

Differential geometry may be contrasted with “algebraic geometry” which is another branch

of geometry that uses algebraic tools to investigate geometric issues mainly of global na-

ture.

The investigation of the properties of curves and surfaces in differential geometry are

closely linked. For instance, investigating the characteristics of space curves is extensively

exploited in the investigation of surfaces since common properties of surfaces are defined

and quantified in terms of the properties of curves embedded in these surfaces. For exam-

ple, several aspects of the surface curvature at a point are defined and quantified in terms

of the parameters of the surface curves passing through that point.

11



1.2 General Remarks, Conventions and Notations 12

1.2 General Remarks, Conventions and Notations

First, we should remark that the present book is largely based on investigating curves

and surfaces embedded in a 3D flat space coordinated by a rectangular Cartesian system.

In most cases, “surface” and “space” in the present book mean 2D and 3D manifolds

respectively.

Another remark is that twisted curves can reside in a 2D manifold (surface) or in a higher

dimensionality manifold (usually 3D space). Hence we usually use “surface curves” and

“space curves” to refer to the type of the manifold of residence. However, in most cases a

single curve can be viewed as resident of more than one manifold and hence it is a surface

and space curve at the same time. For example, a curve embedded in a surface which in

its turn is embedded in a 3D space is a surface curve and a space curve at the same time.

Consequently, in this book these terms should be interpreted flexibly. Many statements

formulated in terms of a particular type of manifold can be correctly and easily extended

to another type with minimal adjustments of dimensionality and symbolism. Moreover,

“space” in some statements should be understood in its general meaning as a manifold

embracing the curve not as opposite to “surface” and hence it can include a 2D space, i.e.

surface.

Following the convention of several authors, when discussing issues related to 2D and 3D

manifolds the Greek indices range over 1, 2 while the Latin indices range over 1, 2, 3. There-

fore, the use of Greek and Latin indices should in general indicate the type of the intended

manifold unless it is stated otherwise. We use u indexed with superscript Greek letters

(e.g. uα and uβ) to symbolize surface coordinates,[1] while we largely use x indexed with

superscript Latin letters (e.g. xi and xj) to represent space Cartesian coordinates although

they are sometimes used to represent space general curvilinear coordinates. Comments

are usually added to clarify the situation if necessary.

A related issue is that the indexed E are mostly used for the surface, rather than the

space, basis vectors where they are subscripted or superscripted with Greek indices, e.g.

Eα and Eβ. However, in some cases indexed E are used for space basis vectors; in which

case they are distinguished by using Latin indices, e.g. Ei and Ej. When the basis vectors

are indexed numerically rather than symbolically, the distinction between surface and

[1]The surface coordinates may also be called the Gaussian coordinates.
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space bases should be obvious from the context if it is not stated explicitly.

Regarding the Christoffel symbols of the first and second kind of various manifolds,

they may be based on the space metric or the surface metric. Hence, when a number of

Christoffel symbols in a certain context or equation are based on more than one metric, the

type of indices, i.e. Greek or Latin, can be used as an indicator to the underlying metric

where the Greek indices represent the surface (e.g. [αβ, γ] and Γγαβ) while the Latin indices

represent the space (e.g. [ij, k] and Γkij). Nevertheless, comments are generally added to

account for potential oversight. In particular, when the Christoffel symbols are numbered

(e.g. Γ1
22), instead of being indexed symbolically, comments will be added to clarify the

situation.

For brevity, convenience and clean notation in certain contexts, we use an overdot (e.g.

ṙ) to indicate derivative with respect to a general parameter t while we use a prime (e.g.

r′) to indicate derivative with respect to a natural parameter s representing arc length.

For the same reasons, subscripts are also used occasionally to symbolize partial derivative

with respect to the subscript variables, e.g. fv and rαβ. We should also remark that we

follow the summation convention, which is largely used in tensor calculus. Comments are

added in a few exceptional cases where this convention does not apply.

We deliberately use a variety of notations for the same concepts for the purpose of con-

venience and to familiarize the reader with different notations all of which are in common

use in the literature of differential geometry and tensor calculus. Having proficiency in

these subjects requires familiarity with these various, and sometimes conflicting, nota-

tions. Moreover, in some situations the use of one of these notations or the other is either

necessary or advantageous depending on the location and context. An important example

of using different notations is that related to surface coordinates where we use both u, v

and u1, u2 to represent these coordinates since each one of these notations has advantages

over the other depending on the context; moreover the latter is necessary for expressing

the equations of differential geometry in indicial tensor forms.

Another important example related to the use of a variety of notations is the employment

of different symbols for the coefficients of the first and second fundamental forms (i.e.

E,F,G, e, f, g) on one hand and the coefficients of the surface covariant metric tensor and

the surface covariant curvature tensor (i.e. a11, a12, a22, b11, b12, b22) on the other despite

the equivalence of these coefficients, that is (E,F,G, e, f, g) = (a11, a12, a22, b11, b12, b22),
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and hence these different notations can be replaced by just one. However, we keep both

notations as they are both in common use in the literature of differential geometry and

tensor calculus; moreover in many situations the use of one of these notations in particular

is either necessary or advantageous, as indicated earlier.

We should also mention that we use bold face symbols (e.g. A) to mark tensors of rank

> 0 (including matrices which represent such tensors) in their symbolic notation, while

we use normal face symbols (e.g. c) for labeling scalars as well as tensors of rank > 0 and

their components in their indicial form where in the latter case the symbols are indexed

(e.g. Ai and bβα). Also, square brackets containing arrays are used to represent matrices

while vertical bars are used to represent determinants.

1.3 Classifying the Properties of Curves and Surfaces

There are two main classifications for the properties of curves and surfaces embedded

in higher dimensionality spaces; these classifications are local properties versus global

properties, and intrinsic properties versus extrinsic properties. In the following subsections

we briefly investigate these overlapping classifications.

1.3.1 Local versus Global Properties

The properties of curves and surfaces may be categorized into two main groups: local and

global where these properties describe the geometry of the curves and surfaces in the small

and in the large respectively. The local properties correspond to the characteristics of the

object in the immediate neighborhood of a point on the object such as the curvature of a

curve or surface at that point, while the global properties correspond to the characteristics

of the object on a large scale and over extended parts of the object such as the number

of stationary points of a curve or a surface or being a one-side surface like Mobius strip

(Fig. 1) which is locally a double-side surface.

As indicated earlier, differential geometry of space curves and surfaces is mainly con-

cerned with the local properties. The investigation of global properties normally involve

topological treatments which are beyond the common tools and methods that are usually

employed in differential geometry. In fact, there is a special branch of differential geom-

etry dedicated to the investigation of global (or in the large) properties. Regarding the
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Figure 1: Mobius strip.

present book, it is mostly limited to differential geometry in the small although a number

of global differential geometric issues are investigated following the tradition pursued in

the common textbooks of differential geometry.

1.3.2 Intrinsic versus Extrinsic Properties

Another classification of the properties of curves and surfaces, which is based on their

relation to the embedding external space which they reside in, may be made where the

properties are divided into intrinsic and extrinsic. The first category corresponds to those

properties which are independent in their existence and definition from the ambient space

which embraces the object such as the distance along a given curve or the Gaussian

curvature of a surface at a given point (see § 4.5), while the second category is related to

those properties which depend in their existence and definition on the external embedding

space such as having a normal vector at a point on the curve or the surface.

More technically, the intrinsic properties[2] are defined and expressed in terms of the

metric tensor which is formulated in differential geometry as the first fundamental form

(see § 3.5) while the extrinsic properties are expressed in terms of the surface curvature

tensor which is formulated in differential geometry as the second fundamental form (see

§ 3.6). As we will see in several places of this book, some quantities can be expressed

once in terms of the coefficients of the first fundamental form exclusively and once in

terms of expressions involving the coefficients of the second fundamental form as well.

In this regard, a quantity is classified as intrinsic if it can be expressed as a function

of the coefficients of the first fundamental form only even if it can also be expressed in

[2]The main focus here is the properties of surfaces although some of these qualifications can be extended
to surface curves.
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terms involving the coefficients of the second fundamental form. We should also remark

that extrinsic properties are normally expressed in terms of both forms although these

properties are characterized by being expressed necessarily in terms of the second form

since this is the feature that distinguishes them from intrinsic properties.

The idea of intrinsic and extrinsic properties may be illustrated by an inhabitant of a

surface with a 2D perception (hereafter this creature will be called “2D inhabitant”) where

he can detect and measure intrinsic properties but not extrinsic properties as the former do

not require appealing to an external embedding 3D space in which the surface is immersed

while the latter do. Hence, in simple terms all the properties that can be detected and

measured by a 2D inhabitant are intrinsic to the surface while all the other properties are

extrinsic. A 1D inhabitant of a curve may also be used, to a lesser extent, analogously

to distinguish between intrinsic and extrinsic properties of surface and space curves (refer

for example to § 2.3).
The so-called “intrinsic geometry” of the surface comprises the collection of all the in-

trinsic properties of the surface. When two surfaces can have a coordinate system on

each such that the first fundamental forms of the two surfaces are identical at each pair

of corresponding points on the two surfaces then the two surfaces have identical intrinsic

geometry. Such surfaces are isometric (see § 6.5) and can be mapped on each other by a

transformation that preserves the curve lengths, the angles and the surface areas. More-

over, if these surfaces are subjected to identical coordinate transformations, they remain

identical in their intrinsic properties.

1.4 General Mathematical Background

In this section, we provide a general mathematical background outlining concepts and defi-

nitions needed in general to understand the forthcoming materials of differential geometry.

However, it should be remarked that some of the materials provided in the present section

which are related to concepts from other subjects of mathematics, such as calculus and

topology, are elementary because of the limits on the text size; moreover the book is not

prepared as a text about these subjects. The purpose of these outlines and definitions is

to provide a basic understanding of the related ideas. The readers are, therefore, advised

to refer to textbooks on those subjects for more technical and extensive revelations. This
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section also contains some materials that may not be needed in the forthcoming chapters

but they are usually discussed and investigated in differential geometry texts. Our ob-

jective of including such materials is for the present book to be more comprehensive and

compatible with similar differential geometry texts.

1.4.1 Geometry and Topology

Here, we define some geometric shapes which are used as examples and prototypes in the

forthcoming sections and chapters and they may not be familiar to some readers. Common

geometric shapes (like straight line, circle and sphere) are common knowledge at this level

and hence they will not be defined. We also introduce some basic topological concepts

which will be needed in the forthcoming parts of the book.

A surface of revolution is an axially symmetric surface generated by a plane curve C

(see § 5.2) revolving around a straight line L contained in the plane of the curve but not

intersecting the curve. The curve C is called the profile of the surface and the line L is

called the axis of revolution which is also the axis of symmetry of the surface. Meridians

of a surface of revolution are plane curves on the surface formed by the intersection of

a plane containing the axis of revolution with the surface, and hence the meridians are

identical versions of the profile curve C. Parallels of a surface of revolution are circles

generated by intersecting the surface by planes perpendicular to the axis of revolution,

and hence they represent the paths of specific points on the profile curve C. For spheres,

these curves are called meridians of longitude and parallels of latitude. On any surface of

revolution, meridians and parallels intersect at right angles.

A surface of revolution may be generated in its simplest form by revolving a curve

x = f(z) around the z-axis of a Cartesian coordinate system. The surface can then be

parameterized as:

x = f cosφ (1)

y = f sinφ (2)

z = z (3)

where (f, φ, z) represent the standard cylindrical coordinates (ρ, φ, z).

The helix (Fig. 2) is a space curve characterized by having a tangent vector that forms
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a constant angle with a specified direction which is the direction defined by its axis of

rotation. The helix can be defined parametrically by:

x = a cos(θ) (4)

y = a sin(θ) (5)

z = b θ (6)

where a, b are non-zero real constants and θ is a real parameter with −∞ < θ < +∞.

The circle may be regarded as a degenerate form of helix corresponding to b = 0, while a

straight line may be regarded as another degenerate form of helix corresponding to a = 0.

O

x y

z

|2πb|
a

Figure 2: Helix and its parameters.

The torus (Fig. 3) is a surface of revolution whose profile curve C is a circle. It can be

defined parametrically by:

x = (R + r cosφ) cos θ (7)

y = (R + r cosφ) sin θ (8)

z = r sinφ (9)
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R
θ

Generating circle

Axis of revolution

r φ

Figure 3: Torus and its parameters.

where R is the torus radius (i.e. the distance between the center of the generating circle

and the center of symmetry of the torus which is the perpendicular projection of the circle

center on the axis of revolution), r is the radius of the generating circle (r < R), φ ∈ [0, 2π)

is the angle of variation of r, and θ ∈ [0, 2π) is the angle of variation of R.

The ellipsoid (Fig. 4) is a quadratic surface (see § 6.2) that can be defined parametrically

by:

x = a sin θ cosφ (10)

y = b sin θ sinφ (11)

z = c cos θ (12)

where a, b, c are non-zero real constants and θ, φ are real parameters with 0 ≤ θ ≤ π and

0 ≤ φ < 2π.

The hyperboloid of one sheet (Fig. 5) is a quadratic surface that can be defined

parametrically by:

x = a cosh ξ cos θ (13)

y = b cosh ξ sin θ (14)

z = c sinh ξ (15)

where a, b, c are non-zero real constants and ξ, θ are real parameters with −∞ < ξ < +∞
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Figure 4: Ellipsoid.

and 0 ≤ θ < 2π.

Figure 5: Hyperboloid of one sheet.

The hyperboloid of two sheets (Fig. 6) is a quadratic surface that can be defined

parametrically by:

x = a sinh ξ cos θ (16)

y = b sinh ξ sin θ (17)

z = c cosh ξ (18)

where a, b, c are non-zero real constants and ξ, θ are real parameters with 0 ≤ ξ <∞ and

0 ≤ θ < 2π.
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Figure 6: Hyperboloid of two sheets.

The elliptic paraboloid (Fig. 7) is a quadratic surface that can be defined parametri-

cally by:

x = a
√
ξ cos θ (19)

y = b
√
ξ sin θ (20)

z = c ξ (21)

where a, b, c are non-zero real constants and ξ, θ are real parameters with 0 ≤ ξ <∞ and

0 ≤ θ < 2π.

The hyperbolic paraboloid (Fig. 8) is a quadratic surface that can be defined para-

metrically by:

x = a ξ (22)

y = b ω (23)

z = c ξω (24)

where a, b, c are non-zero real constants and ξ, ω are real parameters with −∞ < ξ < +∞
and −∞ < ω < +∞.

The parabolic cylinder (Fig. 9) is a quadratic surface generated in its simplest form

by translating a parabola (expressed in y as a quadratic function of x, or the other way
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Figure 7: Elliptic paraboloid.

Figure 8: Hyperbolic paraboloid.

around, in a canonical form) along the z-direction. Hence, it can be parameterized by the

following equations:

x = ξ (25)

y = a ξ2 (26)

z = b ω (27)

where a, b are non-zero real constants and ξ, ω are real parameters with −∞ < ξ < +∞
and −∞ < ω < +∞.

The catenary is a plane curve (see § 5.2) with a hyperbolic cosine shape. It can be
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Figure 9: Parabolic cylinder.

defined parametrically by:

x = a cosh

(
ξ

a

)
(28)

z = ξ (29)

where a is a non-zero real constant and −∞ < ξ < +∞ is a real parameter. The catenoid

(Fig. 10) is a surface of revolution generated by revolving a catenary around its directrix,

which is the z-axis in the above formulation, and hence it can be defined parametrically

by:

x = a cosh

(
ξ

a

)
cos θ (30)

y = a cosh

(
ξ

a

)
sin θ (31)

z = ξ (32)

where a is a non-zero real constant and ξ, θ are real parameters with −∞ < ξ < +∞ and

0 ≤ θ < 2π.

The helicoid (Fig. 11) is a ruled surface (see § 6.3) with the property that for each

point P on the surface there is a helix passing through P and contained entirely in the
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Figure 10: Catenoid.

surface. It can be defined parametrically by:

x = a ξ cos θ (33)

y = a ξ sin θ (34)

z = b θ (35)

where a, b are non-zero real constants and ξ, θ are real parameters with −∞ ≤ ξ ≤ +∞
and −∞ ≤ θ < +∞.

Figure 11: Helicoid.
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The monkey saddle (Fig. 12) is a saddle surface that can be defined parametrically

by:

x = ξ (36)

y = ω (37)

z = ξ3 − 3ξω2 (38)

where ξ, ω are real parameters with −∞ < ξ < +∞ and −∞ < ω < +∞.

Figure 12: Monkey saddle.

The enneper (Fig. 13) is a self-intersecting surface that can be defined parametrically

by:

x = −ξ
3

3
+ ξ + ξω2 (39)

y = −ξ2ω − ω +
ω3

3
(40)

z = ξ2 − ω2 (41)

where ξ, ω are real parameters with −∞ < ξ < +∞ and −∞ < ω < +∞.
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Figure 13: Enneper.

The tractrix (Fig. 14) is a plane curve starting[3] from the point (ρ, 0) on the x-axis

with the property that the length of the line segment of its tangent between the tangency

point and the point of intersection with the z-axis is equal to ρ where ρ is a real constant

(ρ > 0). Hence, the tractrix is a solution of the following differential equation:

dz

dx
= ±

√
ρ2 − x2

x
(0 < x ≤ ρ) (42)

with the condition z(ρ) = 0. The plus sign in this equation corresponds to the lower

part (z < 0) while the minus sign corresponds to the upper part. The Beltrami pseudo-

sphere (Fig. 14) is a surface of revolution generated by revolving a tractrix around its

asymptote which is the z-axis in the above formulation. The pseudo-sphere can be defined

parametrically by:

x = a sin θ cosφ (43)

y = a sin θ sinφ (44)

z = a

[
cos θ + ln

(
tan

θ

2

)]
(45)

where a is a real constant and θ, φ are real parameters with 0 < θ < π and 0 ≤ φ < 2π.

The constant ρ of the tractrix which generates the pseudo-sphere is called the pseudo-

radius of the pseudo-sphere.

It should be remarked that the geometric shapes that we defined parametrically in this
[3]We are assuming the curve is embedded in the xz plane.
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xz
ρ

ρ

Figure 14: Tractrix (left frame) and pseudo-sphere (right frame).

subsection (e.g. torus, ellipsoid, and hyperbolic paraboloid) can also be defined by other

parametric forms as well as by explicit Cartesian and non-Cartesian forms (see e.g. § 6.2).
The Euler characteristic, or Euler-Poincare characteristic, is a topological parameter

of closed surfaces (see § 3.1) which, for polyhedral surfaces, is given by:

χ = V + F − E (46)

where χ is the Euler characteristic of the surface, and V ,F , E are the numbers of vertices,

faces and edges of the polyhedron. Examples of Euler characteristic of some common

polyhedrons are given in Fig. 15.

The Euler characteristic can also be defined for more general types of surface. The Euler

characteristic of a compact orientable (see § 3.1) non-polyhedral surface, like sphere and

torus, can be obtained by polygonal decomposition based on dividing the entire surface

into a finite number of non-overlapping curvilinear polygons which share at most edges or

vertices (see Fig. 16). The above formula (Eq. 46) is then used, as for polyhedral surfaces,

to determine the Euler characteristic of the surface.
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Figure 15: Polyhedral surfaces: tetrahedron (left frame), cube (middle frame) and octa-
hedron (right frame). The Euler characteristic for these surfaces is given respectively by:
χ = 4 + 4− 6, χ = 8 + 6− 12, and χ = 6 + 8− 12, which in all cases is equal to 2.

In simple terms, the topological genus of a surface is the number of handles or topological

holes on the surface. For example, the ellipsoid (Fig. 4) is a surface of genus 0 while the

torus (Fig. 3) is a surface of genus 1. Similarly, the surfaces in Fig. 17 are of genus 2 and

3. For an orientable surface of genus g the Euler characteristic χ is related to the genus

by:

χ = 2 (1− g) (47)

The length of a straight line segment connecting two points in a Euclidean space is a

measure of the distance (in its common sense) between the two points.[4] The length

of a polygonal arc (Fig. 18 a) is the sum of the lengths of its straight segments. The

length of an arc of a generalized twisted space curve is the limit of the length of an

asymptotic polygonal arc (Fig. 18 b) as the length of the longest straight line segment of

the asymptotic polygonal arc tends to zero.

The area of a polygonal plane fragment (e.g. triangle or square) is a measure of its

two-dimensional expansion.[5] The area of a surface patch consisting entirely of polygonal

plane fragments is the sum of the areas of its polygonal plane fragments. The area of

a patch of a generalized twisted space surface is the limit of the area of its asymptotic

polygonal patch as the area of the largest of its polygonal fragments tends to zero (refer

to Fig. 19).

[4]The “length of a straight line segment” may be taken as an axiomatic concept.
[5]The “area of a polygonal plane fragment” may be taken as an axiomatic concept.
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Figure 16: Polygonal decomposition of a sphere into four non-overlapping curvilinear
polygons.

Figure 17: Examples of surfaces of genus 2 (left frame) and genus 3 (right frame).

1.4.2 Functions

The domain of a functional mapping: f : Rm → Rn is the largest set of Rm on which the

mapping is defined. A bicontinuous function or mapping is a continuous function with a

continuous inverse. A scalar function is of class Cn if the function and all of its first n

(but not n + 1) partial derivatives do exist and are continuous. A vector function (e.g. a

position vector representing a space curve or surface) is of class Cn if one of its components

is of this class while all the other components are of this class or higher. A curve or a

surface is of class Cn if it is mathematically represented by a function of this class.

In this context we should remark that in most cases the purpose of imposing the condition

of having a function of class Cn is to have a function which is at least of this class and
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(a) (b)

Figure 18: (a) Polygonal arc and (b) twisted curve (solid) with two of its asymptotic
polygonal arcs (dashed and dotted) where the dashed represents a better approximation
to the length of the twisted curve than the dotted.

Figure 19: A smooth surface (bottom) approximated by a coarse asymptotic polygonal
surface (top) and a fine asymptotic polygonal surface (middle) where the fine represents
a better approximation to the area of the smooth surface than the coarse.

hence the condition is met by having a function of this class or higher. In fact, this is

generally the case in this book when this condition is imposed unless there is an obvious

indicator that the function is strictly of this class. Another remark is that there should be

no confusion between the bare C symbol and the superscripted C symbol, like C2, as the

bare C is usually used in this book to symbolize a curve while the superscripted C stands

for the above differentiability condition.

In gross terms, a “smooth” or “sufficiently smooth” curve or surface means that the

functional relation that represents the object is sufficiently differentiable for the intended

objective, being of class Cn at least where n is the minimum requirement for the differen-

tiability index to satisfy the required conditions.
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A deleted neighborhood of a point P on a 1D interval on the real line is defined as the

set of all points x ∈ R in the interval such that:

0 < |x− xP | < ε (48)

where xP is the coordinate of P on the real line and ε is a positive real number. Hence, the

deleted neighborhood includes all the points in the open interval (xP − ε, xP + ε) excluding

xP itself. For a space curve (which is not straight in general) represented by r = r(t),

where r is the spatial representation of the curve and t is a general parameter in the curve

representation, the definition applies to the neighborhood of tP where tP is the value of

t corresponding to the point P on the curve. Deleted neighborhood of a twisted curve

may also be identified by being confined in a circle of radius ε centered at P , however this

applies only to plane curves. Therefore, it may be identified by being confined in a sphere

of radius ε centered at P to be more general.

A deleted neighborhood of a point P on a 2D flat surface is defined as the set of all

points (x, y) ∈ R2 on the surface such that:

0 <
√

(x− xP )2 + (y − yP )2 < ε (49)

where (xP , yP ) are the coordinates of P on the plane and ε is a positive real number.

Hence, the deleted neighborhood includes all the points inside a circular disc of radius ε

and center (xP , yP ) excluding the center itself. For a space surface (which is not flat in

general) represented by r = r(u, v), where r is the spatial representation of the surface and

u, v are the surface coordinates on the uv plane (see § 1.4.3) that map on the surface, the

definition applies to the neighborhood of (uP , vP ) where (uP , vP ) are the coordinates on

the 2D uv plane corresponding to the point P on the surface. Similar to twisted curves,

deleted neighborhood of a twisted surface may also be identified by being confined in a

sphere of radius ε centered at P . The above definitions of deleted neighborhoods of curves

and surfaces can be easily extended to spaces of higher dimensionality. For instance, in

a 3D space the neighborhood is contained in a spherical surface with radius ε. However,

this is not needed in this book whose focus is space curves and surfaces.
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A quadratic expression:

Q(x, y) = a1x
2 + 2a2xy + a3y

2 (50)

of real coefficients a1, a2, a3 and real variables x, y is described as “positive definite” if it

possesses positive values (> 0) for all pairs (x, y) 6= (0, 0). The sufficient and necessary

condition for Q to be positive definite is that:

a1 > 0 and (a1a3 − a2a2) > 0 (51)

These two conditions necessitate a third condition that is: a3 > 0 since these coefficients

are real.

The first variation of a functional F may be defined by the Gateaux derivative of the

functional as:

δF (x, h) = lim
ξ→0

F (x+ ξh)− F (x)

ξ
(52)

where x and h are variable functions and ξ is a real scalar parameter. The Euler-Lagrange

variational principle is a mathematical rule whose objective is to minimize or maximize

a certain functional F (f) which depends on a function f . It is represented mathemati-

cally by a partial differential equation whose solutions optimize the particular functional

F . The Euler-Lagrange principle in its generic, simple and most common form is given

mathematically by:
∂f

∂y
− d

dx

(
∂f

∂yx

)
= 0 (53)

where f(x, y, yx) is a function of the given variables that optimizes the functional F , y is

a function of x, and yx is the derivative of y with respect to x.

1.4.3 Coordinates, Transformations and Mappings

The Jacobian J of a transformation between two coordinate systems, labeled as unbarred

and barred, is the determinant of the Jacobian matrix J of the transformation between
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these systems, that is:

J = det (J) =

∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂x̄1
∂x1

∂x̄2
· · · ∂x1

∂x̄n

∂x2

∂x̄1
∂x2

∂x̄2
· · · ∂x2

∂x̄n

...
... . . . ...

∂xn

∂x̄1
∂xn

∂x̄2
· · · ∂xn

∂x̄n

∣∣∣∣∣∣∣∣∣∣∣
(54)

where the indexed x and x̄ are the coordinates in the unbarred and barred coordinate

systems in an nD space. An admissible coordinate transformation may be defined gener-

ically as a mapping represented by a sufficiently differentiable set of equations and it is

invertible by having a non-vanishing Jacobian (J 6= 0).[6] An invariant property of a curve

or a surface is a property which is independent of admissible coordinate transformations

and parameterizations. It should be noted that an invariant property may be invariant

with respect to certain types of transformation or parameterization but not with respect

to others and hence it is sometimes used generically where the context should be taken

into consideration for sensible interpretation.

An orthogonal coordinate transformation is a combination of translation, rotation and re-

flection of axes. The Jacobian of orthogonal transformations is unity, that is J = ±1. The

orthogonal transformation is described as positive iff J = +1 and negative iff J = −1.

Positive orthogonal transformations consist solely of translation and rotation (possibly

trivial ones as in the case of the identity transformation) while negative orthogonal trans-

formations include reflection, by applying an odd number of axes reversal, as well. Positive

transformations can be decomposed into an infinite number of continuously varying in-

finitesimal positive transformations each one of which imitates an identity transformation.

Such a decomposition is not possible in the case of negative orthogonal transformations be-

cause the shift from the identity transformation to reflection is impossible by a continuous

process.

A surface S in a 3D space may be described directly by the three spatial coordinates of

a given 3D coordinate system (e.g. x, y, z of a Cartesian system) or by the two surface

coordinates (e.g. u, v). In the former case, the description is rather familiar where each

point on the space surface is identified directly by three spatial coordinates linked by a

[6]The meaning of “admissible coordinate transformation” may vary depending on the context. We are
generally assuming linear transformations.
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given functional relation (see § 3.1 and 6.2). In the latter case, a 2D domain over which

the surface S is defined is introduced, where this domain is identified by two independent

variables (usually u, v or u1, u2) . The domain is usually assumed, for simplicity, to be a

plane (which may be called the uv plane or parameters plane) where a grid of u and v curves

are defined over this plane. Again, for simplicity the curves in these u and v families are

usually defined as straight lines; moreover, the curves in each family are regularly spaced

with the two families of u and v curves being mutually orthogonal (see Fig. 20). Although

these assumptions about the domain and about the grid and parameter curves can be

violated (e.g. by using a 2D polar or curvilinear coordinate system over the parameters

plane instead of the above-described 2D rectangular Cartesian), in most cases there is no

advantage in doing so. Along each curve of the u and v families only one variable (either

u or v) varies while the other variable (v or u) is held constant. So, along any curve of the

u family v is constant and along any curve of the v family u is constant.

u lines v lines

u coordinate curves

v coordinate curves
Space surface

Parameters plane

Figure 20: The uv parameters plane corresponding to a space surface and the mapping of
the uv grid.

The surface S is then defined by a functional mapping from the uv plane onto the

space surface S. This functional mapping identifies any point on the surface in the 3D

space corresponding to any point in its domain in the uv plane. Hence, the uv grid on

the uv plane is projected by this functional mapping on a corresponding uv grid on the

surface S. As we are assuming that the surface is embedded in a 3D space, the functional

mapping consists of three independent relations where each relation correlates the u and v

coordinates of a given point in the domain to one of the three spatial coordinates (x1, x2, x3)
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of a corresponding point of the surface in the embedding space, that is: x1(u, v), x2(u, v)

and x3(u, v).

While the uv grid on the uv plane is usually a planar, orthogonal and regularly spaced

grid, the corresponding grid on the surface S is not necessarily so because it is generally

a 3D grid that follows the bends and variations of the twisted space surface. In this

context, “coordinate curves” (which are also called parametric curves or parametric lines)

on a surface are defined as the map or projection of the uv curves of the uv grid of the

parameters plane onto the space surface, as described above, and hence they are curves

along which only one coordinate variable (u or v) varies while the other coordinate variable

(v or u) remains constant. So, along the u coordinate curves v is held constant while along

the v coordinate curves u is held constant (see Fig. 20).

It is noteworthy that although the surface coordinates u, v (or u1, u2) primarily represent

the coordinates on the uv parameters plane which maps on the surface, in the literature

of differential geometry they are sometimes used (to ease the notation) as labels for the

curves on the surface. Hence, vigilance is required to avoid confusion.

A regular representation of class Cm (m > 0) of a surface patch S in a 3D Euclidean

space is defined as a functional mapping of an open set Ω in the uv plane onto S that

satisfies the following two conditions:

1. The functional mapping relation is of class Cm over the entire Ω.

2. The Jacobian matrix of the transformation between the representation of the surface

in the 3D space and its 2D domain is of rank 2 for all the points in Ω.

We remark that for a functional mapping of the form S(u, v) = (S1(u, v), S2(u, v), S3(u, v)),

the aforementioned Jacobian matrix is given by:

J =


∂uS1 ∂vS1

∂uS2 ∂vS2

∂uS3 ∂vS3

 (55)

In fact, having a Jacobian matrix of rank 2 for the transformation, according to the above

condition, is equivalent to the condition that E1 × E2 6= 0 where E1 = ∂ur and E2 = ∂vr

are the surface basis vectors (see § 1.4.5, 3.1 and 3.2), which are the tangents to the u

and v coordinate curves respectively, and r = r(u, v) is the 3D spatial representation of

the curves. Having a Jacobian matrix of rank 2 is also equivalent to having a well-defined
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tangent plane to the surface at the related point. In this regard, we note that “rank” here

refers to its meaning in linear algebra and should not be confused with the rank of a tensor

which is related to the number of its free indices although there is a connection between

the two.

As we will see, a regular point on a surface is a point that satisfies the above condition

about the basis vectors. A point on a surface which is not regular is called singular.

Singularity occurs either because of a geometric reason, which is the case for instance for

the apex of a cone, or because of the particular parametric representation of the surface.

While the first type of singularity is inherent and hence it cannot be removed, the second

type can be removed by changing the representation.

Corresponding points on two curves refer to two points, one on each curve, with a com-

mon value of a common parameter of the two curves. When the two curves have two

different parameterizations then a one-to-one correspondence between the two parame-

ters should be established and the corresponding points then refer to two points with

corresponding values of the two parameters. Corresponding points on two surfaces can

be defined in a similar manner taking into account that surfaces require two independent

parameters in their identification.

In many cases of theoretical and practical significance, a mixed tensor Aiα, which is

contravariant with respect to transformations in space coordinates xi and covariant with

respect to transformations in surface coordinates uα, may be defined. Following a coordi-

nate transformation in which both the space and surface coordinates change, the tensor

Aiα will be given in the new (barred) system by:

Āiα = Ajβ
∂x̄i

∂xj
∂uβ

∂ūα
(56)

More generally, tensors with space and surface contravariant indices and space and surface

covariant indices (e.g. Aiαjβ) can also be defined in a similar manner. The extension of the

above transformation rule to include such tensors can be easily achieved by following the

obvious pattern seen in the last equation.
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1.4.4 Intrinsic Distance

The intrinsic distance between two points on a surface is the greatest lower bound (or

infimum) of the lengths of all regular arcs connecting the two points on the surface. The

intrinsic distance is an intrinsic property of the surface. The intrinsic distance d between

two points is invariant under a local isometric mapping (see § 3.1), that is:

d(f(P1), f(P2)) = d(P1, P2) (57)

where f is an isometric mapping from a surface S1 to a surface S2 (see § 3.1 and 6.5), P1

and P2 are the two points on S1 and f(P1) and f(P2) are their images on S2. In fact, this

may be taken as the definition of isometric mapping, i.e. it is the mapping that preserves

intrinsic distance.

The following conditions apply to the intrinsic distance d between points P1, P2 and P3:

1. Symmetry: d(P1, P2) = d(P2, P1).

2. Triangle inequality: d(P1, P3) ≤ d(P1, P2) + d(P2, P3).

3. Positive definiteness: d(P1, P2) > 0 with d(P1, P2) = 0 iff P1 and P2 are the same

point.

An arc C connecting two points, P1 and P2, on a surface is described as an arc of minimum

length between P1 and P2 if the length of C is equal to the intrinsic distance between P1

and P2. The existence and uniqueness of an arc of minimum length between two specific

points on a surface is not guaranteed, i.e. it may not exit and if it does exist it may not

be unique (refer to § 5.7 for examples). Yes, for certain types of surface such an arc does

exist and it is unique. For example, on a simply connected (see § 3.1) plane surface there

exists an arc of minimum length between any two points on the plane and it is unique;

this arc is the straight line segment connecting the two points.

1.4.5 Basis Vectors

The set of basis vectors in a given manifold plays a pivotal role in the theoretical construc-

tion of the geometry of the manifold, and this applies to the basis vectors in differential

geometry where these vectors are used in the definition and construction of essential con-

cepts and objects such as the metric tensor of the surface. The set of basis vectors may

also be employed to serve as a moving coordinate frame for the enveloping space of their
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underlying constructions (see § 2.2 and § 3.2).
The differential geometry of curves and surfaces employs two main sets of basis vectors:

1. One set is constructed on space curves and consists of three unit vectors: the tangent

T, the normal N and the binormal B to the curve.

2. Another set is constructed on surfaces and consists of two linearly independent vec-

tors which are the tangents to the coordinate curves of the surface, E1 = ∂r
∂u1

and

E2 = ∂r
∂u2

, plus the unit normal vector to the surface n, where r(u1, u2) is the spatial

representation of a surface as a unction of u1 and u2, and u1 and u2 are the surface

coordinates as discussed earlier and as will be investigated further later in the book

(refer to § 1.4.3 and 3.2).

Each one of the above basis sets is defined on each regular point of the curve or the

surface and hence in general the vectors in each one of these basis sets vary from one

point to another, i.e. they are position dependent. The vectors E1 and E2, which are not

necessarily of unit length, vary in magnitude and direction while the unit vectors (which

are the rest) vary in direction. Also, while the vectors of the T,N,B set are mutually

orthogonal, the vectors of the E1,E2,n set is not necessarily so since E1 and E2 are not

orthogonal in general although n is orthogonal to both E1 and E2.

The surface basis vectors, E1 and E2, are given in full tensor notation by ∂xi

∂uα
(i =

1, 2, 3 and α = 1, 2) which is usually abbreviated as xiα. These vectors can be seen as

contravariant space vectors or as covariant surface vectors. Further details about this will

be given in § 3.3. We remark that other sets of basis vectors are also defined and employed

in differential geometry, as we will see in the future (refer to § 4.1 and 4.4).

1.4.6 Flat and Curved Spaces

A manifold, such as a 2D surface or a 3D space, is called “flat” if it is possible to find

a coordinate system for the manifold with a diagonal metric tensor whose all diagonal

elements are ±1; the space is called “curved” otherwise. More formally, an nD space is

described as a flat space iff it is possible to find a coordinate system for which the line

element ds is given by:

(ds)2 = ζ1(dx1)2 + ζ2(dx2)2 + . . .+ ζn(dxn)2 =
n∑
i=1

ζi(dx
i)2 (58)
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where the indexed ζ are ±1 while the indexed x are the coordinates of the space. For the

space to be flat (i.e. globally not just locally), the condition given by Eq. 58 should apply

all over the space and not just at certain points or regions.

An example of flat space is the 3D Euclidean space which can be coordinated by a

rectangular Cartesian system whose metric tensor is diagonal with all the diagonal elements

being +1. Another example is the 4D Minkowski space-time manifold whose metric is

diagonal with elements of ±1. All 1D spaces are Euclidean and hence they cannot be

curved intrinsically, so twisted curves are curved only when viewed externally from the

embedding space which they reside in, e.g. the 2D space of a surface curve or the 3D space

of a space curve. An example of curved space is the 2D surface of a sphere or an ellipsoid.

A necessary and sufficient condition for an nD space to be intrinsically flat is that

the Riemann-Christoffel curvature tensor (see § 1.4.10) of the space vanishes identically.

Hence, cylinders are intrinsically flat, since their Riemann-Christoffel curvature tensor

vanishes identically, although they are curved as seen extrinsically from the embedding

3D space. On the other hand, planes are intrinsically and extrinsically flat. In brief, a

space is intrinsically flat iff the Riemann-Christoffel curvature tensor vanishes identically

over the space, and it is extrinsically (as well as intrinsically) flat iff the curvature tensor

(see § 3.4) vanishes identically over the space. This is because the Riemann-Christoffel

curvature tensor characterizes the space curvature from an intrinsic perspective while the

curvature tensor characterizes the space curvature from an extrinsic perspective.

Due to the strong connection between the Gaussian curvature (see § 4.5) and the

Riemann-Christoffel curvature tensor which implies that each one of these will vanish

if the other does (see for example Eq. 92), we see that having an identically vanishing

Gaussian curvature is another sufficient and necessary condition for a 2D space to be flat.

It should be remarked that the Gaussian curvature in differential geometry is defined for

2D spaces although the concept may be extended to higher dimensionality manifolds in

the form of Riemannian curvature. This issue will be discussed further later in the book

(see § 4.4).
A curved space may have constant non-vanishing curvature all over the space, or have

variable curvature and hence the curvature is position dependent. An example of a space

of constant curvature is the surface of a sphere of radius R whose curvature (i.e. Gaussian

curvature) is 1
R2 at each point of the surface. Torus (Fig. 3), ellipsoid (Fig. 4) and
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paraboloids (Figs. 7 and 8) are simple examples of surfaces with variable curvature. As we

will see, there are various characterizations and quantifications for the curvature; hence in

the present context “curvature” may be a generic term. For 2D surfaces, curvature usually

refers to the Gaussian curvature (see § 4.5) which is strongly linked to the Riemannian

curvature, as indicated above.

Schur theorem related to nD spaces (n > 2) of constant curvature states that: if the

Riemann-Christoffel curvature tensor at each point of a space is a function of the coor-

dinates only, then the curvature is constant all over the space. Schur theorem may also

be stated as: the Riemannian curvature is constant over an isotropic region of an nD

(n > 2) Riemannian space. The focus of the book, however, is limited to spaces of lower

dimensionality.

The geometry of curved spaces is usually described as the Riemannian geometry. One

approach for investigating the Riemannian geometry of a curved manifold is to embed

the manifold in a Euclidean space of higher dimensionality and inspect the properties of

the manifold from this perspective. This approach is largely followed in the present book

where the geometry of curved 2D spaces (twisted surfaces) is investigated by immersing

the surfaces in a 3D Euclidean space and examining their properties as viewed from this

external enveloping 3D space. Such an external view is necessary for examining the ex-

trinsic geometry of the surface but not its intrinsic geometry. A similar approach is also

followed in the investigation of surface and space curves.

A surface with positive/negative Gaussian curvature (see § 4.5) at each point is described

as a surface of positive/negative curvature. Ellipsoids (Fig. 4), hyperboloids of two sheets

(Fig. 6) and elliptic paraboloids (Fig. 7) are examples of surfaces of positive curvature

while hyperboloids of one sheet (Fig. 5) and hyperbolic paraboloids (Fig. 8) are examples

of surfaces of negative curvature. A surface with positive/negative Gaussian curvature

at each point may also be described as a surface of constant curvature since its sign is

constant all over the surface although its magnitude may be variable. In general, a twisted

surface possesses coordinate-dependent curvature which varies in magnitude and sign and

may take all possible signs (i.e. < 0, 0 and > 0) over different points or regions.

The geometric description and quantification of flat spaces are simpler than those of

curved spaces, and hence in general the differential geometry of flat spaces is more moti-

vating and less challenging than that of curved spaces. However, as there is a subjective
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element in this type of statements, it may not apply to everyone.

1.4.7 Homogeneous Coordinate Systems

When all the diagonal elements of a diagonal metric tensor of a flat space are +1, the

coordinate system is described as homogeneous. In this case the line element ds of Eq. 58

becomes:

(ds)2 = dxidxi (59)

An example of homogeneous coordinate systems is the rectangular Cartesian system

(x, y, z) of a 3D Euclidean space (Fig. 21). A homogeneous coordinate system can be

transformed to another homogeneous coordinate system only by linear transformations.

Any coordinate system obtained from a homogeneous coordinate system by an orthogonal

transformation is also homogeneous. As a consequence of the last statements, infinitely

many homogeneous coordinate systems can be constructed in any flat space.

O

x y

z

e1 e2

e3

Figure 21: Rectangular Cartesian coordinate system and its basis vectors e1, e2 and e3 in
a 3D space.

A coordinate system of a flat space can always be homogenized by allowing the coordi-
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nates to be imaginary. This is done by redefining the coordinates as:

xi =
√
ζix

i (60)

where the new coordinates xi are imaginary when ζi = −1. Consequently, the line element

will be given by:

(ds)2 = dxidxi (61)

which is of the same form as Eq. 59. An example of a homogeneous coordinate system

with some real and some imaginary coordinates is the coordinate system of a Minkowski

4D space-time related to the mechanics of Lorentz transformations.

1.4.8 Geodesic Coordinates

It is always possible to introduce coordinates at particular points in a multi-dimensional

manifold so that the Christoffel symbols (see § 1.4.9) vanish at these points. These co-

ordinates are called geodesic coordinates. Geodesic coordinates are employed as local

coordinate systems mainly for the purpose of achieving certain advantages, as will be out-

lined next. These geodesic systems for these particular points are also described as locally

Cartesian coordinates. The allocated points at which the Christoffel symbols are made to

vanish in these coordinates are described as the poles. Based on the above and what we

will see later in the book, geodesic coordinates of space surfaces are normally taken as the

equivalent of the Cartesian coordinates of a flat space. Hence, non-geodesic coordinates

on 2D spaces may be compared to general curvilinear coordinates in general nD spaces.

The main reason for the use of geodesic coordinates is that the covariant and absolute

derivatives (see § 7) in such systems become respectively partial and total derivatives

at the poles since the Christoffel symbol terms in the covariant and absolute derivative

expressions vanish at these points. Any tensor property can then be easily proved in

the geodesic system at the pole and consequently generalized to other systems due to the

invariance of the zero tensor under permissible coordinate transformations. If the allocated

pole is a general point in the space, the property is then established over the whole space.

In any Riemannian space it is always possible to find a coordinate system for which the

coordinates are geodesic at every point of a given analytic curve. Moreover, there is an

infinite number of ways by which geodesic coordinates can be defined over a coordinate
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patch (see § 3.1). We should remark that some authors define geodesic coordinates on

a coordinate patch of a surface as a coordinate system whose u and v coordinate curve

families are orthogonal, with one of these families (u or v) being a family of geodesic

curves (refer to § 5.7). Hence, “geodesic coordinates” may appear to have multiple usage

although they are essentially the same. More details about this should be looked for in

more advanced textbooks on differential geometry.

1.4.9 Christoffel Symbols for Curves and Surfaces

The Christoffel symbols of the first kind for a general nD space (n > 1) are defined by:

[ij, l] =
1

2
(∂jgil + ∂igjl − ∂lgij) (62)

where the indexed g is the covariant form of the metric tensor of the given space. We

remark that the Latin indices used in the previous equation, as well as the next four

equations, do not imply a 3D space and hence the equations and the metric are not

specific to such a space as they apply to any nD space (n ≥ 2).

The Christoffel symbols of the second kind, which may also be called affine connections,

are obtained by raising the third index of the Christoffel symbols of the first kind, that is:

Γkij = gkl [ij, l] =
gkl

2
(∂jgil + ∂igjl − ∂lgij) (63)

where the indexed g is the metric tensor of the given space in its contravariant and covariant

forms with implied summation over l. Similarly, the Christoffel symbols of the first kind

can be obtained from the Christoffel symbols of the second kind by reversing the above

process through lowering the upper index, that is:

gkmΓkij = gkmg
kl [ij, l] = δlm [ij, l] = [ij,m] (64)

where δlm is the mixed form of the Kronecker delta tensor for the space. It is noteworthy

that the Christoffel symbols of the first and second kind are symmetric in their paired

indices, that is:

[ij, k] = [ji, k] (65)
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Γkij = Γkji (66)

For 1D spaces, the Christoffel symbols are not defined. The Christoffel symbols of the

first kind for a 2D surface are given by:

[11, 1] =
∂ua11

2
=
Eu
2

(67)

[11, 2] = ∂ua12 −
∂va11

2
= Fu −

Ev
2

(68)

[12, 1] =
∂va11

2
=
Ev
2

= [21, 1] (69)

[12, 2] =
∂ua22

2
=
Gu

2
= [21, 2] (70)

[22, 1] = ∂va12 −
∂ua22

2
= Fv −

Gu

2
(71)

[22, 2] =
∂va22

2
=
Gv

2
(72)

where the indexed a are the elements of the surface covariant metric tensor (refer to 3.3)

and E,F,G are the coefficients of the first fundamental form (refer to 3.5). The subscripts

u and v which suffix the coefficients stand for partial derivatives of these coefficients with

respect to these variables (i.e. ∂
∂u

and ∂
∂v
). As indicated before and will be seen in the

future, E = a11, F = a12 = a21 and G = a22, and hence the equalities in the previous

equations are justified. The above relations can be obtained from the definition of the

Christoffel symbols of the first kind (Eq. 62) using the coefficients of the metric tensor

and first fundamental form of the surface.

In orthogonal coordinate systems, F = a12 = a21 = 0 identically and hence the above

formulae will be simplified accordingly by dropping any term involving the derivatives

of these coefficients. We note that “orthogonal coordinate system” here and in similar

contexts means a system whose coordinate curves are orthogonal everywhere. Therefore,

the above condition is fully justified since E1 and E2 basis vectors, which are the tangents

to the u and v coordinate curves, will be orthogonal in such a system and hence the dot

product, seen in Eq. 235, will vanish accordingly.

The Christoffel symbols of the second kind for a 2D surface are given by:

Γ1
11 =

a22∂ua11 − 2a12∂ua12 + a12∂va11

2a
=
GEu − 2FFu + FEv

2a
(73)
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Γ2
11 =

2a11∂ua12 − a11∂va11 − a12∂ua11

2a
=

2EFu − EEv − FEu
2a

(74)

Γ1
12 =

a22∂va11 − a12∂ua22

2a
=
GEv − FGu

2a
= Γ1

21 (75)

Γ2
12 =

a11∂ua22 − a12∂va11

2a
=
EGu − FEv

2a
= Γ2

21 (76)

Γ1
22 =

2a22∂va12 − a22∂ua22 − a12∂va22

2a
=

2GFv −GGu − FGv

2a
(77)

Γ2
22 =

a11∂va22 − 2a12∂va12 + a12∂ua22

2a
=
EGv − 2FFv + FGu

2a
(78)

where a (= a11a22− a12a21 = EG−F 2) is the determinant of the surface covariant metric

tensor, and the other symbols are as explained above. These relations can be obtained from

the definition of the Christoffel symbols of the second kind (Eq. 63) using the coefficients

of the metric tensor and first fundamental form of the surface. The above formulae will

also be simplified in orthogonal coordinate systems, where F = a12 = a21 = 0 identically,

by dropping the vanishing terms that involve these coefficients or their derivatives.

The Christoffel symbols of the second kind for a 2D surface may also be given by:

Γ1
11 = −(E2 × ∂1E1) · n√

a
(79)

Γ2
11 = +

(E1 × ∂1E1) · n√
a

(80)

Γ1
12 = −(E2 × ∂2E1) · n√

a
= Γ1

21 (81)

Γ2
12 = +

(E1 × ∂2E1) · n√
a

= Γ2
21 (82)

Γ1
22 = −(E2 × ∂2E2) · n√

a
(83)

Γ2
22 = +

(E1 × ∂2E2) · n√
a

(84)

where the indexed E are the surface covariant basis vectors (see § 1.4.5 and 3.2), n is the

unit normal vector to the surface and a is the determinant of the surface covariant metric

tensor as defined above. It is worth noting that:
√
a = (E1 × E2) · n, as we will see later

in the book.

Since the Christoffel symbols of both kinds are dependent on the metric only, as can

be seen from the above equations (Eqs. 67-72 and Eqs. 73-78) as well as from the
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definitions of these symbols (see Eqs. 62 and 63), they represent intrinsic properties of the

surface geometry and hence they are part of its intrinsic geometry. The involvement of

extrinsic parameters in the definitions given by Eqs. 79-84 does not affect their intrinsic

qualification, as explained earlier.

The Christoffel symbols of the first kind are linked to the surface covariant basis vectors

by the following relation:

[αβ, γ] =
∂Eα

∂uβ
· Eγ (α, β, γ = 1, 2) (85)

This relation may also be written as:

[αβ, γ] = rαβ · rγ (α, β, γ = 1, 2) (86)

where the subscripts represent partial derivatives with respect to the variables represented

by these coordinate indices. The last equation may provide an easier form to remember

these formulae.

On applying the index raising operator to Eq. 85, we obtain a similar expression for the

Christoffel symbols of the second kind, that is:

Γγαβ =
∂Eα

∂uβ
· Eγ (α, β, γ = 1, 2) (87)

where Eγ is the contravariant form of the surface basis vectors (see § 3.2).

1.4.10 Riemann-Christoffel Curvature Tensor

The Riemann-Christoffel curvature tensor is an absolute rank-4 tensor that characterizes

important properties of spaces, including 2D surfaces, and hence it plays an important role

in differential geometry. The tensor is used, for instance, to test for the space flatness (see

§ 1.4.6). There are two kinds of Riemann-Christoffel curvature tensor: first and second.

The Riemann-Christoffel curvature tensor of the first kind is a type (0, 4) tensor while the

Riemann-Christoffel curvature tensor of the second kind is a type (1, 3) tensor. Shifting

from one kind to the other is achieved by using the index shifting operator. The first and
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second kinds of the Riemann-Christoffel curvature tensor are given respectively by:

Rijkl = ∂k [jl, i]− ∂l [jk, i] + [il, r] Γrjk − [ik, r] Γrjl (88)

Ri
jkl = ∂kΓ

i
jl − ∂lΓijk + ΓrjlΓ

i
rk − ΓrjkΓ

i
rl (89)

where the indexed square brackets and Γ are the Christoffel symbols of the first and second

kind of the given space, as defined in § 1.4.9.
We remark that in the above two equations, as well as in the following equations in the

present and the next subsection, the Latin indices do not necessarily range over 1, 2, 3 as

these equations are valid for general nD manifolds (n ≥ 2) including surfaces (n = 2) and

spaces of higher dimensionality (n > 3). Another remark is that the Riemann-Christoffel

curvature tensor of the first kind is anti-symmetric in its first two indices and in its last

two indices and block symmetric with respect to these two sets of indices, that is:

Rijkl = −Rjikl Rijkl = −Rijlk Rijkl = Rklij (90)

From Eqs. 88 and 89, it can be seen that the Riemann-Christoffel curvature tensor

depends exclusively on the Christoffel symbols of the first and second kind which are

both dependent on the metric tensor (or the first fundamental form, see § 3.5) and its

partial derivatives only. Hence, the Riemann-Christoffel curvature, as represented by the

Riemann-Christoffel curvature tensor, is an intrinsic property of the manifold. Since the

Riemann-Christoffel curvature tensor depends on the metric which, in general curvilinear

coordinates, is a function of position, the Riemann-Christoffel curvature tensor follows this

dependency on position.

The Riemann-Christoffel curvature tensor vanishes identically iff the space is globally

flat from intrinsic view; otherwise the space is curved (see § 1.4.6). Hence, the Riemann-

Christoffel curvature tensor vanishes identically over 1D manifolds as represented by sur-

face and space curves. As we will see in § 2.3, surface and space curves are intrinsi-

cally Euclidean. Similarly, the Riemann-Christoffel curvature tensor vanishes identically

over plane surfaces. More generally, a surface is isometric to the Euclidean plane iff the

Riemann-Christoffel curvature tensor is zero at each point on the surface since it is in-

trinsically flat. The last statement also applies if the Gaussian curvature of the surface
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vanishes identically due to the link between the Riemann-Christoffel curvature tensor and

the Gaussian curvature (refer to § 4.5 and see Eq. 92).

The 2D Riemann-Christoffel curvature tensor has only one degree of freedom and hence

it possesses a single independent non-vanishing component which is represented by R1212.

Hence, for a 2D Riemannian space we have:

R1212 = R2121 = −R1221 = −R2112 (91)

while all the other components of the tensor are identically zero. The signs in the equalities

of Eq. 91 are justified by the aforementioned anti-symmetric relations of the Riemann-

Christoffel tensor in its indices (see Eq. 90). The vanishing of the other components

(e.g. R1111 and R1121) can also be explained by the anti-symmetric relations since these

components contain two identical anti-symmetric indices.

Based on the above facts, the Riemann-Christoffel curvature tensor can be expressed in

tensor notation by:

Rαβγδ = R1212εαβεγδ =
R1212

a
εαβεγδ = Kεαβεγδ (92)

where the indexed ε are the relative permutation tensors, the indexed ε are the absolute

permutation tensors, and K is the Gaussian curvature (see § 4.5) whose expression is

obtained from Eq. 356. The non-vanishing component of the 2D Riemann-Christoffel

curvature tensor, R1212, may be given in expanded form by:

R1212 =
1

2
(2∂12a12 − ∂22a11 − ∂11a22) + aαβ

(
Γα12Γβ12 − Γα11Γβ22

)
(93)

where ∂αβ ≡ ∂2

∂uα∂uβ
with α, β = 1, 2, the indexed a are the coefficients of the surface

covariant metric tensor, and the Christoffel symbols are based on the surface metric.

1.4.11 Ricci Curvature Tensor and Scalar

The Ricci curvature tensor of the first kind, which is an absolute rank-2 covariant sym-

metric tensor, is obtained by contracting the contravariant index with the last covariant
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index of the Riemann-Christoffel curvature tensor of the second kind, that is:

Rij = Ra
ija = ∂jΓ

a
ia − ∂aΓaij + ΓabjΓ

b
ia − ΓabaΓ

b
ij (94)

The Ricci tensor of the second kind is obtained by raising the first index of the Ricci tensor

of the first kind using the index raising operator.

For 2D spaces, the Ricci curvature tensor of the first kind is related to the Riemann-

Christoffel curvature tensor by the following relations:

R11

a11

=
R12

a12

=
R21

a21

=
R22

a22

= −R1212

a
(95)

where the indexed a are the elements of the 2D covariant metric tensor (see § 3.3) and

the bare a is its determinant. As the 2D Riemann-Christoffel curvature tensor has only

one independent non-vanishing component, the last equation provides a full link between

the Ricci curvature tensor and the Riemann-Christoffel curvature tensor. Since K = R1212

a

(see Eq. 356), the above relations also link the Ricci tensor to the Gaussian curvature.

The Ricci scalar R, which is also called the curvature scalar and the curvature invariant,

is the result of contracting the indices of the Ricci curvature tensor of the second kind,

that is:

R = Ri
i (96)

Hence, it is a rank-0 tensor. As seen from the above relations, the Ricci curvature tensor

and curvature scalar are part of the intrinsic geometry of the manifold.

1.5 Exercises

1.1 Give a brief definition of differential geometry indicating the other disciplines of math-

ematics to which differential geometry is intimately linked.

1.2 A surface embedded in a 3D space can be regarded as a 2D and as a 3D object at the

same time. Discuss this briefly. From the same perspective, discuss also the state of

a curve embedded in a surface which in its turn is embedded in a 3D space.

1.3 What are the following symbols: [αβ, γ], [ij, k], Γγαβ and Γkij? What is the difference

between those with Greek indices and those with Latin indices?

1.4 What is the relation between the coefficients of the surface covariant metric tensor
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and the surface covariant curvature tensor on one hand and the coefficients of the first

and second fundamental forms on the other? What are the symbols representing all

these coefficients?

1.5 What is the difference between the local and global properties of a manifold? Give an

example for each. What are the colloquial terms used to label these two categories?

1.6 What is the meaning of “intrinsic” and “extrinsic” properties of a manifold? Give an

example for each.

1.7 Explain the concept of “2D inhabitant” and how it is used to classify the properties

of a space surface.

1.8 Find the equation of a plane passing through the points: (1, 2, 0), (0,−3, 1.5) and

(1, 0,−1). What is the normal unit vector to this plane?

1.9 Is the normal unit vector of a plane surface unique?

1.10 Define briefly each one of the following terms: surface of revolution, meridians and

parallels.

1.11 Prove that the meridians and parallels of a surface of revolution are mutually perpen-

dicular at their points of intersection.

1.12 State the parametric equations of the following geometric shapes: torus, hyperboloid

of one sheet, and hyperbolic paraboloid.

1.13 Write down the parametric equations of a circle in the uv plane centered at point

(a, b) with radius r = c where a, b, c are real constants and c > 0.

1.14 Find the parametric equations of an ellipse in the xy plane centered at the origin of

coordinates with A = 5 and B = 3 where A,B are the semi-major and semi-minor

axes.

1.15 A surface of revolution may be represented locally in a 3D space by the following

form: r(u, v) = (u cos v, u sin v, f(u, v)) where f is a continuous function. Determine

the equations representing the parallels and meridians of this surface.

1.16 Find the parametric equations of a curve formed by the intersection of the surfaces

represented by: r1(u, v) = (u, u2, v) and r2(u, v) = (u, v, u2) where −∞ < u, v < +∞.

1.17 Write down the general form of the parametric equations of each of the following

surfaces: hyperboloid of two sheets, parabolic cylinder, catenoid, monkey saddle and

pseudo-sphere.

1.18 Sketch the following (using a 3D computer graphic package if available): (a) a straight
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line passing through the point (11,−5, 6.3) and parallel to the vector (−3,−1.8, 6.5)

(b) a plane passing through the point (6,−8.2,−7) with a normal vector (3,−1.6,−2.5).

1.19 A surface is parameterized by: r(u, v) = (a sinhu cos v, b sinhu sin v, c coshu). What

is the name of this surface? What is the condition for this surface to be a surface of

revolution around the third spatial axis?

1.20 Find the equation of the straight line passing through the point (−6, 3.1, 8.4) and the

point (1, 0,−3).

1.21 Classify the following as curves or surfaces: ellipsoid, elliptic paraboloid, catenary,

helicoid, enneper and tractrix.

1.22 Make a simple sketch for each one of the geometric shapes in the previous question.

Use a computer graphic package if convenient.

1.23 Prove that v × dv
dt

= 0 iff the direction of the vector v(t) is constant.

1.24 Define “Euler characteristic” stating the equation that links it to the number of ver-

tices, faces and edges of a polyhedron.

1.25 Explain how the Euler characteristic is defined for non-polyhedral compact orientable

surfaces such as ellipsoids.

1.26 What is the topological meaning of “genus of a surface”?

1.27 Give examples for surfaces of genus 0, 1, 2 and 3 from common geometric shapes other

than those given in the text.

1.28 By using the Euler formula, calculate the Euler characteristic χ of the following sur-

faces: (a) parallelepiped (b) dodecahedron (c) icosahedron. Show your work in detail.

1.29 By using polygonal decomposition, calculate the Euler characteristic χ of the following

surfaces: (a) sphere (b) ellipsoid (c) torus. Show your work in detail with simple

sketches to demonstrate the polygonal decomposition in each case.

1.30 What is the genus of the surfaces in the previous question?

1.31 What is the Cartesian form of the equation of a sphere centered at point (a, b, c) with

radius r = d where a, b, c, d are real constants and d > 0?

1.32 Explain briefly the meaning of the following terms: bicontinuous function, surface of

class Cn, and sufficiently smooth curve.

1.33 Explain in detail, using equations and simple sketches, the concept of “deleted neigh-

borhood” in 1D and 2D flat and curved spaces as seen from the ambient space.

1.34 How can we extend the concept of “deleted neighborhood” to spaces of dimensionality
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higher than 2?

1.35 Find the equation of a cone generated by rotating the line z = −2x around the z-axis.

1.36 Derive the parametric equations of a helix rotating around the z-axis, passing through

the point (3, 0, 0) and climbing (or descending) 5.3 units in the z-direction as it makes

a 4π turn around the z-axis.

1.37 Define “positive definite” in words and by stating the mathematical conditions for a

quadratic expression to be positive definite.

1.38 Describe orthogonal coordinate transformations and how they are characterized by

their Jacobian.

1.39 State the difference between positive and negative orthogonal transformations.

1.40 Find a set of parametric equations representing a cylinder generated by rotating a

straight line parallel to the z-axis and passing through the point (2.5,0,0) around the

z-axis.

1.41 What is the unit normal vector to the surface of a sphere, centered on the origin

of coordinates with radius r, at a point on its surface with coordinates (xP , yP , zP )?

Consider the possibility of having more than one normal vector at that point.

1.42 What “coordinate curves” means? What are the other names given to these curves?

1.43 Define regular representation of a class Cn surface patch in a 3D Euclidean space

stating its mathematical conditions.

1.44 Using a parametric representation of the elliptic paraboloid, show that it is a regular

surface.

1.45 What are the reasons for having a singular point on a space surface?

1.46 A sphere centered at the origin of coordinates can be represented parametrically by:

r(θ, φ) = a(sin θ cosφ, sin θ sinφ, cos θ) where a > 0 is a constant, 0 ≤ θ ≤ π and

0 ≤ φ < 2π. At what points, if any, this representation is not regular?

1.47 How a mathematical correspondence can be established between points on two differ-

ent curves and two different surfaces?

1.48 State the mathematical conditions which are satisfied by the intrinsic distance between

two points on a smooth connected surface.

1.49 Is it guaranteed that an arc of minimum length between two specific points on a

surface does exist and it is unique?

1.50 Prove the three properties of intrinsic distance, i.e. symmetry, triangle inequality,
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and positive definiteness.

1.51 Show that the intrinsic distance d between two points is invariant under a local iso-

metric mapping f , i.e. d(f(P1), f(P2)) = d(P1, P2).

1.52 Find the intrinsic distance on the unit sphere centered at the origin of coordinates

between the point (1, 0, 0) and the point ( 1√
3
, 1√

3
, 1√

3
).

1.53 What is the intrinsic distance between the two points of the last question in a 3D

Euclidean space that encloses the sphere?

1.54 Define the basis vectors and state their roles.

1.55 Describe in detail the two main sets of space basis vectors in differential geometry

related to curves and surfaces. Are there any other sets of basis vectors?

1.56 Are the basis vectors necessarily of unit length and/or mutually orthogonal? If not,

give examples of basis vectors which are not of unit length and/or mutually orthogonal.

1.57 Define, in mathematical terms, flat and curved spaces giving examples for each.

1.58 State a sufficient and necessary condition for an nD space to be flat.

1.59 Is it necessary that an nD curved space possesses universally constant curvature? If

not, give an example of a space with variable curvature in sign and magnitude.

1.60 What is the locus of the points (if any) which are shared between the xy plane and

the following surfaces: (a) a sphere centered at (0, 0, 5) with radius r = 6 (b) a

sphere centered at (1, 1, 1) with radius r = 1.5 (c) a plane passing through the point

(5,−9.6, 0) with a unit normal vector (0, 0,−1)?

1.61 Describe the commonly used approach for investigating the Riemannian geometry of

curved manifolds.

1.62 Give a brief definition of homogeneous coordinate systems giving a common example

of such systems.

1.63 What is the relation between the Christoffel symbols of the first kind and the Christof-

fel symbols of the second kind?

1.64 Write the mathematical expressions for the symbols [12, 1] and Γ1
22 of a surface in

terms of the coefficients of the surface metric tensor.

1.65 Using the definition of the Christoffel symbols of the first kind and the rules of tensors,

derive Eqs. 68 and 71.

1.66 Using the definition of the Christoffel symbols of the second kind and the rules of

tensors, derive Eqs. 76 and 78.
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1.67 State the mathematical relations correlating the Christoffel symbols of the first and

second kind to the surface basis vectors and their derivatives.

1.68 What is the relation between the Riemann-Christoffel curvature tensor and the Gaus-

sian curvature of a surface?

1.69 How many independent non-vanishing components the 2D Riemann-Christoffel cur-

vature tensor possesses?

1.70 What is the significance of having an identically vanishing Riemann-Christoffel cur-

vature tensor on a 2D surface?

1.71 Show that the Riemann-Christoffel curvature tensor is anti-symmetric in its first two

indices and in its last two indices and block symmetric with respect to these two sets

of indices.

1.72 Prove Eqs. 85 and 87.

1.73 What is the rank of the Ricci curvature tensor?

1.74 State the mathematical relation that links the Ricci curvature tensor of the first kind

to the Christoffel symbols of the second kind and their partial derivatives.

1.75 What is the relation between the elements of the Ricci curvature tensor of the first

kind and the Gaussian curvature?

1.76 How do you obtain the Ricci scalar from the Riemann-Christoffel curvature tensor of

the first kind? Explain your answer step by step.



Chapter 2

Curves in Space

In this chapter, we investigate curves residing in a higher dimensionality space and how

they are characterized. We should first remark that “space” in this title is general and

hence it includes surface since it is a 2D space, as explained in § 1.2.

2.1 General Background about Curves

In simple terms, a space curve is a set of connected points[7] in the embedding space

such that any totally connected subset of it can be twisted into a straight line segment

without affecting the neighborhood of any point. More technically, a curve is defined as a

differentiable parameterized mapping between an interval of the real line and a connected

subset of the embedding space, that is C(t) : I → Rn where C represents a space curve

defined on the interval I⊆ R and parameterized by the variable t ∈ I. Hence, different

parameterizations of the same “geometric curve” will lead to different “mapping curves”.

The image of the mapping in the embedding space is known as the trace of the curve;

hence different mapping curves can share the same trace. The curve may also be defined

as a topological image of a real interval and may be linked to the concept of Jordan arc.

We note that Jordan arcs or Jordan curves may be defined as injective mappings with no

self intersection.

Space curves can be defined symbolically in different ways; the most common of these is

parametrically where the three space coordinates of the curve points are given as functions

of a real valued parameter, e.g. xi = xi(t) where t ∈ R is the curve parameter and

i = 1, 2, 3. The parameter t may represent time or arc length or even an arbitrarily

defined quantity. Similarly, surface curves are defined parametrically where the two surface

[7]The points are usually assumed to be totally connected so that any point on the curve can be reached
from any other point by passing through other curve points or at least they are piecewise connected.
We also consider mostly open curves with simple connectivity and hence the curve does not intersect
itself.
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coordinates are given as functions of a real valued parameter, e.g. uα = uα(t) with α = 1, 2.

The surface coordinates can then be mapped, through another mapping relation, onto the

spatial representation of the surface in the enveloping space. Parameterized curves are

oriented objects as they can be traversed in one direction or the other depending on the

sense of increase of their parameter.

There are two main types of curve parameterization: parameterization by arc length

and parameterization by something else such as time. The condition for a space curve

C(t) : I → R3, where t ∈ I is the curve parameter and I ⊆ R is an interval over which the

curve is defined, to be parameterized by arc length is that: for all t we have |dr
dt
| = 1 where

r(t) is the position vector representing the curve in the ambient space. As a consequence

of this, parameterization by arc length is equivalent to traversing the curve with a constant

unity speed. Hence, using a parameterization by something other than arc length may

be considered as traversing the curve with varying or non-unity speed. The advantage

of parameterization by arc length is that it confines the attention on the geometry of the

curve rather than other factors, which are usually irrelevant to the geometric investigation,

such as the temporal rate of traversing the curve. Furthermore, it usually results in a more

simple mathematical formulation, as we will see later in the book.

The parameter symbol which is used normally for parameterization by arc length is s,

while t is used to represent a general parameter which could be arc length or something

else. This notation is followed in the present book. For curves parameterized by arc length,

the length L of a segment between two points on the curve corresponding to s1 and s2 is

given by the simple formula:

L =

∣∣∣∣ˆ s2

s1

dt

∣∣∣∣ = |s2 − s1| (97)

Parameterization by arc length s may be called natural parameterization of the curve and

hence s is called natural parameter.

Natural parameterization is not unique; however any other natural parameter š is related

to a given natural parameter s by the following relation:

š = ±s+ c (98)
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where c is a real constant and hence the above-stated condition |dr
dt
| = 1 remains valid.[8]

This may be stated in a different way by saying that natural parameterization with arc

length s is unique apart from the possibility of having a different sense of orientation and

an additive constant to s.

Natural parameterization may also be used for parameterization by a parameter which is

proportional to s and hence the transformation relation between two natural parameters

becomes:

š = ±ms+ c (99)

where m is another real constant. The two parameterizations then differ, apart from

the sense of orientation and the constant shift, by the length scale which can be chosen

arbitrarily. Consequently, natural parameterization will be equivalent to traversing the

curve with a constant speed not necessarily of unity magnitude. This may be based

on the vision of extending the aforementioned benefits of natural parameterization by

scaling, i.e. by choosing a different length scale a natural parameterization will be obtained

spontaneously. In this book, natural parameterization is restricted to parameterization

with arc length s.

In a general nD space, the tangent vector to a space curve, represented parametrically

by the spatial representation r(t) where t is a general parameter, is given by dr
dt
. A vector

tangent to a space curve at P is a non-trivial scalar multiple of dr
dt

and hence it can differ

in magnitude and direction from dr
dt

as it can be parallel or anti-parallel to dr
dt
.

The tangent vector to a surface curve, represented parametrically by: C(u(t), v(t)) where

u and v are the surface coordinates and t is a general parameter, is given by:

dr

dt
=
∂r

∂u

du

dt
+
∂r

∂v

dv

dt
(100)

where r(u(t), v(t)) is the spatial representation of C and where all these quantities are

defined and evaluated at a particular point on the curve. The last equation can be cast

compactly, using tensor notation, as:

dxi

dt
=
∂xi

∂uα
duα

dt
= xiα

duα

dt
(101)

[8] In this formula, t is a generic symbol and hence it stands for s.
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where i = 1, 2, 3, α = 1, 2 and (u1, u2) ≡ (u, v).

A space curve C(t) : I → R3, where I ⊆ R and t ∈ I is a general parameter, is “regular

at point t0” iff ṙ(t0) exists and ṙ(t0) 6= 0 where r(t) is the spatial representation of C and

the overdot stands for differentiation with respect to the general parameter t. The curve

is “regular” iff it is regular at each interior point in I. On a regular parameterized curve

there is a neighborhood to each point in its domain in which the curve is injective. On

transforming a surface S by a differentiable regular mapping f of class Cn to a surface S̄,

a regular curve C of class Cn on S will be mapped on a regular curve C̄ of class Cn on

S̄ by the same functional mapping relation, that is r̄(t) = f(r(t)) where the barred and

unbarred r(t) are the spatial parametric representations of the two curves on the barred

and unbarred surfaces.

The tangent line to a sufficiently smooth curve at one of its regular points P is a straight

line passing through P but not through any point in a deleted neighborhood of P . More

technically, the tangent line to a curve C at a given regular point P is a straight line

passing through P and having the same orientation as the tangent vector dr
dt

of C at

P . The tangent line to a curve at a given point P on the curve may also be defined

geometrically as the limit of a secant line passing through P and another neighboring

point on the curve as the other point converges, while staying on the curve, to the tangent

point. These different definitions are equivalent as they represent the same entity. It is

noteworthy that the tangent line of a smooth curve, where such a tangent does exit, is

unique. We also note that the geometric definition may be useful in some cases where the

analytical definition does not apply.

A non-trivial vector v is said to be tangent to a regular surface S (see § 1.4.3) at a given

point P on S if there is a regular curve C on S passing through P such that v = dr(t)
dt

where r(t) is the spatial representation of C and dr(t)
dt

is evaluated at P (also see 3.1 for

further details). In fact, any vector v = cdr(t)
dt

, where c 6= 0 is a real number, is a tangent

although it may not be the tangent.

A periodic curve C is a curve that can be represented parametrically by a continuous

function of the form r(t + T ) = r(t) where r is the spatial representation of C, t is a

real general parameter and T is a real constant called the function period. Circles and

ellipses (Fig. 22) are prominent examples of periodic curves where they can be represented
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parametrically by:

r(t) = (a cos t, a sin t) (circle) (102)

r(t) = (a cos t, b sin t) (ellipse) (103)

where a and b are real positive constants and t ∈ R. Due to the periodicity of the

trigonometric functions, these equations satisfy the condition: r(t + 2π) = r(t). Hence,

circles and ellipses are periodic curves with a period of 2π.

a a

b

Figure 22: Circle (left frame) and ellipse (right frame) and their main parameters.

A closed curve is a continuous periodic curve defined over a minimum of one period.

We note that periodicity is not a necessary requirement for the definition of closed curves

as the curves can be defined over a single period without being considered as such or by

functions of non-periodic nature. Closed curves may be regarded as topological images of

circles.

A curve is described as a plane curve if it can be embedded entirely in a plane with no

distortion. Orthogonal trajectories of a given family of curves is a family of curves that

intersect the given family perpendicularly at their intersection points. Any curve can be

mapped isometrically to a straight line segment where both are naturally parameterized

by arc length. From the last statement plus the fact that isometric transformation is an

equivalence relation (see § 6.5), it can be concluded that any two space and surface curves

can be connected by an isometric relation.
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2.2 Mathematical Description of Curves

Let have a space curve of class C2 in a 3D Riemannian manifold with a given metric

gij (i, j = 1, 2, 3). The curve is parameterized naturally by s representing arc length.

As stated earlier, we choose to parameterize the curve by s to have simpler formulae

although, for the sake of completeness and generality, other formulae based on a more

general parameterization will also be given. The curve can therefore be represented by:

xi = xi(s) (i = 1, 2, 3) (104)

where the indexed x represent the space coordinates. This is equivalent to:

r(s) = xi(s)Ei (105)

where r is the spatial representation of the space curve and Ei are the space basis vectors.

Three mutually perpendicular vectors each of unit length can be defined at each regular

point of the above-described space curve: tangent T, normal N and binormal B (see Fig.

23). As well as characterizing the curve, these vectors can serve as a moving coordinate

system for the embedding space as indicated earlier. For simplicity, clarity and potential

lack of familiarity with tensor differentiation (see § 7) at this stage, the following is mostly

based on assuming a Euclidean space coordinated by a rectangular Cartesian system al-

though supplementary remarks related to more general space and coordinates are added

when necessary. We also use a mix of tensor and symbolic notations as each has certain

advantages and to familiarize the reader with both notations since different authors use

different notations.

The unit vector tangent to the curve at a given regular point P on the curve is given

by:[9]

[T]i = T i =
dxi

ds
(106)

For a t-parameterized curve, where t is not necessarily the arc length, the tangent vector

[9] Since we employ Cartesian coordinates in a flat space, ordinary derivatives (i.e. d
ds and d

dt ) are used in
this and the following formulae. For general curvilinear coordinates, these ordinary derivatives should
be replaced by absolute derivatives (i.e. δ

δs and δ
δt ) along the curves.
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x1

x2

x3

TN

B

C(t)

Osculating
Plane

Rectifying
Plane

Normal
Plane

Figure 23: The vectors T,N,B and their associated planes of a curve C embedded in a
Euclidean space with a rectangular Cartesian coordinate system (see also Fig. 24).

is given by:

T =
ṙ(t)

|ṙ(t)| (107)

where the overdot represents differentiation with respect to t.

The unit vector normal to the tangent T i, and hence to the curve, at the point P is

given by:

[N]i = N i =
dT i

ds∣∣dT i
ds

∣∣ =
1

κ

dT i

ds
(108)

where κ is a scalar called the “curvature” of the curve at the point P and is defined,

according to the normalization condition, by:

κ =

√
dT i

ds

dT i

ds
(109)

For a t-parameterized curve, the normal unit vector is given by:

N =
ṙ(t)× (r̈(t)× ṙ(t))

|ṙ(t)| |̈r(t)× ṙ(t)| (110)

The vector N is also called the principal normal vector. Based on Eq. 108, this vector
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is defined only on points of the curve where the curvature κ 6= 0. Also, since T is a unit

vector then its derivative is orthogonal to it, so the above-stated facts are consistent. We

note that Eq. 109 is based on an underlying Cartesian coordinate system. For general

curvilinear coordinates, the formula becomes:

κ =

√
gij
δT i

δs

δT j

δs
(111)

where gij is the space covariant metric tensor and the notation of absolute derivative is in

use (see § 7).
The binormal unit vector is defined as:

[B]i = Bi =
1

τ

(
κT i +

dN i

ds

)
(112)

which is a linear combination of two vectors both of which are perpendicular to N i and

hence it is perpendicular to N i. In the last equation, the normalization scalar factor τ is

the “torsion” whose sign is chosen to make T,N,B a right handed system satisfying the

condition:

εijkT
iN jBk = 1 (113)

where εijk is the covariant absolute permutation tensor for the 3D space. We should also

impose the condition τ 6= 0 on Eq. 112. For plane curves, where the torsion vanishes

identically (see § 2.3.2), and at the points with τ = 0 of twisted curves, the binormal unit

vector B may be defined geometrically or as the cross product of T and N, i.e. B = T×N.

For a t-parameterized curve, the binormal vector is given by:

B =
ṙ(t)× r̈(t)

|ṙ(t)× r̈(t)| (114)

Inline with making T,N,B a right handed system, there is a geometric significance for the

sign of the torsion as it affects the orientation of the space curve. It should be remarked

that some authors reverse the sign in the definition of τ and this reversal affects the signs

in the forthcoming Frenet-Serret formulae (see § 2.5). The convention that we follow in

this book may have certain advantages.

At any point on the space curve, the triad T,N,B represent a mutually perpendicular
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right handed system fulfilling the condition:

Bi = [T×N]i = εijkTjNk (115)

where εijk is the contravariant absolute permutation tensor for the 3D space. Since the

vectors in the triad T,N,B are mutually perpendicular, they satisfy the conditions:

T ·N = T ·B = N ·B = 0 (116)

Moreover, because they are unit vectors they also satisfy the conditions:

T ·T = N ·N = B ·B = 1 (117)

It should be remarked that the triad T,N,B form what is called the Frenet frame which

represents a set of orthonormal basis vectors for the embedding space. This frame serves

as a basis for a moving orthogonal coordinate system on the points of the curve. The

Frenet frame varies in general as it moves along the curve and hence it is a function of

the position on the curve. The triad T,N,B may also be called the Frenet trihedron or

the moving trihedron of the curve. The Frenet frame can suffer from problems or become

undefined, e.g. at non-regular points where T is undefined or at inflection points where
dT
ds

= 0.

The tangent line of a curve C at a given point P on the curve is a straight line passing

through P and is parallel to the tangent vector, T, of C at P . The principal normal line

of a curve C at a given point P on the curve is a straight line passing through P and is

parallel to the principal normal vector, N, of C at P . The binormal line of a curve C at

a given point P on the curve is a straight line passing through P and is parallel to the

binormal vector, B, of C at P . As a consequence, the equations of the three lines can be

given by the following generic form:

r = rP + kVP (118)

where r is the position vector of an arbitrary point on the line, rP is the position vector

of the point P , k is a real variable (−∞ < k < ∞) and the vector VP is the vector
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corresponding to the particular line, that is VP ≡ T for the tangent line, VP ≡ N for the

principal normal line, and VP ≡ B for the binormal line.

At any point P on a space curve where the Frenet frame is defined, the triad T,N,B

define three mutually perpendicular planes where each one of these planes passes through

the point P and is formed by a linear combination of two of these vectors in turn. These

planes are: the “osculating plane” which is the span of T and N, the “rectifying plane”

which is the span of T and B, and the “normal plane” which is the span of N and B and

is orthogonal to the curve at P (Fig. 24). As a result, the equations of the three planes

can be given by the following generic form:

(r− rP ) ·VP = 0 (119)

where r is the position vector of an arbitrary point on the plane, rP is the position vector

of the point P , and where for each plane the vector VP is the perpendicular vector to the

plane at P , that is VP ≡ B for the osculating plane, VP ≡ N for the rectifying plane, and

VP ≡ T for the normal plane. Following the style of the definition of the tangent line of

a curve as the limit of the secant line (see § 2.1), the osculating plane may also be defined

as the limiting position of a plane passing through P and two other points on the curve

as the two points converge simultaneously along the curve to P .

It is noteworthy that the positive sense of a parameterized curve, which corresponds to

the direction in which the parameter increases and hence defines the orientation of the

curve, can be determined in two opposite ways. While the sense of the tangent T and the

binormal B is dependent on the curve orientation and hence they are in opposite directions

in these two ways, the principal normal N is the same as it remains parallel to the normal

plane in the direction in which the curve is turning. This is consistent with the fact that

the triad T,N,B form a right handed system.

2.3 Curvature and Torsion of Space Curves

The curvature and torsion of space curves may also be called the first and second curvatures

respectively, and hence a twisted curve with non-vanishing curvature and non-vanishing

torsion is described as double-curvature curve. The expression
√

(dsT)2 + (dsB)2, where

dsT and dsB are respectively the lengths of the line element components in the tangent
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Figure 24: Frenet surfaces and basis vectors at a point on a space curve C.

and binormal directions, may be described as the total or the third curvature of the curve.

The equation of Lancret states that:

(dsN)2 = (dsT)2 + (dsB)2 (120)

where dsN is the length of the line element component in the principal normal direction.

We note that the term “total curvature” is also used for surfaces (see § 4.4 and 4.8) but

the meaning is obviously different.

According to the fundamental theorem of space curves in differential geometry, a space

curve is completely determined by its curvature and torsion. More technically, given a real

interval I ⊆R and two differentiable real functions: κ(s) > 0 and τ(s) where s ∈ I, there

is a uniquely defined parameterized regular space curve C(s): I → R3 of class C2 with

κ(s) and τ(s) being the curvature and torsion of C respectively and s is its arc length.

Hence, any other curve meeting these conditions will be different from C only by a rigid



2.3 Curvature and Torsion of Space Curves 66

motion transformation (i.e. translation and rotation) which determines its position and

orientation in space. On the other hand, any curve with the above-described properties

possesses uniquely defined κ(s) and τ(s). As a consequence of the last statements, the

fundamental theorem of space curves provides the existence and uniqueness conditions for

curves. We note in this context that in rigid motion transformation, which may also be

called Euclidean motion, the distance between any two points on the image is the same as

the distance between the corresponding points on the inverse image. Hence, rigid motion

transformation is a form of isometric mapping.

The equations: κ = κ(s) and τ = τ(s), where s is the arc length, are called the intrinsic

or natural equations of the curve. The curvature and torsion are invariants of the space

curve and hence they do not depend in magnitude on the employed coordinate system or

the type of parameterization. While the curvature is always non-negative (κ ≥ 0), as it

represents the magnitude of a vector according to the above-stated definition (see Eqs.

108, 109 and 111), the torsion can be negative as well as zero or positive. It is worth

mentioning that some authors define the curvature vector (see § 4.1) and the principal

normal vector of space curves in such a way that it is possible for the curvature to be

negative.

The following are some examples of the curvature and torsion of a number of commonly-

occurring simple curves:

1. Straight line: κ = 0 and τ = 0.

2. Circle of radius R: κ = 1
R
and τ = 0. Hence, the radius of curvature (see § 2.3.1) of

a circle is its own radius

3. Helix parameterized by r(t) = (a cos(t), a sin(t), bt): κ = a
a2+b2

and τ = b
a2+b2

. It is

worth noting that a space curve of class C3 with non-vanishing curvature is a helix

iff the ratio of its torsion to curvature is constant.

In the above three examples, the curvature and torsion are constant along the whole curve.

However, in general the curvature and torsion of space curves are position dependent and

hence they vary from point to point.

Following the example of 2D surfaces, a 1D inhabitant of a space curve can detect all

the properties related to the arc length. Hence, the curvature and torsion, κ and τ , of

the curve are extrinsic properties for such a 1D inhabitant. This fact may be expressed

by saying that curves are intrinsically Euclidean, and hence their Riemann-Christoffel
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curvature tensor vanishes identically and they naturally admit 1D Cartesian systems rep-

resented by their natural parameterization of arc length. This should be obvious when

considering that any curve can be mapped isometrically to a straight line where both are

naturally parameterized by arc length. Another demonstration of their intrinsic 1D nature

is represented by the forthcoming Frenet-Serret formulae (see § 2.5).
It is noteworthy that some authors resemble the role of κ and τ in curve theory to the

surface curvature tensor bαβ in surface theory (see § 3.4) and describe κ and τ as the curve

theoretic analogues of bαβ in surface theory. In another context, κ and τ may be compared

(non-respectively!) with the first and second fundamental forms of surfaces in their roles in

defining the curve and surface in the fundamental theorems of these structures (compare

the above with what is coming in § 3.6). The curvature and torsion also play in the

Frenet-Serret formulae for space curves a similar role to the role played by the coefficients

of the first and second fundamental forms in the Gauss-Weingarten equations for space

surfaces (see § 3.9). Another useful remark in this context is that from the first and the

last of the Frenet-Serret formulae (see Eqs. 136 and 138), we have:

|κτ | = |T′ ·B′| (121)

where the prime stands for derivative with respect to a natural parameter s of the curve.

2.3.1 Curvature

The curvature κ of a space curve is a measure of how much the curve bends as it progresses

in the tangent direction at a particular point. The curvature represents the magnitude of

the rate of change of the direction of the tangent vector with respect to the arc length and

hence it is a measure for the departure of the curve from the orientation of the straight

line passing through that point and oriented in the tangent direction. Consequently, the

curvature vanishes identically for straight lines (see § 5.1). In fact, having an identically

vanishing curvature is a necessary and sufficient condition for a curve of class C2 to be a

straight line. From the first of the Frenet-Serret formulae (Eq. 136) and the fact that:

(N ·T)′ = (0)′ = 0 ⇒ N ·T′ = −N′ ·T (122)
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which is based on the orthogonality of N and T and the product rule of differentiation,

the curvature κ can be expressed as:

κ = N ·T′ = −N′ ·T (123)

where the prime represents differentiation with respect to the arc length s of the curve.

The minus sign in the second equality is consistent with the fact that κ is non-negative

since the component of N′ in the tangential direction is anti-parallel to T. As for the

first equality, N and T′ are parallel (see Eqs. 108 and 110) and hence the dot product is

non-negative as it should be.

The “radius of curvature”, which is the radius of the osculating circle (see § 2.6), is defined
at each point of a space curve at which κ 6= 0 as the reciprocal of the curvature, that is:

Rκ =
1

κ
(124)

A different way for introducing these concepts, which is followed by some authors, is to

define first the radius of curvature as the reciprocal of the magnitude of the acceleration

vector, that is Rκ = 1
|r′′(s)| where r(s) is the spatial representation of an s-parameterized

curve; the curvature is then defined as the reciprocal of the radius of curvature. Hence,

the radius of curvature may be described as the reciprocal of the norm of the acceleration

vector where acceleration means the second derivative of the spatial representation of the

curve with respect to its natural parameter.

There may be an advantage in using the concept of “curvature” as the principal concept

instead of “radius of curvature”, that is the curvature can be defined at all points of a

smooth curve where a tangent vector is defined, including those with vanishing curvature,

while the radius of curvature is defined only at those points with non-vanishing curvature.

As indicated above, if C is a space curve of class C2 which is defined on a real interval

I⊆ R and is parameterized by arc length s ∈ I, that is C(s) : I → R3, then the curvature

of C at a given point P on the curve is defined by:

κ = |r′′(s)| (125)

where r(s) is the spatial representation of the curve, the double prime represents the
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second derivative with respect to s, and r′′ is evaluated at P .

For a space curve represented parametrically by r(t), where t is a general parameter, we

have:

κ =

∣∣∣Ṫ∣∣∣
|ṙ| =

|ṙ× r̈|
|ṙ|3

=

√
(ṙ · ṙ) (r̈ · r̈)− (ṙ · r̈)2

(ṙ · ṙ)3/2
(126)

where all the quantities, which are functions of t, are evaluated at a given point corre-

sponding to a given value of t, and the overdot represents derivative with respect to t. It

is noteworthy that all surface curves passing through a point P on a surface S and have

the same osculating plane at P have identical curvature κ at P if the osculating plane is

not tangent to S at P .

2.3.2 Torsion

The torsion τ represents the rate of change of the osculating plane, and hence it quantifies

the twisting, in magnitude and sense, of the space curve out of the plane of curvature

and its deviation from being a plane curve (see § 5.2). The torsion therefore vanishes

identically for plane curves. In fact, having an identically vanishing torsion is a necessary

and sufficient condition for a curve of class C2 to be a plane curve. If C is a space curve

of class C2 which is defined on a real interval I⊆ R and it is parameterized by arc length

s ∈ I, that is C(s) : I → R3, then the torsion of C at a given point P on the curve is

given by:

τ = N′· B (127)

where N′ and B are evaluated at P and the prime represents differentiation with respect

to s. This equation can be obtained from the second of the Frenet-Serret formulae (Eq.

137) by dot producting both sides with B. The formula may also be given as:

τ = −N· B′ (128)

for the same reason as that given for the alternative formulae of κ (see Eq. 123 and related

text) or by dot producting both sides of the third of the Frenet-Serret formulae (Eq. 138)

with N.

For a space curve represented parametrically by r(t), where t is a general parameter, we
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have:

τ =
ṙ · (r̈× ...

r )

|ṙ× r̈|2
=

ṙ · (r̈× ...
r )

(ṙ× r̈) · (ṙ× r̈)
=

ṙ · (r̈× ...
r )

(ṙ · ṙ) (r̈ · r̈)− (ṙ · r̈)2 (129)

where all the quantities, which are functions of t, are evaluated at a given point P cor-

responding to a given value of t, and the overdot represents derivative with respect to t.

The curve should have non-vanishing curvature κ at P .

For rectangular Cartesian coordinates, the torsion of an s-parameterized curve is given

in tensor notation by:

τ =
εijkx

′
ix
′′
jx
′′′
k

κ2
(130)

where κ is the curvature of the curve as defined previously. The last formula is based

on its predecessor. For general curvilinear coordinates, the torsion of an s-parameterized

curve is given in tensor notation by:

τ = εijkTiNj
δNk

δs
(131)

The magnitude of torsion is independent of the nature of the curve parameterization and

orientation as determined by the sense of increase of its parameter. It is also invariant

under permissible coordinate transformations. Finally, the “radius of torsion” is defined

at each point of a space curve for which τ 6= 0 as the absolute value of the reciprocal of

the torsion, that is:

Rτ =

∣∣∣∣1τ
∣∣∣∣ (132)

We note that some authors do not take the absolute value and accordingly the radius of

torsion can be negative.

2.4 Geodesic Torsion

Geodesic torsion, which is also known as the relative torsion, is an attribute of a curve

embedded in a surface. The geodesic torsion of a surface curve C at a given point P is

the torsion of the geodesic curve (see § 5.7) that passes through P in the tangent direction

of C at P . As we will see in § 5.7, in the neighborhood of a given point P on a smooth

surface and for any specified direction there is one and only one geodesic curve passing
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through P in that direction.

The geodesic torsion τg of a surface curve represented spatially by r(s) is given by the

following scalar triple product:

τg = n · (n′ × r′) (133)

where n is the unit normal vector to the surface, the primes represent differentiation with

respect to the natural parameter s, and all these quantities are evaluated at a given point

on the curve corresponding to a given value of s.

The geodesic torsion of a curve C at a non-umbilical point P (see § 4.10) is given in

terms of the principal curvatures κ1 and κ2 (see § 4.4) by:

τg = (κ1 − κ2) sin θ cos θ (134)

where θ is the angle between the tangent vector T to the curve C at P and the first

principal direction d1 (see Darboux frame in § 4.4).
The geodesic torsion of a surface curve C parameterized by arc length s at a given point

P is also given in terms of the curve torsion by:

τg = τ − dφ

ds
(135)

where τ is the torsion of C at P , and φ is the angle between the unit normal vector n to

the surface and the principal normal vector N of C at P , i.e. φ = arccos (n ·N). Also,

the curve C should not be asymptotic (see § 5.9). This formula (Eq. 135) which is known

as the Bonnet formula, demonstrates that when n and N are collinear along the curve,

the geodesic torsion and the torsion are equal (i.e. τg = τ). As we will see in § 5.7, when
n and N are collinear, the geodesic component of the curvature vector (see § 4.1) will

vanish. In this case, the geodesic curvature (see § 4.3) will vanish and the curve becomes

a geodesic. So in brief, on a geodesic curve we have: τg = τ which is consistent with the

above statement at the beginning of this section.

The geodesic torsion of a surface curve C at a given point P is zero iff C is tangent to

a line of curvature at P (see § 5.8). Hence, on a line of curvature the geodesic torsion

vanishes identically. This can be seen from Eq. 134 where either sin θ or cos θ vanishes.

The geodesic torsions of two orthogonal surface curves at their point of intersection are
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equal in magnitude and opposite in sign.

2.5 Relationship between Curve Basis Vectors and their Deriva-

tives

The three basis vectors T,N,B of a space curve are connected to their derivatives by the

Frenet-Serret formulae which are given in rectangular Cartesian coordinates by:

dT i

ds
= κN i (136)

dN i

ds
= τBi − κT i (137)

dBi

ds
= −τN i (138)

As indicated previously (see § 2.2), the sign of the terms involving τ depends on the

convention about the torsion and hence these equations differ between different authors.

The above equations are also known as Frenet formulae.

The Frenet-Serret formulae can be cast in the following matrix form using symbolic

notation: 
T

′

N
′

B
′

 =


0 κ 0

−κ 0 τ

0 −τ 0




T

N

B

 (139)

where all the quantities in this equation are functions of arc length s and the prime

represents derivative with respect to s. As seen, the coefficient matrix of this system is

anti-symmetric.

The Frenet-Serret formulae can also be given in the following form:

T
′

= d×T (140)

N
′

= d×N (141)

B
′

= d×B (142)

where d is the “Darboux vector” which is given by:

d = τT + κB (143)
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This form of the Frenet-Serret formulae is more memorable apart from the expression of

d. We note that some authors define d as a scalar multiple of what is given in Eq. 143.

The above three equations (i.e. Eqs. 140-142) may be merged in a single equation as:

(T′,N′,B′) = d× (T,N,B) (144)

In general curvilinear coordinates, the Frenet-Serret formulae are given in terms of the

absolute derivatives of the three vectors by:

δT i

δs
=

dT i

ds
+ ΓijkT

j dx
k

ds
= κN i (145)

δN i

δs
=

dN i

ds
+ ΓijkN

j dx
k

ds
= τBi − κT i (146)

δBi

δs
=

dBi

ds
+ ΓijkB

j dx
k

ds
= −τN i (147)

where the indexed x represent general spatial coordinates and s is a natural parameter

while the other symbols are as defined earlier.

According to the fundamental theorem of space curves, which is outlined previously in

§ 2.3, a curve does exist and it is unique iff its curvature and torsion as functions of arc

length are given. Now, it is natural to expect that such a solution can be obtained from

the system of differential equations given by the Frenet-Serret formulae. However, such

a solution cannot be obtained in general by direct integration of these equations. More

elaborate methods (e.g. methods based on the Riccati equation for reducing a system of

simultaneous differential equations to a first order differential equation) may be used to

obtain the solution. Nevertheless, a solution can be obtained by direct integration of the

Frenet-Serret formulae for plane curves (see § 5.2) where the torsion vanishes identically.

A solution by direct integration of the Frenet-Serret formulae can also be obtained in other

simple cases such as when the curvature and torsion are constants.

2.6 Osculating Circle and Sphere

At any point P with non-zero curvature of a smooth space curve C, an “osculating circle”

(Fig. 25), which may also be called the circle of curvature or the kissing circle, can be

defined where this circle is characterized by:
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1. It is tangent to C at P , i.e. the circle and the curve have a common tangent vector

at P .

2. It lies in the osculating plane of C at P .

3. Its radius Rκ is equal to 1
κ
where κ is the curvature of C at P .

4. Its center Cc is located at rC which is given by:

rC = rP +
1

κ
N = rP +RκN (148)

where rP is the position vector of P and N is the principal normal vector of C at P .

The center of curvature of a curve at a point on the curve is defined as the center of the

osculating circle at that point, as given above. If the curve C is a circle, then the center

of curvature at any point is the center of the circle itself, so the circle is its own osculating

circle.

C

P

N

Cc

Co

Rκ

Figure 25: The osculating circle Co of a space curve C at point P with the principal normal
vector N, center of curvature Cc and radius of curvature Rκ.

The osculating circle provides a good approximation to the curve in the neighborhood

of its points where the osculating circle is defined. Following the manner of defining the

tangent line to a curve as a limit of the secant line (see § 2.1), the osculating circle to

a curve at a given point P may be defined geometrically as the limit of a circle passing

through P and two other points on the curve as these two points converge to P while

staying on the curve (Fig 26). It should be remarked that in some cases the osculating

circle and its parameters may be defined geometrically but not analytically when the

second derivative of the curve at the given point is not properly defined to determine the
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radius of curvature (see Eq. § 125).

P1

P2
P

C

Figure 26: The osculating circle (small) of a curve C at a point P as a limit of another
circle (big) passing through P and two other points, P1 and P2.

Following the manner of defining the osculating circle as a limit, the “osculating sphere”

of a curve C at a given point P may be defined similarly as the limit of a sphere passing

through P and three neighboring points on the curve as these three points converge to P .

The position of the center CS of the osculating sphere at P , which is called the center of

spherical curvature of C at P , is given by:

rS = rP +
1

κ
N− κ′

τκ2
B = rP +RκN + sgn (τ)RτR

′
κB (149)

where rS and rP are the position vectors of CS and P , B and N are the binormal and

principal normal vectors, κ and τ are the curvature and torsion, Rκ and Rτ are the radii

of curvature and torsion, sgn (τ) is the sign function of τ(s), and the prime represents

derivative with respect to a natural parameter s of C. All these quantities belong to C at

P which should have non-vanishing curvature and torsion, i.e. κ, τ 6= 0. From Eq. 149, it

can be seen that the radius of the osculating sphere is given by:

|rS − rP | =
√
R2
κ + (RτR′κ)

2 (150)

2.7 Parallelism and Parallel Propagation

In flat spaces, parallelism is an absolute property as it is defined without reference to a

peripheral object. However, in Riemannian spaces the idea of parallelism is defined in
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reference to a prescribed curve and hence it is different from the idea of parallelism in the

Euclidean sense. A vector field Aα is described as being parallel along the surface curve

uβ = uβ(t) iff its absolute derivative (see § 7) along the curve vanishes, that is:

δAα

δt
≡ Aα;β

duβ

dt
≡ dAα

dt
+ ΓαβγA

γ du
β

dt
= 0 (151)

This means that the sufficient and necessary condition for a vector field to be parallel

along a surface curve is that the covariant derivative of the field is normal to the surface.

All the vectors of a field of parallel vectors have the same constant magnitude. A field of

absolutely parallel unit vectors on a surface do exist iff there is an isometric correspondence

between the plane and the surface. When two surfaces are tangent to each other along a

given curve C, then a vector field which is parallel along C with respect to one of these

surfaces will also be parallel along C with respect to the other surface. When two non-

trivial vectors experience parallel propagation along a particular curve the angle between

them stays constant.

As a consequence of the definition of parallelism in Riemannian spaces and the previous

statements, we have:

1. Parallel propagation is field dependent. Hence, a surface vector field parallelly prop-

agated along a given curve between two points P1 and P2 on the curve does not

necessarily coincide with another vector field parallelly propagated along another

curve connecting P1 and P2.

2. Since parallel propagation depends on the path of propagation, then given two points

P1 and P2 on a surface, the vector obtained at P2 by parallel propagation of a vector

from P1 along a given surface curve C connecting P1 to P2 depends on the curve C.

3. Starting from a given point P on a closed surface curve C enclosing a simply con-

nected region (see § 3.1) on the surface, parallel propagation of a vector field around

C starting from P does not necessarily result in the same vector field when arriving

at P . We note that the angle between the initial and final vectors in this situation

is a measure of the Gaussian curvature on the surface (see § 4.5).
4. If C : I → S is a regular curve on a surface S defined on the interval I ⊆ R, and

v1 and v2 are parallel vector fields over C, then the dot product v1 · v2 which is

associated with the metric tensor, the norm of the vector fields |v1| and |v2|, and
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the angle between v1 and v2 are constants.

2.8 Exercises

2.1 State the technical definition of space curve outlining the difference between a curve

and its trace.

2.2 What is the most common way of defining space curves mathematically? Give an

example from simple curves like circle and ellipse.

2.3 Make a clear distinction between general and natural parameterization of space curves.

2.4 State a mathematical condition for a space curve to be parameterized naturally.

2.5 What is the relation between two natural parameters of a given space curve?

2.6 The following equation: r(t) =
(
t
2
,− t

2
, t√

2

)
is a parametric representation of a space

curve. Is this a natural parameterization? Justify your answer.

2.7 Prove that two natural parameters, s and š, of a curve are related by the equation

š = ±s+ c where c is a real constant.

2.8 Using tensor notation, write down the equation of the tangent vector to a surface

curve represented parametrically by C(u1(t), u2(t)) where t is a general parameter.

2.9 What is the meaning of having “regular curve at a specific point”? What “regular

curve” means?

2.10 Prove that the parametric representation: r(t) = (t2, et, t + 1) of a space curve is

regular for all t.

2.11 State the condition for a vector to be tangent to a regular surface at a given point on

the surface.

2.12 Find the unit tangent vector, T(t), for a space curve represented by: r(t) = (t2, t, sin t).

2.13 Find the arc length of a space curve given by: r(t) = (5t, 7 cosh t, 2 sinh t) for 1 ≤ t ≤ 4.

2.14 Find the curvature, as a function of t, of a space curve represented by: r(t) = (cos t−
1, sin t+ t, t2).

2.15 Define “periodic curve” giving two common examples other than those given in the

text.

2.16 Should a periodic curve be a plane curve?

2.17 Should a periodic continuous curve be a closed curve? Should a periodic smooth curve

be a closed curve?
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2.18 A plane curve called cissoid of Diocles is given in polar coordinates by: ρ = 2 sinφ tanφ.

Find the equation of the curve in a rectangular Cartesian coordinate system.

2.19 Sketch the curve of the previous question for 0 ≤ |φ| ≤ π
4
(notice the two branches).

2.20 Show that for a curve represented spatially by r and parameterized naturally by s

and generally by t, the relation between s and t is given by:
∣∣ds
dt

∣∣ =
∣∣dr
dt

∣∣.
2.21 Define Frenet frame with a simple sketch showing the basis vectors at a given point

on an arbitrary space curve.

2.22 Write down the mathematical equations of the unit vectors T,N,B for a curve pa-

rameterized by a general parameter t and a natural parameter s.

2.23 State the mathematical definition of the curvature κ and the torsion τ of an s-

parameterized space curve.

2.24 Show that the sufficient and necessary condition for a space curve to be a plane curve

is that its torsion vanishes identically.

2.25 What are the curvature and torsion of (a) a straight line (b) a circle with radius

R = 3.2 (c) a curve parameterized by: r(t) = (3 cos(t), 3 sin(t), 1.9t)?

2.26 Find the torsion, as a function of t, of (a) a curve represented by: r(t) = (sin t +

t, cos t− 3, t+ 2) (b) a curve represented by: r(t) = (t, 2t2, t3) (c) a curve represented

by: r(t) = (at, bt3, ct2) where a, b, c are non-vanishing real constants.

2.27 What are the mathematical conditions that represent the fact that the vectors T,N,B

are mutually orthogonal and of unit length?

2.28 Prove the theorem of Lancret which states that a space curve of class C3 with non-

vanishing curvature is a helix iff the ratio of its torsion to its curvature is constant

along the curve.

2.29 Show that if two space curves, which have an injective association, possess parallel

tangent vectors at their corresponding points, then their normal and binormal vectors

at these points are parallel as well.

2.30 Prove Eq. 121 (i.e. |κτ | = |T′ ·B′|).
2.31 Give a parametric representation of a circular helix using a natural parameter s.

2.32 For a plane curve in a 3D space given by the equation: y = 2x2− x+ 3 (0 ≤ x ≤ 10),

find the equations of the osculating, normal and rectifying planes at point (1, 4).

2.33 For a space curve parameterized as: (x, y, z) = (t, t3, 3t2), find the equations of the

tangent, principal normal and binormal lines passing through the point (1, 1, 3) on
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the curve.

2.34 Give an example of a non-planar space curve whose principal normal vectors at all

points of the curve are parallel to a particular plane.

2.35 For a space curve parameterized as: (x, y, z) = (cos t, sin t, 5t), find the equations of

the osculating, rectifying and normal planes at the point on the curve with t = 1.3.

2.36 Which of the three vectors T,N,B is not affected by reversing the sense of traversing

the space curve?

2.37 What are the tangent vector T, the principal normal vector N and the binormal

vector B of a helix represented by: r(t) = (3 cos t, 3 sin t, 3t)?

2.38 Find the three vectors T,N,B along a curve represented by: r(t) = (2t−3, t3+t, 5−t2).

2.39 Make a simple sketch for the osculating, rectifying and normal planes at a point on

an arbitrary space curve. Use a computer graphic package if convenient.

2.40 Write down the equation of Lancret related to the third curvature of space curves and

discuss its significance.

2.41 Discuss, in detail, the fundamental theorem of space curves in differential geometry

outlining its application and significance.

2.42 Given that the curvature of a plane curve is given by: κ = 1
3s+5

where s > 0 is a

natural parameter, find the equation of this curve.

2.43 Write down the Frenet-Serret formulae of a space curve in a rectangular Cartesian

coordinate system explaining all the symbols involved.

2.44 By integrating the Frenet-Serret formulae, obtain the solution of a space curve with

κ = A and τ = B where A,B > 0 are real constants.

2.45 Identify the type of the curve in the previous question.

2.46 What are the “intrinsic” or “natural” equations of a curve?

2.47 Find the intrinsic equations of the catenary defined by Eqs. 28-29.

2.48 Find the parametric representation of a curve with the following intrinsic equations:

κ =
√
c/s and τ = 0 where c > 0 is a real constant and s > 0 is a natural parameter.

2.49 Prove that the curvature of a t-parameterized space curve is given by: κ = |ṙ×r̈|
|ṙ|3 .

2.50 Prove that the torsion of a t-parameterized space curve is given by: τ = ṙ·(r̈×...r )

|ṙ×r̈|2 .

2.51 Which of the two main curve parameters, κ and τ , is necessarily non-negative and

why?

2.52 Show that along an s-parameterized curve r(s), the following relation holds true:
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r′ · (r′′ × r′′′) = τκ2.

2.53 Can we obtain the curvature and torsion of circle as a special case of the curvature

and torsion of helix? If yes, how? Is this consistent with the definition of helix as

given in § 1.4.1 (see Eqs. 4-6 and Fig. 2)?

2.54 Find the curvature and torsion of a space curve represented by: r(t) = (t3, t+ 1,−t2)

at the point with t = 2.4.

2.55 Give an example of a space curve whose curvature and torsion are variables.

2.56 Investigate the relation between the curvature and torsion at corresponding points

of two space curves which are mirror-reflection of each other with respect to a given

plane.

2.57 Investigate the relation between the curvature and torsion at corresponding points of

two space curves which are symmetric with respect to a given point.

2.58 Discuss, in detail, the concept of “1D inhabitant” in the context of classifying the

properties of space curves.

2.59 Establish a correspondence between the two main parameters of space curve (i.e.

curvature and torsion) and the first and second fundamental forms of space surface.

2.60 Discuss the resemblance between κ and τ of space curve and the curvature tensor of

space surface.

2.61 State, in words, the mathematical relation: τ = εijkTiNj
δNk
δs

using technical terms for

all the notations and symbols used in this equation.

2.62 What is the significance of the curvature and torsion of space curves as measures of

their variation in the embedding space?

2.63 What is the relation between the curvature and the radius of curvature of a space

curve? Is there an advantage in using one of these or the other as the main concept?

2.64 Outline the physical significance of the relation: κ = |r′′|.
2.65 Express κ in terms of r and its first and second derivatives where r is a spatial

representation of a curve parameterized by a general parameter t.

2.66 Express τ in terms of N′ and B of a naturally parameterized curve.

2.67 Express τ in terms of r and its first, second and third derivatives where r is a spatial

representation of a curve parameterized by a general parameter t.

2.68 What is the relation between the torsion and the radius of torsion of a space curve?

2.69 Define geodesic torsion in words and state its mathematical relation to r and n and
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their derivatives.

2.70 What is the significance of the relation: τg = τ − dφ
ds

and what the symbols in this

relation mean?

2.71 What is the condition for the torsion and the geodesic torsion of a space curve to be

equal?

2.72 Prove that along a sufficiently smooth curve represented by r(t), the vector r̈ at a

given point P on the curve is parallel to the osculating plane at P .

2.73 Obtain the equation of the osculating plane of a curve represented parametrically by:

r(t) = (3 cos t, 2 sin t, cos t+ 5 sin t) at a general point on the curve.

2.74 Derive the second of the Frenet-Serret formulae using the other two formulae.

2.75 Define Darboux vector d and hence verify that the relations given by Eqs. 140-142

are valid.

2.76 Explain all the symbols and notations used in the following relation: τ = ṙ·(r̈×...r )

(ṙ·ṙ)(r̈·̈r)−(ṙ·̈r)2
.

2.77 Prove that for a curve with helical shape, the Darboux vector is constant along the

curve.

2.78 State the Frenet-Serret formulae in a single equation using the Darboux vector.

2.79 Write down the Frenet-Serret formulae assuming a general curvilinear coordinate sys-

tem.

2.80 Give a brief explanation of why the solution of a space curve cannot be obtained in

general by a direct integration of the Frenet-Serret equations.

2.81 Give a brief definition of the osculating circle and the osculating sphere of a space

curve.

2.82 How can the osculating circle and the osculating sphere of a space curve be defined

using the concept of limit?

2.83 Prove that for a given space curve C, the binormal lines of C and the tangent lines to

the locus of the centers of spherical curvature of C are parallel at their corresponding

points.

2.84 Derive an expression for the position of the center of curvature of a t-parameterized

twisted curve represented spatially by r(t) in terms of r and its derivatives.

2.85 Find the spatial coordinates of the center of the osculating circle of a space curve

represented by: r(t) = (t,
√
t, t2) at the point with t = 2.6.

2.86 What is the relation between the osculating circle and the osculating plane at a given
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point of a space curve?

2.87 Explain all the symbols involved in the equation: rS = rP + RκN + sgn (τ)RτR
′
κB

which is related to the center of the osculating sphere.

2.88 Write down the formula for the radius of the osculating sphere explaining all the

symbols used.

2.89 What is the difference between the concept of parallelism in Euclidean and non-

Euclidean spaces?

2.90 State the mathematical condition for a vector field to be parallel along a given surface

curve in terms of its absolute derivative.

2.91 What is the meaning of describing parallel propagation as path dependent? What are

the consequences of this dependency?



Chapter 3

Surfaces in Space

Here, we examine sufficiently smooth surfaces embedded in a 3D Euclidean space using a

Cartesian coordinate system (x, y, z) for the most parts. Some parts are based on a more

general Riemannian space with a curvilinear coordinate system.

3.1 General Background about Surfaces

A 2D surface embedded in a 3D space may be defined loosely as a set of connected points

in the space such that the immediate neighborhood of each point on the surface can be

deformed continuously to form a flat disk. Technically, a surface in a 3D manifold is a

mapping from a subset of the parameters plane to a 3D space, that is S : Ω→ R3, where Ω

is a subset of R2 plane and S is a sufficiently smooth injective function. Similar conditions

may also be imposed to ensure the existence of a tangent plane and a normal vector at

each point of the surface. In particular, the condition ∂ur × ∂vr 6= 0 at all points on the

surface is usually imposed to ensure regularity of the surface.

Like space and surface curves, the image of the mapping in R3 is known as the trace of

the surface. For convenience, we use curve and surface in the present book for trace as

well as for mapping; the meaning should be obvious from the context. We should remark

that the trace of a curve or a surface should not be confused with the trace of a matrix

which is the sum of its diagonal elements.

A 2D surface embedded in a 3D space can be defined explicitly by: z = f(x, y), or

implicitly by: F (x, y, z) = 0, or parametrically by: x(u1, u2), y(u1, u2), z(u1, u2) where

u1 and u2 (or u and v) are the surface coordinates on the parameters plane, as defined

previously (see § 1.4.3), which are mutually independent parameters. By substitution,

elimination and algebraic manipulation these forms can be transformed interchangeably.

A coordinate patch of a surface is an injective, bicontinuous, regular, parametric repre-

sentation of a part of the surface. In more technical terms, a coordinate patch of class Cn

83



3.1 General Background about Surfaces 84

(n > 0) on a space surface S is a functional mapping of an open set Ω in the uv parameters

plane onto S that satisfies the following conditions:

1. The functional mapping relation is of class Cn over Ω.

2. The mapping is one-to-one and bicontinuous over Ω.

3. E1 ×E2 6= 0 at any point in Ω where E1 and E2 are the surface basis vectors (see §
1.4.5 and 1.4.3).

As indicated previously, a vector v is described as a tangent vector to the surface S at

a given point P on the surface if there is a regular curve C embedded in S and passing

through P such that v is a tangent to the curve at P , i.e. v = cdr(t)
dt

(c ∈ R, c 6= 0) where

r is a t-parameterized position vector representing C. The set of all tangent vectors to

the surface S at point P forms a tangent plane to S at P (Fig. 27). This set is called

the tangent space of S at P and it is usually notated with TPS. It is obvious that there

exist infinitely many tangent vectors, with varying magnitude and direction, to a smooth

surface at its regular points.

E1

E2

n

Figure 27: Tangent plane (solid) of a surface (outlined by a grid) at a given point alongside
the surface basis vectors, E1 and E2, and the unit normal vector, n, at that point.

As we will see (also refer to § 1.4.5), the tangent space of a regular surface at a given

point on the surface is the span of the two linearly independent basis vectors defined as:

E1 =
∂r

∂u1
E2 =

∂r

∂u2
(152)
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where r(u1, u2) is the spatial representation of the surface coordinate curves and u1 and u2

are the surface coordinates, as explained before. The tangent space, therefore, is the plane

passing through P and is perpendicular to the vector E1 × E2. As indicated previously,

every vector tangent to a regular surface S at a given point P on S can be expressed as a

linear combination of the surface basis vectors E1 and E2 at P . The reverse is also true,

that is every linear combination of E1 and E2 at P is a tangent vector to a regular curve

embedded in S and passing through P and hence it is a tangent to S at P .

Based on the previous statements, we see that the tangent plane of a surface at a given

point P on the surface can be given by:

r = rP + pE1 + qE2 (153)

where r is the position vector of an arbitrary point on the tangent plane, rP is the position

vector of the point P , p, q ∈ (−∞,∞) are real variables, and E1 and E2 are the surface

basis vectors at P . Alternatively, the tangent plane can be expressed in terms of the

normal vector n to the surface at P by:

(r− rP ) · n = 0 (154)

The tangent space at a specific point P of a surface is a property of the surface at P and

hence it is independent of the patch that contains P and the particular parameterization of

the surface. For any non-trivial vector v which is parallel to the tangent plane of a simple

and smooth surface S at a given point P on S, there is a curve in S passing through P

and represented parametrically by r(t) such that v = cdr
dt

where c 6= 0 is a real constant.

As a result of the last and the previous statements, a non-trivial vector is parallel to the

tangent plane of a surface S at a given point P iff it is equal to a tangent vector to S at

P .

The straight line passing through a given point P on a surface S in the direction of the

normal vector of S at P is called the normal line to S at P . The equation of this normal

line is given by:

r = rP + kn (155)

where r is the position vector of an arbitrary point on the normal line, rP is the position
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vector of the point P , k ∈ (−∞,∞) is a real variable, and n is the unit normal vector

to the surface at P . We remark that this normal line should not be confused with the

normal line of a surface curve C that passes through P which is usually called the principal

normal line of C (see § 2.2). Anyway, the two should be easily distinguished by noticing

their affiliation to surface or curve.

As stated before, a surface is regular at a given point P iff E1 × E2 6= 0 at P where

E1 = ∂ur and E2 = ∂vr are the tangent vectors to the coordinate curves at P . A surface

is regular iff E1×E2 6= 0 at any point on the surface. A regular curve (see § 2.1) of class
Cn on a sufficiently smooth surface is an image of a unique regular plane curve of class

Cn in the parameters plane, where in this statement we are considering each connected

part of the curve being embedded in a coordinate patch if there is no single patch that

contains the entire curve.

A “Monge patch” is a coordinate patch in a 3D space defined by a function in one of the

following three forms:

r(u, v) = (f(u, v), u, v) (156)

r(u, v) = (u, f(u, v), v) (157)

r(u, v) = (u, v, f(u, v)) (158)

where f is a differentiable function of the surface coordinates u and v. When f is of class

Cn then the coordinate patch is of this class.

A simply connected region on a surface means that a closed curve contained in the

region can be shrunk down continuously onto any point in the region without leaving the

region. In more simple terms, it means that the region contains no holes or gaps that

separate its parts. A simple surface is a continuously deformed plane by compression,

stretching and bending.[10] Examples of simple surface are cylinders, cones and elliptic

and hyperbolic paraboloids. A connected surface S is a simple surface which cannot be

entirely represented by the union of two disjoint open point sets in R3 where these sets

have non-empty intersection with S. Hence, for any two arbitrary points, P1 and P2, on S

there is a continuous curve which is totally embedded in S with P1 and P2 being its end

[10]There is a more technical and rigorous definition of simple surface which the interested readers are
advised to seek in the literature of topology.
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points. Examples of connected surface are planes, ellipsoids and cylinders.

A closed surface is a simple surface with no open edges. Examples of closed surface are

spheres and ellipsoids. A bounded surface is a surface that can be contained entirely in

a sphere of a finite radius such as ellipsoid and torus. A compact surface is a surface

which is bounded and closed like a torus or a Klein bottle (Fig. 28). If f is a differentiable

regular mapping from a surface S to a surface S̄, then if S is compact then S̄ is compact.

If S1 and S2 are two simple surfaces where S1 is connected and S2 is closed and contained

in S1, then the two surfaces are equal as point sets. As a result, a simple closed surface

cannot be a proper subset of a simple connected surface.

Figure 28: Klein bottle.

An orientable surface is a simple surface over which a continuously-varying normal

vector can be defined. Hence, spheres, cylinders and tori are orientable surfaces while the

Mobius strip (Fig. 1) is a non-orientable surface since a normal vector moved continuously

around the strip from a given point will return, following a complete round, to the point

in the opposite direction. Similarly, Klein bottle (Fig. 28) is another example of a non-

orientable surface. An oriented surface is an orientable surface over which the direction of

the normal vector is determined. An orientable surface which is connected can be oriented

in only one of two possible ways.

An elementary surface is a simple surface which possesses a single coordinate patch

basis, and hence it is an orientable surface which can be mapped bicontinuously to an

open set in the plane. Examples of elementary surface are planes, cones and elliptic
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paraboloids. A developable surface is a surface that can be flattened into a plane by

unfolding without local distortion by compression or stretching. It is called developable

because it can be developed into a plane by rolling the surface out on a plane without

compression or stretching. A characteristic feature of developable surface is that, like the

plane, its Riemann-Christoffel curvature tensor (see § 1.4.10) and Gaussian curvature (see

§ 4.5) are zero at every point on the surface. Cylinders and cones are obvious examples of

developable surface.

A topological property of a surface is a property which is invariant with respect to

injective bicontinuous mappings. An example of a topological property is compactness.

A differentiable regular mapping from a surface S to a surface S̄ is called conformal if

it preserves angles between oriented intersecting curves on the surface. The mapping

is described as direct if it preserves the sense of the angles and inverse if it reverses it.

Technically, the mapping is conformal if there is a function q(u, v) > 0 that applies to all

patches on the surface such that:

aαβ = q āαβ (α, β = 1, 2) (159)

where the unbarred and barred indexed a are the coefficients of the surface covariant

metric tensor in S and S̄ respectively. The above condition of conformal mapping may

be stated by saying that the coefficients of the first fundamental forms of the two surfaces

are proportional at their corresponding points. An example of conformal mapping is the

stereographic projection (Fig. 29) from the Riemann sphere to a plane. We remark that

stereographic projection is a mapping of the unit sphere onto a plane where each point

of the sphere is projected, through the line connecting this point to the north pole of the

sphere, onto the point of intersection of that line with the plane. This plane is the tangent

plane to the sphere at its south pole.

An isometry or isometric mapping of two surfaces is a one-to-one mapping from a surface

S to a surface S̄ that preserves distances. Hence, any arc in S is mapped onto an arc

in S̄ with equal length. The two surfaces S and S̄ are described as isometric surfaces.

An example of isometric mapping is the deformation of a rectangular plane sheet into a

cylinder with no local distortion by compression or stretching and hence the two surfaces

are isometric since all distances are preserved during this process. Isometry is a symmetric
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N

P1

P2

P1

P2

Figure 29: Stereographic projection where the points P1 and P2 on the unit sphere are
projected respectively on the points P1 and P2 on the plane with N representing the north
pole of the sphere. The plane is touching the sphere at its south pole.

relation and hence the inverse of an isometric mapping is an isometric mapping, that is if

f is an isometry from S to S̄, then f−1 is an isometry from S̄ to S (refer to § 6.5 for more

details).

An injective mapping from a surface S onto a surface S̄ is an isometry iff the coeffi-

cients of the first fundamental form (see § 3.5) for any patch on S are identical to the

corresponding coefficients of the first fundamental form of its image on S̄, that is:

E = Ē F = F̄ G = Ḡ (160)

where the unbarred and barred E,F,G are the coefficients of the first fundamental form of

the two surfaces at their corresponding points. As seen and will be seen, the coefficients of

the first fundamental form are the same as the coefficients of the surface covariant metric

tensor, that is:

a11 = E a12 = a21 = F a22 = G (161)
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and hence these conditions mean that the two surfaces have the same metric at their

corresponding points. The mapping that preserves distances but it is not injective is

described as local isometry. The statement about the equality of the coefficients of the

first fundamental form on the two surfaces also applies to local isometry.

Since intrinsic properties are dependent only on the coefficients of the first fundamental

form of the surface, intrinsic properties of the surface are invariant with respect to isometric

mappings. As a consequence of the equality of corresponding lengths of two isometric

surfaces, the corresponding angles are also equal. However, the reverse is not true, that

is a mapping that attains the equality of corresponding angles does not necessarily ensue

the equality of corresponding lengths. Hence, isometric mapping is more restrictive than

conformal mapping. This means that every isometric mapping is conformal but not every

conformal mapping is isometric, so isometric mapping is a subset of conformal mapping.

This can be seen by comparing Eqs. 159 and 160 where the latter corresponds to the

former with q = 1. In fact, conformal mapping can be set up between any two surfaces

and in many different ways but this is not always possible for isometric mapping. Isometric

mapping also preserves areas of mapped surfaces since it preserves lengths and angles.

A surface generated by the collection of all the tangent lines to a given space curve is

called the “tangent surface” of the curve while the tangent lines are called the generators

or the rulings of the surface. Similarly, a “branch” of the tangent surface of a curve C

at a given point P on the curve refers to the tangent line of C at P . In this context,

we should remark that the “tangent surface” of a curve should not be confused with the

aforementioned “tangent plane” of a surface at a given point.

The tangent surface of a curve may be demonstrated visually by a taut flexible string

connected to the curve where it scans the surface while being directed tangentially at each

point of the curve at its base. However, the taut string visualization should extend to

both tangential directions to give the full extent of the tangent surface (see § 6.6 for more

details).

If Ce is a space curve with a tangent surface ST and Ci is a curve embedded in ST and

is orthogonal to all the tangent lines of Ce at their intersection points, then Ci is called

an involute of Ce while Ce is called an evolute of Ci (see § 5.3).
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3.2 Mathematical Description of Surfaces

We start by assuming a parametric representation for the surface, where each one of the

space coordinates (x, y, z) on the surface is a real differentiable function of the two surface

coordinates (u, v). The position vector of a point P on the surface as a function of the

surface coordinates is then given by:

r(u, v) = x(u, v)e1 + y(u, v)e2 + z(u, v)e3 (162)

where the indexed e are the Cartesian orthonormal basis vectors in the three directions.

It is also assumed that ∂ur and ∂vr are linearly independent and hence they are not

parallel or anti-parallel, that is:
∂r

∂u
× ∂r

∂v
6= 0 (163)

As seen before, this is a sufficient and necessary condition for the surface to be “regular”

at a given point. The point is also described as “regular”; otherwise it is “singular” if the

condition is violated. The surface is regular on Ω, a closed subset of R2, if it is regular at

each interior point of Ω. The regularity condition guarantees that the surface mapping is

one-to-one and possesses a continuous inverse. It also ensures the existence of a tangent

plane and a normal vector where this condition is satisfied.

To express the position vector of P in tensor notation, we re-label the space and surface

coordinates as:

(x, y, z) ≡ (x1, x2, x3) (u, v) ≡ (u1, u2) (164)

and hence the position vector of Eq. 162 becomes:

r(u1, u2) = xi(u1, u2)ei (i = 1, 2, 3) (165)

We note that relabeling the surface coordinates is not necessary in this notation but it

will be useful in the future for other tensor notations. To define a surface grid serving

as a curvilinear positioning system for the surface, one of the surface coordinate variables

is held fixed in turn while the other is varied (Figs. 20 and 30). Hence, each one of the
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following two surface functions:

r(u1, c2) r(c1, u
2) (166)

defines a coordinate curve for the surface, where c1 and c2 are given real constants. These

two coordinate curves meet at the common surface point (c1, c2). The grid is then generated

by varying c1 and c2 uniformly to obtain coordinate curves at regular intervals in its

domain.

u 1
coordinate curves

u2 coordinate curves

E1
E2

n

Figure 30: Surface coordinate grid with the surface covariant basis vectors, E1 and E2,
and the normal vector to the surface n at a particular point on the surface.

Corresponding to each one of the surface coordinate curves in the above order, a tangent

vector to the curve at a given point on the curve is defined by:

Eα =
∂r

∂uα
=
∂xi

∂uα
ei = xiαei (167)

where the derivatives are evaluated at that point, and α = 1, 2 and i = 1, 2, 3. So in brief,

E1 is tangent to the r(u1, c2) coordinate curve and E2 is tangent to the r(c1, u
2) coordinate

curve. These tangent vectors serve as a set of basis vectors for the surface, and for each

regular point on the surface they generate, by their linear combination, any vector in the
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surface at that point.[11] They also define, by their linear combination, a plane tangent to

the surface at that point. The plane generated by the linear combination of E1 and E2

is the aforementioned tangent space, TPS, to the surface at point P as described earlier,

and hence E1(u1
P , u

2
P ) and E2(u1

P , u
2
P ) form a basis for this space where the subscript P is

a reference to the point P .

We should remark that the surface basis vectors, E1 and E2, are defined on all points

of the surface and not only on the points of the above-described regularly spaced grid

of coordinate curves which is presented in that way for pedagogical reasons. Also, a

coordinate curve is any surface curve along which only one coordinate variable, u1 or u2,

varies regardless of being part of the above grid or not. Another important remark is that

the surface coordinate curves are orthogonal at every point on the surface iff the surface

metric tensor (see § 3.3) is diagonal everywhere on the surface. This is equivalent to having

an identically vanishing F , which is the coefficient of the first fundamental form, as can be

seen for example from Eq. 235 where the dot product will vanish due to the orthogonality

of E1 and E2 which are the tangents to the coordinate curves. When this condition is

satisfied, the coordinate system of the surface is described as orthogonal. Also, the surface

coordinate curves are orthogonal at any particular point on the surface iff F = 0 at that

point even if this condition is not satisfied over the entire surface.

Following the definition of the surface basis vectors, E1 and E2, a normal vector to

the surface at the given point is then defined as the cross product of these tangent basis

vectors: E1 × E2. This normal vector, like E1 and E2, is a function of position on the

surface and hence in general it varies continuously, in magnitude and direction, as it moves

around the surface. This normal vector can be scaled by its magnitude to produce a unit

normal vector n to the surface at that point, that is:[12]

n =
E1 × E2

|E1 × E2|
=

E1 × E2√
a

(168)

[11]This should be understood in an infinitesimal sense or, equivalently, as a vector lying in the tangent
plane of the surface at the given point, as will be seen next.

[12]Using well-known identities from vector algebra plus what we will see later in this chapter, we obtain:

|E1 ×E2| =
√
|E1|2 |E2|2 − (E1 ·E2)

2
=

√
a11a22 − (a12)

2
=
√
a

and hence the above equality is fully justified.
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where a is the determinant of the surface covariant metric tensor (see § 3.3). Based on

the cross product rule, the vectors of the triad E1,E2,n form a right handed system (see

Fig. 30).

On dot producting both sides of Eq. 168 with n, which is a unit vector, we obtain:

n · (E1 × E2) =
√
a (169)

We may also take the modulus of both sides of Eq. 168 (or just compare the denominators

of the second equality of Eq. 168) to obtain:

|E1 × E2| =
√
a (170)

The surface basis vectors, Eα, are symbolized in full tensor notation by:

[Eα]i ≡ Ei
α =

∂xi

∂uα
= xiα (i = 1, 2, 3 and α = 1, 2) (171)

and hence they can be regarded as 3D contravariant space vectors or as 2D covariant

surface vectors (refer to § 3.3 for further details).

It can be shown that the covariant form of the unit normal vector n to the surface is

given in full tensor notation by:

ni =
1

2
εαβεijkx

j
αx

k
β (172)

where xjα = ∂xj

∂uα
and similarly for xkβ, and εαβ and εijk are the absolute permutation tensors

for the surface and space. The implication of this equation, which defines n in terms of

the surface basis vectors xjα and xkβ, is that n is a space vector which is independent of the

choice of the surface coordinates, u1 and u2, in support of the geometric intuition. Since

n is normal to the surface, we have:

gijn
ixjα = 0 (173)

which is a statement, in tensor notation, that n is orthogonal to every vector in the tangent

space of the surface at the given point. In this equation, gij is the space metric tensor.
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Although E1 and E2 are linearly independent they are not necessarily orthogonal or of

unit length. However, they can be orthonormalized as follows:

E1 =
E1

|E1|
=

E1√
a11

E2 =
a11E2 − a12E1√

a11a
(174)

where a is the determinant of the surface covariant metric tensor (see § 3.3), the indexed a
are the coefficients of this tensor, and the underlined vectors are orthonormal basis vectors,

that is:

E1 · E1 = 1 E2 · E2 = 1 E1 · E2 = 0 (175)

This can be verified by conducting the dot products of the last equation using the vectors

defined in Eq. 174.

The transformation rules from one surface coordinate system to another surface coor-

dinate system, notated with unbarred (u1, u2) and barred (ū1, ū2) symbols respectively,

where:

u1 = u1(ū1, ū2) u2 = u2(ū1, ū2) (176)

ū1 = ū1(u1, u2) ū2 = ū2(u1, u2) (177)

are similar to the general rules for the transformation between coordinate systems in a

general nD space, as explained in the textbooks of tensor analysis.

Following a transformation from an unbarred surface coordinate system to a barred

surface coordinate system, the surface becomes a function of the barred coordinates, and

a new set of basis vectors for the surface, which are the tangents to the coordinate curves

of the barred system, are defined by the following equations:

Ē1 =
∂r

∂ū1
=

∂r

∂u1

∂u1

∂ū1
+

∂r

∂u2

∂u2

∂ū1
= E1

∂u1

∂ū1
+ E2

∂u2

∂ū1
(178)

Ē2 =
∂r

∂ū2
=

∂r

∂u1

∂u1

∂ū2
+

∂r

∂u2

∂u2

∂ū2
= E1

∂u1

∂ū2
+ E2

∂u2

∂ū2
(179)

These equations, which correlate the surface basis vectors in the barred and unbarred

surface coordinate systems, can be compactly presented in tensor notation as:

∂xi

∂ūα
=
∂xi

∂uβ
∂uβ

∂ūα
(180)
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where i = 1, 2, 3 and α, β = 1, 2.

A set of contravariant basis vectors for the surface may also be defined as the gradient

of the surface coordinate curves, that is:

Eα = ∇uα (181)

In tensor notation, this basis may be given by:

[Eα]i ≡ Eα
i =

∂uα

∂xi
= xαi (182)

Hence, these basis vectors can be regarded as 2D contravariant surface vectors or as 3D

covariant space vectors.

The contravariant and covariant forms of the surface basis vectors, Eα and Eα, are

obtained from each other by the index shifting operator for the surface, that is:

Eα = aαβE
β Eα = aαβEβ (183)

where the indexed a are the covariant and contravariant forms of the surface metric tensor

(see § 3.3). The contravariant and covariant forms of the surface basis vectors, Eα and

Eα, are reciprocal systems and hence they satisfy the following reciprocity relations:

Eα · Eβ = δ βα ≡ aβα Eα · Eβ = δαβ ≡ aαβ (184)

where the indexed δ and a are the mixed type of the Kronecker delta and surface metric

tensors.

The surface basis vectors in their covariant and contravariant forms, xiα and xβj , and the

unit normal vector to the surface nk are linked by the following relation:

xiα = εijkεαβx
β
j nk (185)

This equation means that the given product (which looks like a vector cross product) of

the surface contravariant basis vector xβj and the unit normal vector nk produces a surface

covariant basis vector xiα and hence it is perpendicular to both. Being a surface basis

vector implies orthogonality to the unit normal vector, while being a covariant surface
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basis vector implies here orthogonality to the contravariant surface basis vector.

3.3 Surface Metric Tensor

The surface metric tensor is an absolute, rank-2, 2×2 tensor. As we will see, all forms of this

tensor (i.e. covariant, contravariant and mixed) are symmetric. In differential geometry,

the surface metric tensor aαβ may be called the first groundform or the fundamental surface

tensor. We remark that the coefficients of the metric tensor are real numbers. Following

the example of the metric in general nD spaces, the surface metric tensor of a 2D surface

embedded in a 3D Euclidean flat space with metric gij = δij is given in its covariant form

by:

aαβ = Eα · Eβ =
∂r

∂uα
· ∂r

∂uβ
=
∂xi

∂uα
∂xi

∂uβ
(186)

where the indexed x and u are the space Cartesian coordinates and the surface coordinates

respectively, and i = 1, 2, 3 and α, β = 1, 2.

The surface and space metric tensors in a general Riemannian space with general metric

gij are related by:

aαβ = Eα · Eβ =
∂r

∂uα
· ∂r

∂uβ
= gij

∂xi

∂uα
∂xj

∂uβ
= gijx

i
αx

j
β (187)

where aαβ and gij are respectively the surface and space covariant metric tensors, the

indexed x and u are general coordinates of the space and surface respectively, and i, j =

1, 2, 3 and α, β = 1, 2. It is obvious that Eq. 186 is a special instance of Eq. 187 for the

case of a flat space with a Cartesian system where the space metric is the unity tensor.

Eq. 187 is the fundamental relation that provides the crucial link between the surface

and its enveloping space. As indicated before, the partial derivatives in this relation, ∂xi

∂uα

and ∂xj

∂uβ
, may be considered as contravariant rank-1 3D space tensors or as covariant rank-

1 2D surface tensors. Hence, a tensor like ∂xi

∂uα
is usually labeled as xiα to indicate that it

represents two surface vectors which are contravariantly-transformed with respect to the

three space coordinates xi:

xi1 =

(
∂x1

∂u1
,
∂x2

∂u1
,
∂x3

∂u1

)
xi2 =

(
∂x1

∂u2
,
∂x2

∂u2
,
∂x3

∂u2

)
(188)
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or three space vectors which are covariantly-transformed with respect to the two surface

coordinates uα:

x1
α =

(
∂x1

∂u1
,
∂x1

∂u2

)
x2
α =

(
∂x2

∂u1
,
∂x2

∂u2

)
x3
α =

(
∂x3

∂u1
,
∂x3

∂u2

)
(189)

Any surface vector Aα (α = 1, 2), defined as a linear combination of the surface basis

vectors E1 and E2, can also be considered as a space vector Ai (i = 1, 2, 3) where the two

representations are linked through the relation:

Ai =
∂xi

∂uα
Aα = xiαA

α (i = 1, 2, 3 and α = 1, 2) (190)

Now, since we have:

aαβA
αAβ = gijx

i
αx

j
βA

αAβ (Eq. 187) (191)

= gijx
i
αA

αxjβA
β

= gijA
iAj (Eq. 190)

then we see that the two representations are equivalent, that is they define a vector of the

same magnitude and direction.

The contravariant form of the surface metric tensor is defined as the inverse of the surface

covariant metric tensor, that is:

aαγ aγβ = δαβ aαγ a
γβ = δ βα (192)

Since the first fundamental form is positive definite (see § 3.5), and hence a > 0, the

existence of an inverse is guaranteed. Similar to the metric tensor in general nD spaces,

the covariant and contravariant forms of the surface metric tensor, aαβ and aαβ, are used

for lowering and raising indices and related tensor operations.

The covariant type of the surface metric tensor aαβ is given in matrix form by:

[aαβ] =

[
a11 a12

a21 a22

]
=

[
E F

F G

]
(193)
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where the coefficients aαβ are as defined above (see Eq. 187), and E,F,G are the coeffi-

cients of the first fundamental form (refer to § 3.5). Because the contravariant form of the

surface metric tensor aαβ is the inverse of its covariant form, it is given by:

[
aαβ
]

=

[
a11 a12

a21 a22

]
(194)

=
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]

=
1

EG− F 2

[
G −F
−F E

]

where the symbols are as defined previously. As seen in the above equation, this tensor is

symmetric and hence a12 = a21. As indicated before, the mixed form of the surface metric

tensor aαβ is the identity tensor, that is:

[
aαβ
]

=
[
δαβ
]

=

[
1 0

0 1

]
(195)

Following the style of the space metric tensor, the surface metric tensor transforms

between the barred and unbarred surface coordinate systems as:

āαβ = aγδ
∂uγ

∂ūα
∂uδ

∂ūβ
(196)

where the indexed ā and a are the surface covariant metric tensors in the barred and

unbarred systems respectively. The contravariant and mixed forms of the surface metric

tensor also follow similar transformation rules to their counterparts of the space metric

tensor.

Similar to the determinants of the space metric, the determinants of the surface met-

ric in the barred and unbarred coordinate systems are linked through the Jacobian of

transformation by the following relation:

ā = J2a (197)
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where ā and a are the determinants of the covariant form of the surface metric tensor

in the barred and unbarred systems respectively and J
(
=
∣∣∂u
∂ū

∣∣) is the Jacobian of the

transformation between the two surface systems (refer to § 1.4.3). This relation can be

obtained directly from Eq. 196 by taking the determinant of the two sides of that equation.

The Christoffel symbols of the first kind [αβ, γ] for the surface are linked to the surface

basis vectors and their partial derivatives by the following relation:

[αβ, γ] =
∂Eα

∂uβ
· Eγ (198)

Hence, the relation between the partial derivative of the surface covariant metric tensor

and the Christoffel symbols of the first kind is given by:

∂aαβ
∂uγ

=
∂ (Eα · Eβ)

∂uγ
=
∂Eα

∂uγ
· Eβ + Eα ·

∂Eβ

∂uγ
= [αγ, β] + [βγ, α] (199)

A similar relation between the derivative of the surface metric tensor and the Christoffel

symbols of the second kind can be obtained from the previous equation by using the index

shifting operator of the surface:

∂aαβ
∂uγ

= aδβΓδαγ + aδαΓδβγ (200)

For a Monge patch of the form r(u, v) = (u, v, f(u, v)), the surface covariant metric

tensor a is given by:

a ≡ IS =

[
1 + f 2

u fufv

fufv 1 + f 2
v

]
(201)

where the subscripts u and v stand for partial derivatives of f with respect to these surface

coordinates, and IS is the tensor of the first fundamental form of the surface (see § 3.5).
It is noteworthy that scaling a surface up or down by a constant factor c > 0, which

is equivalent to scaling all the distances on the surface by that factor, can be done by

multiplying the surface metric tensor by c2. This can be seen, for example, from Eq. 187.

In the following subsections, we investigate arc length, area and angle between two curves

on a surface. All these entities depend in their definition and quantification on the metric

tensor. We will see that all these entities, due to their exclusive dependence on the metric

tensor, are invariant under isometric transformations. We will also see that their geometric
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and tensor formulations are identical to those in a general nD space with the use of the

surface metric tensor and the surface representation of the involved quantities.

3.3.1 Arc Length

The length of an infinitesimal line element of a surface curve represents the resultant

growth along the element in the u and v directions between its two end points (see Fig.

31). Following the example of the length of an element of arc of a curve embedded in a

general nD space, the length of an element of arc of a curve on a 2D surface, ds, is given

in its general form by (see Eqs. 167 and 187):

(ds)2 = dr · dr =
∂r

∂uα
· ∂r

∂uβ
duαduβ = Eα · Eβ du

αduβ = aαβdu
αduβ (202)

where aαβ is the covariant type of the surface metric tensor, r is the spatial representation

of the surface curve and α, β = 1, 2.

C

u coordinate curve

v coordinate curve

dv

du

ds

Figure 31: The length of an infinitesimal line element, ds, of a surface curve C where du
and dv are used to label infinitesimal element growths on the coordinate curves.

From the above formula we have the following identity which is valid at each point of a
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naturally parameterized surface curve:

aαβ
duα

ds

duβ

ds
= 1 (203)

Based on the above formula (Eq. 202), the length of a segment of a t-parameterized curve

between a starting point corresponding to t = t1 and a terminal point corresponding to

t = t2 is given by:

L =

ˆ
I

ds (204)

=

ˆ t2

t1

ds

dt
dt

=

ˆ t2

t1

√
aαβ

duα

dt

duβ

dt
dt

=

ˆ t2

t1

√
a11

(
du1

dt

)2

+ 2a12
du1

dt

du2

dt
+ a22

(
du2

dt

)2

dt

=

ˆ t2

t1

√
E

(
du1

dt

)2

+ 2F
du1

dt

du2

dt
+G

(
du2

dt

)2

dt

where I ⊂ R is an interval on the real line and E,F,G are the coefficients of the first

fundamental form. The fourth equality is based on the equality: a12 = a21 because the

metric tensor is symmetric, as seen earlier.

For a Monge patch of the form r(u, v) = (u, v, f(u, v)), the length of an element of arc

of a surface curve is given by:

ds =
√

(1 + f 2
u) dudu+ 2fufvdudv + (1 + f 2

v ) dvdv (205)

where the subscripts u and v stand for partial derivatives of f with respect to these surface

coordinates. The last equation can be obtained directly from Eq. 202 using the coefficients

of the metric tensor from Eq. 201.

It is noteworthy that the length of a surface curve is an intrinsic property since it depends

on the metric tensor only. Also, the length of a surface curve is invariant with respect to

the type of parameterization and isometric transformations.
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3.3.2 Surface Area

The area of an infinitesimal surface element of a space surface represents the resultant

growth in the element as a result of the growth in the u and v directions along the

boundary curves that define the element (see Fig. 32).

u coordinate curve
dv

du

dσ

v coordinate curve

Figure 32: The area of an infinitesimal surface element, dσ, of a space surface where du
and dv are used to label infinitesimal element growths on the coordinate curves.

The area of an infinitesimal element of a surface, dσ, in the neighborhood of a point P

on the surface is given by (see Eqs. 170 and 187):

dσ = |dr1 × dr2| (206)

= |E1 × E2| du1du2

=

√
|E1|2 |E2|2 − (E1 · E2)2 du1du2

=

√
a11a22 − (a12)2 du1du2

=
√
EG− F 2 du1du2

=
√
a du1du2

where E1 and E2 are the surface covariant basis vectors, E,F,G are the coefficients of the

first fundamental form, a (= a11a22 − a12a21) is the determinant of the surface covariant

metric tensor and the indexed a are its elements. All the quantities in these expressions

belong to the point P . We also assume that du1du2 is positive.

The area of a surface patch S : Ω→ R3, where Ω is a proper subset of the R2 parameters
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plane, is given by:

σ =

ˆ
Ω

dσ (207)

=

¨
Ω

√
a11a22 − (a12)2 du1du2

=

¨
Ω

√
EG− F 2 du1du2

=

¨
Ω

√
a du1du2

where the symbols are as defined above. The patch S should be injective, sufficiently

differentiable, and regular on the interior of Ω. The above formulae for the area are

reminder of the volume formulae in a 3D space, so the area can be regraded as a volume

in a 2D space.

As stated before, the areas of two corresponding surface elements and surface patches

on two isometric surfaces are equal. This can be seen from the above formulae since the

metric tensor is identical at the corresponding points of two isometric surfaces. For a

Monge patch of the form r(u, v) = (u, v, f(u, v)), the surface area is given by:

σ =

¨
Ω

√
1 + f 2

u + f 2
v dudv (208)

where the subscripts u and v stand for partial derivatives of f with respect to these surface

coordinates. The last equation can be obtained directly from Eq. 207 using the coefficients

of the metric tensor from Eq. 201.

3.3.3 Angle Between Two Surface Curves

The angle between two sufficiently smooth surface curves intersecting at a given point

on the surface is defined as the angle between their tangent vectors at that point (Fig.

33). As there are two opposite directions for each curve, corresponding to the two senses

of traversing the curve, there are two main angles θ1 and θ2 such that θ1 + θ2 = π. The

principal angle between the two curves is usually taken as the smaller of the two angles and

hence the directions are determined accordingly. In fact, there are still two possibilities

for the directions but this has no significance as far as the angle between the two curves

is concerned.
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C2

C1

θ

t2

t1
P

Figure 33: The angle between two surface curves, C1 and C2, as the angle θ between their
tangents, t1 and t2, at the point of intersection P .

The angle θ between two surface curves passing through a given point P on the surface

with tangent vectors A and B at P is given by:

cos θ =
A ·B
|A| |B| =

aαβA
αBβ√

aγδAγAδ
√
aεζBεBζ

(209)

where the indexed a are the elements of the surface covariant metric tensor and the Greek

indices run over 1, 2. If A and B are two unit surface vectors with surface representations

Aα and Bβ and space representations Ai and Bj then the angle θ between the two vectors

is given by:

cos θ = aαβA
αBβ (Eq. 209) (210)

= gijx
i
αx

j
βA

αBβ (Eq. 187)

= gijA
iBj (Eq. 190)

where α, β = 1, 2 and i, j = 1, 2, 3. Hence, the surface and space representations of the

two vectors define the same angle. The vectors A and B (whether unit vectors or not) are

orthogonal iff aαβA
αBβ = 0 at P .

As seen earlier, the coordinate curves at a given point P on a surface are orthogonal iff
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a12 ≡ F = 0 at P . This can be seen from Eqs. 187 and 235 where the dot products will

vanish due to the orthogonality of E1 and E2 which are the tangents to the coordinate

curves. The corresponding angles of two isometric surfaces, like the corresponding lengths

and areas, are equal as can be seen from the above formulae considering that the metric

tensor is identical at the corresponding points. However, the reverse is not true in general,

that is the equality of angles on two surfaces related by a given mapping, as in the conformal

mapping, does not lead to the equality of the corresponding lengths on the two mapped

surfaces, as explained before. This is due to the fact that the equality of angles requires the

proportionality of the two metric tensors at the corresponding points but not necessarily

the equality (see Eq. 159). This may be concluded from Eq. 209 where any proportionality

factor will be canceled out.

The sine of the angle θ between two surface unit vectors, A and B, is given by:

sin θ = εαβA
αBβ (211)

where εαβ is the 2D absolute permutation tensor. The sine in this formula is numerically

equal in magnitude to the area of the parallelogram with sides A and B. Based on the

last formula, the sufficient and necessary condition for A and B to be orthogonal is that:

∣∣εαβAαBβ
∣∣ = 1 (212)

3.4 Surface Curvature Tensor

The surface curvature tensor is an absolute, rank-2, 2 × 2 tensor. As we will see, the

covariant and contravariant forms of this tensor are symmetric. The surface curvature

tensor bαβ may also be called the second groundform. We note that the coefficients of the

curvature tensor are real numbers. The elements of the surface covariant curvature tensor,

bαβ, are given by:

bαβ = − ∂r

∂uα
· ∂n

∂uβ
= −Eα ·

∂n

∂uβ
= −1

2

(
∂r

∂uα
· ∂n

∂uβ
+

∂r

∂uβ
· ∂n

∂uα

)
(213)
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and also by:

bαβ =
∂2r

∂uα∂uβ
· n =

∂Eα

∂uβ
· n =

∂Eα

∂uβ
·
(

E1 × E2√
a

)
=

∂Eα
∂uβ
· (E1 × E2)√

a
(214)

where Eq. 168 is used in the last two steps. We note that the equality:

∂Eα

∂uβ
· n = −Eα ·

∂n

∂uβ
(215)

which is seen by comparing Eqs. 213 and 214 is based on the equality:

∂ (Eα · n)

∂uβ
=
∂ (0)

∂uβ
= 0 (216)

plus the product rule of differentiation. Considering Eq. 214, the symmetry of the surface

covariant curvature tensor (i.e. b12 = b21) follows from the fact that:

∂Eα

∂uβ
=

∂2r

∂uβ∂uα
=

∂2r

∂uα∂uβ
=
∂Eβ

∂uα
(217)

In full tensor notation, the surface covariant curvature tensor is given by:

bαβ =
1

2
εγδεijkx

i
α;βx

j
γx

k
δ =

1√
a
εijkx

i
α;βx

j
1x

k
2 (218)

where a is the determinant of the surface covariant metric tensor and the epsilons are

the absolute permutation tensors of 2D and 3D spaces in their contravariant and covari-

ant forms. This formula will simplify to the following when the space coordinates are

rectangular Cartesian:

bαβ =
1√
a
εijk

∂2xi

∂uα∂uβ
xj1x

k
2 (219)

The surface curvature tensor obeys the same transformation rules as the surface metric

tensor. For example, for the transformation between the barred and unbarred surface

coordinate systems we have (see Eq. 196):

b̄αβ = bγδ
∂uγ

∂ūα
∂uδ

∂ūβ
(220)

where the indexed b̄ and b are the coefficients of the covariant curvature tensor in the
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barred and unbarred systems respectively. Similarly, we have (see Eq. 197):

b̄ = J2b (221)

where b̄ and b are the determinants of the surface covariant curvature tensor in the barred

and unbarred systems respectively and J
(
=
∣∣∂u
∂ū

∣∣) is the Jacobian of the transformation

between the two surface coordinate systems.

The surface covariant curvature tensor is given in matrix form by:

b ≡ [bαβ] =

[
b11 b12

b21 b22

]
=

[
e f

f g

]
(222)

where e, f, g are the coefficients of the second fundamental form of the surface (refer to §
3.6). This is a symmetric matrix as indicated earlier and as seen in the last part of the

equation.

The mixed form of the surface curvature tensor bαβ is given by:

[
bαβ
]

= [aαγbγβ] =
1

a

[
G −F
−F E

][
e f

f g

]
=

1

a

[
eG− fF fG− gF
fE − eF gE − fF

]
(223)

where E,F,G, e, f, g are the coefficients of the first and second fundamental forms and

a = EG − F 2 is the determinant of the surface covariant metric tensor. As seen, the

coefficients of bαβ depend on the coefficients of both the first and second fundamental

forms. The mixed form b β
α = bαγa

γβ is the transpose of the above form.

The contravariant form of the surface curvature tensor is given by:

[
bαβ
]

=
[
aαγb β

γ

]
(224)

=
[
bαγa

γβ
]

=
1

a2

[
eG2 − 2fFG+ gF 2 fEG− eFG− gEF + fF 2

fEG− eFG− gEF + fF 2 gE2 − 2fEF + eF 2

]

where the symbols are as explained above. Like the covariant form, the contravariant form

is a symmetric tensor as indicated before and as seen above.

As we will see, the trace of the surface mixed curvature tensor bαβ is twice the mean
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curvature H (see § 4.6), while its determinant is the Gaussian curvature K (see § 4.5),
that is:

H =
tr(bαβ)

2
K = det(bαβ) (225)

Because the trace and the determinant of a tensor are its main two invariants under per-

missible coordinate transformations (refer to similarity transformations of linear algebra),

then H and K are invariant, as will be established later in the book.

The surface covariant curvature tensor of a Monge patch of the form r(u, v) = (u, v, f(u, v))

is given by:

b ≡ [bαβ] =
1√

1 + f 2
u + f 2

v

[
fuu fuv

fvu fvv

]
(226)

where the subscripts u and v stand for partial derivatives of f with respect to these surface

coordinates. Since fuv = fvu, the tensor is symmetric as it should be. The equality:

fuv = fvu is based on the well known continuity condition which is fully explained in any

standard textbook on calculus.

The covariant curvature tensor of a surface and the Riemann-Christoffel curvature tensor

of the first kind are linked by the following relation:

Rαβγδ = bαγbβδ − bαδbβγ (227)

This relation may also be given in terms of the Riemann-Christoffel curvature tensor of

the second kind using the index raising operator for the surface, that is:

aαωRωβγδ = Rα
βγδ = bαγbβδ − bαδbβγ (228)

From Eqs. 88 and 227, it can be concluded that the surface covariant curvature tensor

and the surface Christoffel symbols of the first and second kind are related by:

bαγbβδ − bαδbβγ =
∂ [βδ, α]

∂γ
− ∂ [βγ, α]

∂δ
+ [αδ, ω] Γωβγ − [αγ, ω] Γωβδ (229)

Similarly, from Eqs. 89 and 228, it can be concluded that the surface curvature tensor
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and the surface Christoffel symbols of the second kind are related by:

bαγbβδ − bαδbβγ =
∂Γαβδ
∂γ
−
∂Γαβγ
∂δ

+ ΓωβδΓ
α
ωγ − ΓωβγΓ

α
ωδ (230)

Considering the fact that the 2D Riemann-Christoffel curvature tensor has only one

degree of freedom (see § 1.4.10) and hence it possesses a single independent non-vanishing

component which is represented by R1212, we see that Eq. 227 has only one independent

component which is given by:

R1212 = b11b22 − b12b21 = b (231)

where b is the determinant of the surface covariant curvature tensor.

Equation 227 also shows that each one of the following provisions:

Rαβγδ = 0 and bαβ = 0 (α,β,γ,δ=1,2) (232)

if satisfied identically is a sufficient and necessary condition for having a flat 2D space.

However, for a plane surface all the coefficients of the Riemann-Christoffel curvature ten-

sor and the coefficients of the surface curvature tensor vanish identically throughout the

surface, but for a surface which is isometric to plane the coefficients of the Riemann-

Christoffel curvature tensor vanish identically but not necessarily the coefficients of the

surface curvature tensor. This is based on the fact that having a zero determinant does

not imply having a zero tensor (see Eq. 231). So, as stated previously, the provision

Rαβγδ = 0 is a sufficient and necessary condition for having an intrinsically flat space,

while the provision bαβ = 0 is a sufficient and necessary condition for having an extrinsi-

cally flat space. Having an extrinsically flat space implies having an intrinsically flat space

since a curvature that cannot be observed from outside the space cannot be seen from

inside the space.

From Eqs. 88 and 227, we see that the Riemann-Christoffel curvature tensor can be

expressed in terms of the coefficients of the surface curvature tensor as well as in terms

of the coefficients of the surface metric tensor where the two sets of coefficients are linked

through Eq. 229. This does not mean that Riemann-Christoffel curvature is an extrinsic

property but it means that some intrinsic properties can also be defined in terms of extrinsic
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parameters. It should be noticed that the sign of the surface curvature tensor (i.e. the sign

of its coefficients) is dependent on the choice of the direction of the unit normal vector to

the surface, n, and hence the sign of the coefficients will be reversed if the direction of n

is reversed. This can be seen, for example, from Eq. 214.

3.5 First Fundamental Form

As indicated previously, the first fundamental form, which is based on the metric, encom-

passes all the intrinsic information about the surface that a 2D inhabitant of the surface

can obtain from measurements performed on the surface without appealing to an exter-

nal dimension. In the old books, the first fundamental form may be labeled as the first

fundamental quadratic form.

The first fundamental form IS of the length of an element of arc of a curve on a surface

is a quadratic expression given by:

IS = (ds)2 (233)

= dr · dr
=

∂r

∂uα
· ∂r

∂uβ
duαduβ

= Eα · Eβ du
αduβ

= aαβdu
αduβ

= E(du1)2 + 2F du1du2 +G(du2)2

where E,F,G, which in general are continuous variable functions of the surface coordinates

u1 and u2, are given by:

E = a11 = E1 · E1 =
∂r

∂u1
· ∂r

∂u1
= gij

∂xi

∂u1

∂xj

∂u1
(234)

F = a12 = E1 · E2 =
∂r

∂u1
· ∂r

∂u2
= gij

∂xi

∂u1

∂xj

∂u2
= E2 · E1 = a21 (235)

G = a22 = E2 · E2 =
∂r

∂u2
· ∂r

∂u2
= gij

∂xi

∂u2

∂xj

∂u2
(236)

where the indexed a are the elements of the surface covariant metric tensor, the indexed x

are the general coordinates of the enveloping space and gij is its covariant metric tensor.
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For a flat space with a Cartesian coordinate system xi, the space metric is gij = δij and

hence the above equations become:

E =
∂xi

∂u1

∂xi

∂u1
(237)

F =
∂xi

∂u1

∂xi

∂u2
(238)

G =
∂xi

∂u2

∂xi

∂u2
(239)

The first fundamental form can be cast in the following matrix form:

IS =
[
du1 du2

] [ E1

E2

]
·
[

E1 E2

] [ du1

du2

]
(240)

=
[
du1 du2

] [ E1 · E1 E1 · E2

E2 · E1 E2 · E2

][
du1

du2

]

=
[
du1 du2

] [ E F

F G

][
du1

du2

]

=
[
du1 du2

] [ a11 a12

a21 a22

][
du1

du2

]
= v IS vT

where v is a direction vector, vT is its transpose, and IS is the first fundamental form

tensor which is equal to the surface covariant metric tensor. Hence, the matrix associated

with the first fundamental form is the covariant metric tensor of the surface. We remark

that the notation regarding the dot product operation between two matrices in the first

line of Eq. 240 may not be a standard one. We also note that while the coefficients of the

first fundamental form depend on the position on the surface and hence they are functions

of the surface coordinates but not the direction, the first fundamental form is a function

of both position and direction.

The first fundamental form is not a unique characteristic of the surface and hence two ge-

ometrically different surfaces as seen from the enveloping space, such as plane and cylinder,

can have the same first fundamental form. Such surfaces are different extrinsically as seen

from the embedding space although they are identical intrinsically as viewed internally
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from the surface by a 2D inhabitant.

The first fundamental form is positive definite at regular points of 2D surfaces; hence its

coefficients are subject to the following conditions:

E > 0 and det(IS) = EG− F 2 > 0 (241)

As indicated earlier, the above conditions imply G > 0 since these coefficients are real.

It is noteworthy that the condition of positive definiteness may be amended to allow for

metrics based on coordinate systems with imaginary coordinates as it is the case in the

coordinate systems of the Minkowski space (see § 1.4.7), but this is out of the scope of the
present book whose focus is the geometry of space curves and surfaces in a static sense

and hence all metrics considered in this book are positive definite.

As indicated above, the first fundamental form encompasses the intrinsic properties of

the surface geometry. Hence, as seen in § 3.3, the first fundamental form is used to define

and quantify things like arc length, area and angle between curves on a surface based

on its qualification as a metric. For example, Eq. 204 shows that the length of a curve

segment on a surface is obtained by integrating the square root of the first fundamental

form of the surface along the segment.

If a surface S1 can be mapped isometrically (see § 3.1 and § 6.5) onto another surface S2,

then the two surfaces have identical first fundamental forms and identical first fundamental

form coefficients at their corresponding points, that is:[13]

E1 = E2 F1 = F2 G1 = G2 (242)

where the subscripts are labels for the two surfaces. Based on Eq. 201, for a Monge patch

of the form r(u, v) = (u, v, f(u, v)), the first fundamental form is given by:

IS =
(
1 + f 2

u

)
dudu+ 2fufvdudv +

(
1 + f 2

v

)
dvdv (243)

where the subscripts u and v stand for partial derivatives of f with respect to these surface

coordinates.

[13] In this type of statements, the meaning is that we can find a coordinate system on each surface such
that these conditions are satisfied, as indicated early in the book.
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3.6 Second Fundamental Form

The mathematical entity that characterizes the extrinsic geometry of a surface is the

normal vector to the surface. This entity can only be observed externally from outside

the surface by an observer in a reference frame in the space that envelops the surface.

Hence, the normal vector and all its subsidiaries are strange to a 2D inhabitant to the

surface who can only access the intrinsic attributes of the surface as represented by and

contained in the first fundamental form. In brief, the 2D inhabitant has no notion of the

extra dimension which embraces the normal vector. As a consequence, the variation of the

normal vector as it moves around the surface can be used as an indicator to characterize

the surface shape from an external point of view and that is how this indicator is exploited

in the second fundamental form to represent the extrinsic geometry of the surface as will

be seen from the forthcoming formulations of the second fundamental form.

The second fundamental form IIS of a surface, which in the old books may be labeled as

the second fundamental quadratic form, is defined by the following quadratic expression:

IIS = −dr · dn (244)

= −
(
∂r

∂uα
duα
)
·
(
∂n

∂uβ
duβ
)

= −
(
∂r

∂u1
du1 +

∂r

∂u2
du2

)
·
(
∂n

∂u1
du1 +

∂n

∂u2
du2

)
= e(du1)2 + 2f du1du2 + g(du2)2

where the coefficients of the second fundamental form e, f, g are given by:

e = − ∂r

∂u1
· ∂n

∂u1
= −E1 ·

∂n

∂u1
(245)

f = −1

2

(
∂r

∂u1
· ∂n

∂u2
+

∂r

∂u2
· ∂n

∂u1

)
= −1

2

(
E1 ·

∂n

∂u2
+ E2 ·

∂n

∂u1

)
(246)

g = − ∂r

∂u2
· ∂n

∂u2
= −E2 ·

∂n

∂u2
(247)

In the above equations, r(u1, u2) denotes the spatial representation of the surface, n(u1, u2)

is the unit normal vector to the surface and α, β = 1, 2.
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The second fundamental form may also be given by:

IIS = d2r · n (248)

=

(
∂2r

∂uα∂uβ
duαduβ

)
· n

=

(
∂E1

∂u1
(du1)2 + 2

∂E1

∂u2
du1du2 +

∂E2

∂u2
(du2)2

)
· n

=
∂E1

∂u1
· n (du1)2 + 2

∂E1

∂u2
· n du1du2 +

∂E2

∂u2
· n (du2)2

where d2r is the second order differential of the position vector r of an arbitrary point on the

surface in the direction (du1, du2). As a result, the coefficients of the second fundamental

form can also be given by the following alternative expressions:

e = n · ∂E1

∂u1
= − ∂n

∂u1
· E1 (249)

f = n · ∂E1

∂u2
= n · ∂E2

∂u1
= − ∂n

∂u2
· E1 = − ∂n

∂u1
· E2 (250)

g = n · ∂E2

∂u2
= − ∂n

∂u2
· E2 (251)

The two forms of each formula in the last equations are based on the fact that n ·Eα = 0,

since n is perpendicular to the surface basis vectors, plus the product rule of differentiation,

that is:

∂ (n · Eα)

∂uβ
=
∂ (0)

∂uβ
= n · ∂Eα

∂uβ
+
∂n

∂uβ
·Eα = 0 =⇒ n · ∂Eα

∂uβ
= − ∂n

∂uβ
·Eα (252)

The equality: n · ∂2E1 = n · ∂1E2 which is seen in Eq. 250 is based on the equality:

∂αEβ = ∂βEα as stated before (see Eq. 217).

From Eqs. 249-251 plus Eq. 168, we can see that the coefficients of the second funda-

mental form may also be given by the following expressions:

e =
(E1 × E2) · ∂E1

∂u1√
a

(253)

f =
(E1 × E2) · ∂E1

∂u2√
a

(254)

g =
(E1 × E2) · ∂E2

∂u2√
a

(255)
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where a (= a11a22− a12a21 = EG−F 2) is the determinant of the surface covariant metric

tensor. Like the coefficients of the first fundamental form, the coefficients of the second

fundamental form are, in general, continuous variable functions of the surface coordinates

u1 and u2.

The second fundamental form can also be cast in the following matrix form:

IIS =
[
du1 du2

] [ −E1

−E2

]
·
[

∂n
∂u1

∂n
∂u2

] [ du1

du2

]
(256)

=
[
du1 du2

] [ −E1 · ∂n∂u1 −E1 · ∂n∂u2
−E2 · ∂n∂u1 −E2 · ∂n∂u2

][
du1

du2

]

=
[
du1 du2

] [ ∂E1

∂u1
· n ∂E1

∂u2
· n

∂E2

∂u1
· n ∂E2

∂u2
· n

][
du1

du2

]

=
[
du1 du2

] [ e f

f g

][
du1

du2

]
= v IIS vT

where v is a direction vector, vT is its transpose, and IIS is the second fundamental form

tensor. As indicated before, the notation regarding the dot product operation may not

be standard in the commonly employed matrix notation. Also, although the coefficients

of the second fundamental form depend on the position but not the direction, the second

fundamental form depends on both.

As seen before, the coefficients of the second fundamental form satisfy the following

relations:

e = b11 f = b12 = b21 g = b22 (257)

Hence, the second fundamental form tensor IIS is the same as the surface covariant cur-

vature tensor b, that is:

IIS =

[
e f

f g

]
=

[
b11 b12

b21 b22

]
= b (258)

As a consequence of the previous statements, we see that the second fundamental form

can also be given in a compact tensor notation form by:
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IIS = bαβdu
αduβ (259)

where the indexed b are the elements of the surface covariant curvature tensor and α, β =

1, 2.

The second fundamental form of the surface at a given point and in a given direction

can also be expressed in terms of the first fundamental form IS and the normal curvature

κn of the surface at that point and in that direction (see § 4.2) as:

IIS = κnIS = κn(ds)2 (260)

Based on Eqs. 259 and 226, for a Monge patch of the form r(u, v) = (u, v, f(u, v)), the

second fundamental form is given by:

IIS =
fuududu+ 2fuvdudv + fvvdvdv√

1 + f 2
u + f 2

v

(261)

where the subscripts u and v stand for partial derivatives of f with respect to these surface

coordinates.

While the first fundamental form is invariant under isometric transformations, the sec-

ond fundamental form is invariant under rigid motion transformations. The second fun-

damental form is also invariant (considering spatially-fixed directions) under permissible

surface re-parameterizations that maintain the sense of the normal vector to the surface, n.

However, the second fundamental form changes its sign if the sense of n is reversed. As in-

dicated earlier, while the first fundamental form encompasses the intrinsic geometry of the

surface, the second fundamental form encompasses its extrinsic geometry. Consequently,

the first fundamental form is associated with the surface covariant metric tensor, while the

second fundamental form is associated with the surface covariant curvature tensor. A ma-

jor difference between the two fundamental forms is that while the first fundamental form

is positive definite, as stated previously, the second fundamental form is not necessarily

positive or definite.

Unlike space curves which are completely defined by specified curvature and torsion, κ

and τ , providing arbitrary first and second fundamental forms is not a sufficient condition

for the existence and determination of a surface with these forms. This is due to the fact
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that the first and second fundamental forms when independently defined do not provide

acceptable determination for the surface unless they satisfy extra compatibility conditions

to ensure the consistency of these forms and secure the existence of a surface associated

with these forms. In more technical terms, defining six functions E,F,G, e, f, g of class

C3 on a subset of R2 where these functions satisfy the conditions for the coefficients of the

first and second fundamental forms (in particular E,G > 0 and EG − F 2 > 0) does not

guarantee the existence of a surface over the given subset with a first fundamental form:

E (du1)
2

+ 2Fdu1du2 + G (du2)
2 and a second fundamental form: e (du1)

2
+ 2fdu1du2 +

g (du2)
2. Further compatibility conditions relating the first and second fundamental forms

are required to fully identify the surface and secure its existence.

The above difference between curves and surfaces may be linked to the fact that the

conditions for the curves are established based on the existence theorem for ordinary

differential equations where these equations generally have a solution, while the conditions

for the surfaces are established based on the existence theorem for partial differential

equations which have solutions only when they meet additional integrability conditions.

The details should be sought in more extensive books on differential geometry.

Following the statements in the last paragraphs, the required compatibility conditions

for the existence of a surface with predefined first and second fundamental forms are given

by the Codazzi-Mainardi equations (Eqs. 294-295) plus the following equation:

eg − f 2 = F

[
∂Γ2

22

∂u
− ∂Γ2

12

∂v
+ Γ1

22Γ2
11 − Γ1

12Γ2
12

]
+ (262)

E

[
∂Γ1

22

∂u
− ∂Γ1

12

∂v
+ Γ1

22Γ1
11 + Γ2

22Γ1
12 − Γ1

12Γ1
12 − Γ2

12Γ1
22

]
where all the symbols are as defined previously and the Christoffel symbols belong to the

surface.

From the above statements, the fundamental theorem of space surfaces in differential

geometry, which is the equivalent of the fundamental theorem of curves (see § 2.3), emerges.

The theorem states that: given six sufficiently smooth functions E,F,G, e, f, g on a subset

of R2 satisfying the following conditions:

1. E,G > 0 and EG− F 2 > 0, and

2. E,F,G, e, f, g satisfy Eqs. 262 and 294-295,
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then there is a unique surface with E,F,G as its first fundamental form coefficients and

e, f, g as its second fundamental form coefficients. Hence, if two surfaces meet all these

conditions, then they are identical within a rigid motion transformation in space. As

a result, the fundamental theorem of surfaces, like the fundamental theorem of curves,

provides the existence and uniqueness conditions for surfaces.

On the other hand, according to one of the theorems of Bonnet, if there are two surfaces

of class C3, S1 : Ω → R3 and S2 : Ω → R3, which are defined over a connected set

Ω ⊆ R2 and they have identical first and second fundamental forms, then the two surfaces

can be mapped on each other by a purely rigid motion transformation. The existence of

these surfaces guarantees the compatibility of their first and second fundamental forms and

hence they are identical within a rigid motion transformation according to the fundamental

theorem of surfaces.

It is noteworthy that two surfaces having identical first fundamental forms but different

second fundamental forms may be described as applicable. An example of applicable

surfaces is plane and cylinder. Although all applicable surfaces, according to this definition,

are isometric since they have identical first fundamental forms, not all isometric surfaces

are applicable since two isometric surfaces may also have identical second fundamental

forms as it is the case of two planes.

It should be remarked that some authors use L,M,N instead of e, f, g to symbolize the

coefficients of the second fundamental form. However, the use of e, f, g is advantageous

since they correspond nicely to the coefficients of the first fundamental form E,F,G mak-

ing the formulae involving the first and second fundamental forms more symmetric and

memorable. On the other hand, the use of L,M,N is also advantageous when reciting

formulae especially if the formulae contain the coefficients of both fundamental forms;

moreover, it is less susceptible to errors in the writing and typing of these formulae.

Another remark is that the coefficient g of the second fundamental form should not be

confused with the symbol g of the determinant of the space covariant metric tensor which

is commonly used in the literature of tensor calculus and differential geometry but we do

not use it in the present book. The coefficient f of the second fundamental form should

also be distinguished easily from the symbol f which is widely used in the mathematical

literature to symbolize mathematical functions and hence we kept its use in this book for

the sake of readability while making some effort to avoid potential confusion.
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3.6.1 Dupin Indicatrix

On displacing the tangent plane of a surface S at a given point P infinitesimally toward

the surface in the orientation of the normal vector of S at P , the intersection curves of

S with the displaced tangent plane will take a particular and distinctive shape depending

on the local shape of S in the neighborhood of P (refer to Fig. 34). This idea is the base

for characterizing and quantifying the local shape of a surface at a particular point using

the concept of Dupin indicatrix.[14]

Dupin indicatrix at a given point on a sufficiently smooth surface is a function of the

coefficients of the second fundamental form at the point and hence it is a function of the

surface coordinates. Dupin indicatrix is an indicator of the departure of the surface from

the tangent plane in the close proximity of the point of tangency. Accordingly, the second

fundamental form coefficients are used in Dupin indicatrix to measure this departure. In

quantitative terms, Dupin indicatrix is the family of conic sections given by the following

quadratic equation:

eu2 + 2fuv + gv2 = ±1 (263)

where e, f, g are the coefficients of the second fundamental form at the point with the

coordinates u and v. As seen, Dupin indicatrix, which is represented by an expression

similar in form to the second fundamental form, depends on the coefficients of the second

fundamental form and the coordinates of the particular point on the surface and hence it

is a function of position but, unlike the second fundamental form, it does not depend on

the direction.

As a consequence of the previous statements, Dupin indicatrix can be used to classify

the surface points with respect to the local shape of the surface as elliptic, parabolic,

hyperbolic or flat (see § 4.9). At an elliptic point the Dupin indicatrix is an ellipse or

circle,[15] at a parabolic point the Dupin indicatrix becomes two parallel lines, while at a

hyperbolic point the Dupin indicatrix becomes two conjugate hyperbolas (see Fig. 35). At

a flat point the Dupin indicatrix is not defined. More details about Dupin indicatrix and

[14]The purpose of this demonstration, which employs a typical surface with infinitesimal displacement of
the tangent plane, is to provide a visual qualitative impression for the idea of Dupin indicatrix. We
note that the indicatrix is not necessarily represented by one of these contours on the surface as the
indicatrix is a quadratic equation based on the second fundamental form at a particular point P on
the surface, and hence it is not necessarily satisfied by the surface in the extended neighborhood of P .

[15] It is circle if the point is umbilical (see § 4.10).
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(a) Elliptic point

(b) Parabolic point

(c) Hyperbolic point

Figure 34: Contour curves on a typical surface in the neighborhood of (a) elliptic point,
(b) parabolic point and (c) hyperbolic point.
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the local shape of surface will be given in § 4.9. It is noteworthy that in all cases where

the Dupin indicatrix is defined, the principal directions (see § 4.4) at the point coincide

with the two perpendicular axes of the indicatrix as seen in Fig. 35.

(a) (c)(b)

d2

d1
d1

d2

d1

d2

Figure 35: Dupin indicatrix at (a) elliptic point, (b) parabolic point and (c) hyperbolic
point. The principal directions (refer to § 4.4) are labeled as d1 and d2.

3.7 Third Fundamental Form

The third fundamental form IIIS of a space surface is defined by:

IIIS = dn · dn = cαβdu
αduβ (264)

where n is the unit normal vector to the surface at a given point P , cαβ are the coefficients

of the third fundamental form at P and α, β = 1, 2.

The coefficients of the third fundamental form are given in full tensor notation by:

cαβ = gijn
i
,αn

j
,β (265)

where gij is the space covariant metric tensor and the indexed n is the unit normal vector

to the surface. We note that these coefficients are real numbers. The coefficients of the
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third fundamental form may also be given by:

cαβ = aγδbαγbβδ (266)

where aγδ is the surface contravariant metric tensor and the indexed b are the coefficients

of the surface covariant curvature tensor.

3.8 Relationship between First, Second and Third Fundamental

Forms

The first, second and third fundamental forms are linked, through the Gaussian curvature

K and the mean curvature H (see § 4.5 and 4.6), by the following relation:

KIS − 2H IIS + IIIS = 0 (267)

Accordingly, the coefficients of the first, second and third fundamental forms are correlated,

through the Gaussian curvature and the mean curvature, by the following relation:

Kaαβ − 2Hbαβ + cαβ = 0 (268)

In fact, Eq. 267 can be obtained from Eq. 268 by multiplying the latter by duαduβ and

applying the summation convention. On multiplying both sides of Eq. 268 by aαβ and

shifting the indices we obtain:

Kaαα − 2Hbαα + cαα = 0 (269)

that is:

tr
(
cβα
)

= 4H2 − 2K (270)

The transition form Eq. 269 to Eq. 270 is justified by the fact that: aαα = δαα = δ1
1 + δ2

2 = 2

and H = bαα
2
(see Eq. 383).
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3.9 Relationship between Surface Basis Vectors and their Deriva-

tives

The focus of this section is the equations of Gauss and Weingarten which, for surfaces,

are the analogue of the equations of Frenet-Serret for curves. While the Frenet-Serret

formulae express the derivatives of T,N,B as combinations of these vectors using κ and τ

as coefficients, the equations of Gauss and Weingarten express the derivatives of E1,E2,n

as combinations of these vectors with coefficients based on the first and second fundamental

forms.

As shown earlier (see § 2.2), three unit vectors can be constructed on each point at which

the curvature does not vanish of a class C2 space curve: the tangent T, the principal normal

N and the binormal B. These mutually orthogonal vectors (i.e. T·N = T·B = N·B = 0)

can serve as a set of basis vectors for the embedding 3D space. Hence, the derivatives of

these vectors with respect to the distance traversed along the curve, s, can be expressed

as combinations of this set, since these derivatives are 3D vectors that reside in this space,

as demonstrated by the Frenet-Serret formulae (refer to § 2.5).
Similarly, the surface vectors: E1 = ∂r

∂u1
, E2 = ∂r

∂u2
and the unit normal vector to the

surface, n, at each regular point on a class C2 surface form a basis set for the embedding

3D space and hence their partial derivatives with respect to the surface coordinates, u1 and

u2, can be expressed as combinations of this set. The equations of Gauss and Weingarten

demonstrate this fact.

The equations of Gauss express the partial derivatives of the surface vectors, E1 and E2,

with respect to the surface coordinates as combinations of the E1,E2,n basis set, that is:

∂E1

∂u1
= Γ1

11E1 + Γ2
11E2 + en (271)

∂E1

∂u2
= Γ1

12E1 + Γ2
12E2 + fn =

∂E2

∂u1
(272)

∂E2

∂u2
= Γ1

22E1 + Γ2
22E2 + gn (273)

where e, f, g are the coefficients of the second fundamental form. These equations can be
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expressed compactly, with partial use of tensor notation, as:

∂Eα

∂uβ
= ΓγαβEγ + bαβn (α, β = 1, 2) (274)

where the Christoffel symbol of the second kind Γγαβ is based on the surface metric, as

given by Eqs. 73-78, and bαβ is the surface covariant curvature tensor. The last equation

can be expressed in full tensor notation as:

xiα,β = Γγαβx
i
γ + bαβn

i (275)

where the symbols and notations are as defined previously. These equations may also be

expressed as:

xiα;β = bαβn
i (276)

where the covariant derivative notation is in use and a rectangular Cartesian coordinate

system for the space is assumed (refer to Eq. 459).

Likewise, the equations of Weingarten express the partial derivatives of the unit normal

vector to the surface, n, with respect to the surface coordinates as combinations of the

surface vectors, E1 and E2, that is:

∂n

∂u1
=

fF − eG
a

E1 +
eF − fE

a
E2 (277)

∂n

∂u2
=

gF − fG
a

E1 +
fF − gE

a
E2 (278)

where E,F,G, e, f, g are the coefficients of the first and second fundamental forms and

a = EG − F 2 is the determinant of the surface covariant metric tensor. We note that

these expressions are also combinations of the E1,E2,n basis set but with vanishing normal

components.

The above equations of Weingarten can be expressed compactly, with partial use of

tensor notation, as:
∂n

∂uα
= −b βα Eβ (279)

where b βα (= bαγa
γβ) is the mixed type of the surface curvature tensor, bαγ is the surface

covariant curvature tensor and aγβ is the surface contravariant metric tensor (refer to Eq.
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223 and surrounding text). They can also be expressed with full use of tensor notation as:

ni,α = −bαγaγβxiβ = −b βα xiβ (280)

To make sense of this equation, the vector ni,α is orthogonal to ni and hence it is parallel

to the tangent space of the surface, so it can be expressed as a linear combination of the

surface basis vectors xiβ, that is: ni,α = dβαx
i
β for a certain set of coefficients dβα = −bαγaγβ,

as seen above.

The Weingarten equations may also be expressed in matrix form as:[
∂n
∂u1

∂n
∂u2

]
= −IISI−1

S

[
E1

E2

]
(281)

where IIS is the surface covariant curvature tensor and I−1
S is the surface contravariant

metric tensor. In fact, this is the matrix form of Eq. 279.

The partial derivatives of the unit normal vector to the surface, n, with respect to the

surface coordinates, u1 and u2, are linked to the Gaussian curvature K (see § 4.5) and

the surface basis vectors, E1 and E2, as well as the coefficients of the first and second

fundamental forms E,F,G, e, f, g by the following relation:

∂n

∂u1
× ∂n

∂u2
=

eg − f 2

EG− F 2
(E1 × E2) = K (E1 × E2) (282)

where Eq. 356 is used in the last step.

The partial derivatives of the unit normal vector to the surface, n, with respect to the

surface coordinates, u1 and u2, are also linked to the Gaussian and mean curvatures, K

and H, and the coefficients of the first and second fundamental forms E,F,G, e, f, g by

the following relations:

∂n

∂u1
· ∂n

∂u1
= 2eH − EK (283)

∂n

∂u1
· ∂n

∂u2
= 2fH − FK (284)

∂n

∂u2
· ∂n

∂u2
= 2gH −GK (285)

The above equations of Weingarten (Eqs. 277-278) can be solved for the surface basis
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vectors, E1 and E2, and hence these vectors can be expressed as combinations of the

partial derivatives of the normal vector, n, that is:

E1 =
fF − gE

b

∂n

∂u1
+
fE − eF

b

∂n

∂u2
(286)

E2 =
fG− gF

b

∂n

∂u1
+
fF − eG

b

∂n

∂u2
(287)

where b = eg − f 2 is the determinant of the surface covariant curvature tensor.

From Eq. 274, it can be seen that the coefficients of the surface covariant curvature

tensor, bαβ, are the projections of the partial derivative of the surface basis vectors, ∂Eα
∂uβ

,

in the direction of the unit normal vector to the surface, n, that is:

bαβ =
∂Eα

∂uβ
· n (288)

This can also be seen directly from the definition of the coefficients of the second funda-

mental form, i.e. Eqs. 249-251.

As indicated above, the essence of the above equations of Gauss and Weingarten is that

the partial derivatives of E1, E2 and n can be represented as combinations of these vectors

with coefficients obtained from the coefficients of the first and second fundamental forms

and their partial derivatives. The above equations are various demonstrations of this fact.

For a Monge patch of the form r(u, v) = (u, v, f(u, v)), the Gauss equations are given

by:

∂E1

∂u
=

1

1 + f 2
u + f 2

v

(
fufuuE1 + fvfuuE2 + fuu

√
1 + f 2

u + f 2
v n
)

(289)

∂E1

∂v
=

1

1 + f 2
u + f 2

v

(
fufuvE1 + fvfuvE2 + fuv

√
1 + f 2

u + f 2
v n
)

=
∂E2

∂u
(290)

∂E2

∂v
=

1

1 + f 2
u + f 2

v

(
fufvvE1 + fvfvvE2 + fvv

√
1 + f 2

u + f 2
v n
)

(291)

where the subscripts u and v represent partial derivatives of f with respect to the surface

coordinates u and v.

Similarly, for a Monge patch of the form r(u, v) = (u, v, f(u, v)), the Weingarten equa-
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tions are given by:

∂n

∂u
=

(fufvfuv − fuuf 2
v − fuu) E1 + (fufvfuu − f 2

ufuv − fuv) E2√
(1 + f 2

u + f 2
v )3

(292)

∂n

∂v
=

(fufvfvv − fuvf 2
v − fuv) E1 + (fufvfuv − f 2

ufvv − fvv) E2√
(1 + f 2

u + f 2
v )3

(293)

3.9.1 Codazzi-Mainardi Equations

From the aforementioned equations of Gauss and Weingarten, supported by further com-

patibility conditions, the following equations, called Codazzi or Codazzi-Mainardi equa-

tions, can be derived:

∂b12

∂u1
− ∂b11

∂u2
= b22Γ2

11 − b12

(
Γ2

12 − Γ1
11

)
− b11Γ1

12 (294)

∂b22

∂u1
− ∂b21

∂u2
= b22Γ2

12 − b12

(
Γ2

22 − Γ1
12

)
− b11Γ1

22 (295)

where the Christoffel symbols are based on the surface metric. These equations can be

expressed compactly in tensor notation as:

∂bαβ
∂uγ

− ∂bαγ
∂uβ

= bδβΓδαγ − bδγΓδαβ (296)

Now, if we arrange the terms of the last equation and subtract the term bαδΓ
δ
γβ from both

sides we obtain:

∂bαβ
∂uγ

− bδβΓδαγ − bαδΓδγβ =
∂bαγ
∂uβ

− bδγΓδαβ − bαδΓδγβ (297)

which can be expressed compactly, using the covariant derivative notation (see § 7), as:

bαβ;γ = bαγ;β (298)

The Codazzi-Mainardi equations in the form given by Eq. 298 reveal that there are

only two independent components for these equations because, adding to the fact that all

the indices range over 1 and 2 and hence we have only eight components, the covariant

derivative according to Eq. 298 is symmetric in its last two indices (i.e. β and γ), and
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the covariant curvature tensor is symmetric in its two indices (i.e. bαβ = bβα). These two

independent components are given by:

bαα;β = bαβ;α (299)

where α 6= β and there is no summation over α. On writing these equations in full, using

the covariant derivative expression (i.e. bαβ;γ =
∂bαβ
∂uγ
− bδβΓδαγ − bαδΓδβγ) and noting that

one term of the covariant derivative expression is the same on both sides and hence it

drops away, we have:

∂bαα
∂uβ

− bαδΓδαβ =
∂bαβ
∂uα

− bδβΓδαα (α 6= β, no sum on α) (300)

It should be remarked that as a consequence of the aforementioned two symmetries, the

covariant derivative of the surface covariant curvature tensor, bαβ;γ, is fully symmetric in

all of its indices.

There is also another more general equation called (according to some authors) the

Gauss-Codazzi equation which is given by:

Rδ
αβγx

i
δ = xiδb

δ
βbαγ − xiδbδγbαβ + nibαβ;γ − nibαγ;β (301)

The tangential component of this equation represents Theorema Egregium (in the form

given by Eq. 228) while its normal component represents the Codazzi equation (in the form

given by Eq. 298). The reader is advised to refer to § 4.7 about the essence of Theorema

Egregium as an expression of the fact that certain types of curvature are intrinsic properties

to the surface and hence they can be expressed in terms of purely intrinsic parameters

obtained from the first fundamental form.

3.10 Sphere Mapping

Sphere mapping or Gauss mapping is a correlation between the points of a surface and the

unit sphere where each point on the surface is projected onto its unit normal as a point

on the unit sphere which is centered at the origin of coordinates. This sort of mapping

for surfaces is similar to the spherical indicatrix mapping (see § 5.5) for space curves.
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In technical terms, let S be a surface embedded in an R3 space and S1 represents the

origin-centered unit sphere in this space, then Gauss mapping is given by:

{
N : S → S1, N(P ) = P̌

}
(302)

where the point P (x, y, z) on the trace of S is mapped by N onto the point P̌ (x̌, y̌, ž) on

the trace of the unit sphere with x, y, z being the coordinates of P and x̌, y̌, ž being the

coordinates of the origin-based position vector of the normal vector to the surface, n, at P .

To have a single-valued sphere mapping, the functional relation representing the surface

S should be one-to-one.

The image S̄ on the unit sphere of a Gauss mapping of a patch S on a surface S is called

the spherical image of S. The limit of the ratio of the area of a region R̄ on the spherical

image to the area of the corresponding region R on the surface S in the neighborhood of

a given point P on S equals the absolute value of the Gaussian curvature |K| at P as R

shrinks to the point P , that is:

lim
R→P

σ(R̄)

σ(R)
= |KP | (303)

where σ stands for area, and KP is the Gaussian curvature at P . The tendency of R to

P should be understood in the given sense.

At a given point P on a surface, where the Gaussian curvature is non-zero, there exists

a neighborhood N of P where an injective mapping can be established between N and its

spherical image N̄ . A conformal correspondence can be established between a surface and

its spherical image iff the surface is a sphere or a minimal surface (see § 6.7). We should

remark that although the term “spherical image” is related to surfaces in the context of

sphere mapping, it can also be used for curves since curves can also have spherical images

in a well defined sense.

3.11 Global Surface Theorems

In this small section we state, within the following bullet points, a few global theorems

related to surfaces to have a taste of this field of differential geometry of surfaces whose

investigation is not the main objective of the present book.

• Planes are the only connected surfaces of class C2 whose all points are flat.
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• Spheres are the only connected closed surfaces of class C3 whose all points are spherical

umbilical (see § 4.10).
• Spheres are the only connected compact surfaces of class C3 with constant Gaussian

curvature.

• Spheres are the only connected compact surfaces with constant mean curvature and

positive Gaussian curvature.

• The tangent plane to a cylinder or a cone is constant along their generators.

• Any compact surface in R3 should have points with positive Gaussian curvature.

• Any compact surface in R3, excluding sphere, should have points with negative Gaussian

curvature.

• The reader is also referred to § 4.8 for the global form of the Gauss-Bonnet theorem.

3.12 Exercises

3.1 Give the mathematical definition of space surface and explain the difference between

a surface and its trace according to this definition.

3.2 What is the mathematical condition for a surface to be regular at a particular point

in terms of its basis vectors?

3.3 State the three main mathematical methods for defining a space surface and compare

them explaining any advantages or disadvantages in using one of these methods or

the others in various contexts.

3.4 Classify the three methods of the last question into two main categories and discuss

these categories (see § 1.4.3).
3.5 What “coordinate patch of class Cn” means? What are the mathematical conditions

that should be satisfied by such a patch?

3.6 Show that a Monge patch of the form r(u, v) = (u, v, f(u, v)) is regular of class Cn if

f is of this class.

3.7 Give a rigorous definition of “tangent vector” of a surface curve at a particular point

on the surface.

3.8 How the tangent plane of a surface at a particular point is related to the basis vectors

of the surface at that point?

3.9 Find the equation of the tangent plane to the ellipsoid which is represented paramet-
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rically by: r(θ, φ) = (2 sin θ cosφ, 1.5 sin θ sinφ, 0.5 cos θ) at the point with θ = 1.3

and φ = 0.72.

3.10 Find the equation of the tangent plane of a surface represented parametrically by:

r(u, v) = (6v, 2u, 1.4u2 + 6) at the point with u = 1.2 and v = 3.6.

3.11 Show that for a circular cone the tangent plane at all points of any one of its generators

is the same.

3.12 Discuss the following statement explaining its meaning in simple words: “The tangent

space at a specific point P of a surface is a property of the surface at P and hence it

is independent of the patch that contains P ”.

3.13 Does the tangent space of a surface at a given point depend on the particular param-

eterization of the surface?

3.14 Find the equation of the plane passing through the point (−1, 3,−9) and spanned by

the two vectors (3, 0.5, 1.2) and (0.9, 3, 6.8).

3.15 Define, mathematically, the normal unit vector n of a surface at a given point in terms

of the two basis vectors of the surface at that point.

3.16 Calculate, symbolically, the normal unit vector n at a general point of a surface defined

by: S(x, y) = (x, y, f) where f = f(x, y) is a differentiable function.

3.17 Find the equation of the normal line of a hyperboloid of one sheet given by: r(ξ, θ) =

(1.6 cosh ξ cos θ, 2.1 cosh ξ sin θ, 0.4 sinh ξ) at the point with ξ = 3.2 and θ = 1.5.

3.18 Find the equation of the normal line of a surface represented by: r(u, v) = (3u, u2 +

v, 5v) at the point with u = 2.5 and v = −1.8.

3.19 Define “Monge patch” giving its three forms. Which of these forms is the most common

in use?

3.20 Define, briefly, the following terms with some examples representing these concepts:

simple surface, simply connected region on a surface, closed surface, compact surface,

elementary surface, oriented surface and developable surface.

3.21 Which of the following is a simple surface and which is not: cylinder, hyperboloid of

two sheets, torus, Klein bottle, and elliptic paraboloid?

3.22 Is the surface represented by the equation: x2 + y2 + z2 = 9 compact? What about

the surface represented by: x2 − y2 − z2 = 4?

3.23 Why the Mobius strip is not an orientable surface? Give another example of a non-

orientable surface.
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3.24 What is conformal mapping? What is direct and inverse conformal mapping?

3.25 Describe stereographic mapping making a simple sketch representing this type of

mapping.

3.26 Prove that stereographic mapping is conformal.

3.27 Define isometric mapping giving an example of such mapping between two types of

surface.

3.28 What are the mathematical conditions for two surfaces to be isometric? Does isometry

relate to the intrinsic or extrinsic properties of the surface and why?

3.29 What is the distinctive property of an isometric relation between two surfaces in terms

of angles, arc lengths and areas defined on the two surfaces?

3.30 What is the relation between conformal mapping and isometric mapping?

3.31 What is local isometry? What is the difference between local isometry and global

isometry?

3.32 Show that Eq. 160 applies to local isometric mapping.

3.33 A surface S1 is mapped isometrically onto another surface S2. How the intrinsic

properties of S1 will be affected by this mapping?

3.34 Make a clear distinction between the tangent surface of a curve and the tangent plane

of a surface describing each of these briefly.

3.35 What is the meaning of “branch of the tangent surface of a curve C at a given point

P on the curve”?

3.36 Give a brief definition of involute and evolute.

3.37 Write down a general mathematical relation representing the position vector of a point

P on a space surface as a function of the surface coordinates, u1 and u2, where the

surface is embedded in a 3D Euclidean space coordinated by a rectangular Cartesian

system.

3.38 Describe, in detail, how a coordinate grid is constructed on a space surface with a

clear definition of the coordinate curves used to build this grid.

3.39 Make a simple and fully labeled sketch of a space surface coordinated by a curvilinear

grid with the two covariant surface basis vectors and the unit normal vector to the

surface at one point.

3.40 A surface is represented spatially by: r(u, v) = (u, 5, 2v). Discuss the type and the

main properties of this surface.
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3.41 Define, symbolically, the covariant basis vectors of a space surface in terms of the

coordinates of the ambient space xi and the coordinates of the surface uα.

3.42 Give the symbol used in tensor notation to represent the surface basis vectors Eα.

From analyzing this symbol, describe how the surface basis vectors can be regarded

as covariant and contravariant vectors at the same time.

3.43 Write, in full tensor notation, the equation representing the covariant form of the unit

normal vector to a space surface.

3.44 Although E1 and E2 are linearly independent at the regular points of the surface

they are not necessarily orthogonal or of unit length. Is it possible to construct an

orthonormal set of basis vectors from E1 and E2? If so, how?

3.45 Following a transformation from an unbarred surface coordinate system to a barred

surface coordinate system, what are the mathematical expressions representing the

barred basis set, Ē1 and Ē2, in terms of the unbarred basis set, E1 and E2? Give

these expressions in vector and tensor notations.

3.46 Define, descriptively and mathematically, the set of contravariant basis vectors for

a space surface discussing how these vectors can be regarded as covariant and con-

travariant vectors simultaneously.

3.47 How the covariant and contravariant basis sets of a space surface can be obtained

from each other? State this in words and mathematically defining all the symbols

involved.

3.48 What is the significance of the following relation involving the covariant and con-

travariant surface basis vectors and the Kronecker delta: Eα · Eβ = δβα?

3.49 Define, mathematically, the coefficients of the surface metric tensor in terms of the

surface covariant basis vectors in Euclidean and Riemannian spaces.

3.50 Give the fundamental relation that provides the important link between the metric

tensor of a surface and the metric tensor of its enveloping space.

3.51 Find the surface basis vectors, E1 and E2, and the coefficients of the first fundamental

form of a surface parameterized by: r(u, v) = (au cos v, bu sin v, cu2) where a, b, c are

constants.

3.52 Find, symbolically, the first fundamental form of a cylinder represented by: r(u, v) =

(f1(u), f2(u), v) where f1 and f2 are continuous functions of the given coordinate.

3.53 Given the fact that for 3D Cartesian systems: IS = (dx1)2 + (dx2)2 + (dx3)2 plus the



3.12 Exercises 135

transformation equations from spherical to Cartesian coordinates in 3D, derive IS for

spherical coordinate systems.

3.54 Given the fact that for 3D Cartesian systems: IS = (dx1)2 + (dx2)2 + (dx3)2 plus

the transformation equations between general curvilinear and Cartesian coordinate

systems in 3D, prove that for general curvilinear systems: IS = aαβdu
αduβ.

3.55 Define, mathematically, each of the following vectors: x1
α, x

2
α, x

3
α, x

i
1, x

i
2. Also, discuss

their attributes as space and surface vectors and their variance type.

3.56 Discuss how a surface vector can also be considered as a space vector stating the

mathematical link between the surface and space representations. Are these repre-

sentations equivalent? If so, how?

3.57 Write down, using tensor notation, the mathematical relation that correlates the

surface basis vectors to the unit normal vector to the surface.

3.58 What is the significance of the following relation which involves the surface contravari-

ant and covariant metric tensors and the Kronecker delta: aαγ aγβ = δαβ?

3.59 Give the matrix
[
aαβ
]
that represents the contravariant form of the surface metric

tensor in terms of the coefficients of the first fundamental form.

3.60 Give the matrix
[
aαβ
]
that represents the mixed form of the surface metric tensor.

3.61 Write down the relations that represent the transformation between unbarred and

barred surface coordinate systems.

3.62 How the determinants of the surface metric tensor of two transformed coordinate

systems of a given surface are linked?

3.63 Express the Christoffel symbols of the first kind [αβ, γ] for a surface in terms of the

surface covariant basis vectors and their partial derivatives.

3.64 Derive the mathematical relation between the partial derivative of the surface metric

tensor ∂αaβγ and the Christoffel symbols of the first kind for the surface.

3.65 How the coefficients of the surface metric tensor will be affected by scaling the surface

up or down by a constant positive scalar factor?

3.66 Give the covariant and contravariant types of the surface metric tensor for a Monge

patch of the form r(u, v) = (u, v, f(u, v)).

3.67 Discuss how the concept of “length of straight segment” is extended to the length of a

polygonal arc. Also discuss how the concept of “length of polygonal arc” is extended

to the length of an arc of a twisted space curve.
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3.68 Derive the following relation which links the length of an element of arc of a curve resid-

ing on a 2D surface to the covariant metric tensor of the surface: (ds)2 = aαβdu
αduβ.

3.69 Is the length of a surface curve an intrinsic or extrinsic property and why?

3.70 Give the formula for the length, L, of a segment of a t-parameterized surface curve in

terms of the coefficients of the first fundamental form of the surface.

3.71 Using the metric tensor, verify the following relation where f represents a Monge

patch of the form r(u, v) = (u, v, f(u, v)):

ds =
√

(1 + f 2
u) dudu+ 2fufvdudv + (1 + f 2

v ) dvdv

3.72 Develop an analytical expression for the length of an element of arc, ds, of the catenary

parameterized by Eqs. 28-29.

3.73 Discuss how the concept of “area of polygonal plane fragment” is extended to the area

of a surface consisting of polygonal plane fragments. Also discuss how the concept

of “area of surface made of polygonal plane fragments” is extended to the area of a

generalized twisted space surface.

3.74 Derive the mathematical expression for the area of an infinitesimal element of a surface

and the expression for the area of a surface patch.

3.75 Derive Eq. 208 for the surface area of a Monge patch of the form r(u, v) = (u, v, f(u, v)).

3.76 A cone is represented parametrically in a 3D space by: r(ρ, φ) = (ρ cosφ, ρ sinφ, cρ)

where ρ, φ are polar coordinates (ρ ≥ 0 and 0 ≤ φ < 2π) and c is a positive constant.

Find the area of the part of the cone corresponding to 0 ≤ ρ ≤ A where A is a given

positive constant.

3.77 Derive the mathematical expression: cos θ = gijA
iBj for the angle θ between two unit

surface vectors, A and B, where gij is the space covariant metric tensor. Also give

the mathematical expression of sin θ for the angle between A and B.

3.78 Give two mathematical expressions for the coefficients of the surface covariant curva-

ture tensor bαβ.

3.79 Using a spherical coordinates representation, find the determinant of the surface cur-

vature tensor of a sphere.

3.80 Show that ∂βEα = ∂αEβ.

3.81 Prove that if two surfaces, S1 and S2, are mapped isometrically one on the other then
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they have identical first fundamental form coefficients at their corresponding points,

i.e. E1 = E2, F1 = F2 and G1 = G2.

3.82 Give the matrix
[
bαβ
]
which represents the contravariant form of the surface curvature

tensor in terms of the coefficients of the first and second fundamental forms.

3.83 Discuss and justify the relation b̄ = J2b explaining all the symbols involved.

3.84 What are the other symbols used by some authors to label the coefficients of the

second fundamental form e, f, g? Discuss the advantages and disadvantages of using

each one of these sets of symbols. Also, write the mathematical expression for the

second fundamental form using the alternative symbols.

3.85 How can we obtain the mixed form of the surface curvature tensor bαβ from the

covariant form of this tensor bαβ?

3.86 Express the mean curvature H and the Gaussian curvature K of a surface in terms

of the mixed form of the surface curvature tensor bαβ.

3.87 Explain, in details, all the symbols and notations involved in the following relation:

bαγbβδ − bαδbβγ = ∂γΓ
α
βδ − ∂δΓαβγ + ΓωβδΓ

α
ωγ − ΓωβγΓ

α
ωδ

3.88 Write down the matrix form of the surface covariant curvature tensor for a Monge

patch of the form r(u, v) = (u, v, f(u, v)).

3.89 What is the relation between the Riemann-Christoffel curvature tensor of the second

kind and the curvature tensor of a surface?

3.90 Give all the coefficients of the Riemann-Christoffel curvature tensor and the curvature

tensor for a plane surface.

3.91 On a space surface, how many independent non-vanishing components the Riemann-

Christoffel curvature tensor possesses?

3.92 Explain the relation between the coefficients of the metric tensor of a surface and its

first fundamental form stating the necessary equations.

3.93 Derive the mathematical formula for IS in terms of the coefficients of the first funda-

mental form.

3.94 Express the determinant of the surface covariant metric tensor as a function of the

coefficients of the first fundamental form.

3.95 Express E,F,G as dot products of the covariant basis vectors of the surface and relate
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this to the space metric tensor.

3.96 Does the first fundamental form provide a unique characterization of the space surface

as seen internally by a 2D inhabitant? Explain why.

3.97 Does the first fundamental form provide a unique characterization of the space surface

as seen from the external ambient space? Explain why.

3.98 State the mathematical conditions for the provision of positive definiteness of the first

fundamental form.

3.99 Give the mathematical conditions that apply to the coefficients of the covariant metric

tensor of two isometric surfaces at their corresponding points.

3.100 Explain how the second fundamental form characterizes the surface from the ambient

space perspective and how the unit normal vector to the surface is employed in this

characterization.

3.101 Express the determinant of the surface covariant curvature tensor as a function of the

coefficients of the second fundamental form.

3.102 Derive the mathematical relation of the second fundamental form IIS in terms of the

coefficients e, f, g. Also provide the main mathematical definitions for the coefficients

e, f, g in terms of the surface basis vectors and the unit normal vector to the surface.

3.103 What is the relation between the second fundamental form IIS and the second order

differential of the position vector d2r of a surface?

3.104 State the mathematical relations between the coefficients of the second fundamental

form and the coefficients of the surface covariant curvature tensor.

3.105 Express, in full tensor notation, the second fundamental form in terms of the co-

efficients of the surface covariant curvature tensor and link this to the expression

involving the coefficients e, f, g.

3.106 Explain how the following relation provides a bridge between the first and second

fundamental forms: IIS = κnIS.

3.107 Derive the following relation where f is a functional representation of a Monge patch

of the form r(u, v) = (u, v, f(u, v)):

IIS =
fuududu+ 2fuvdudv + fvvdvdv√

1 + f 2
u + f 2

v

3.108 Discuss how the first and second fundamental forms represent the intrinsic and ex-
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trinsic geometry of the surface.

3.109 If two surfaces have identical first and second fundamental forms, should they be

congruent?

3.110 What are the compatibility conditions linking the first and second fundamental forms

which are needed to fully identify a surface associated with specific first and second

fundamental forms and secure its existence?

3.111 State, using mathematical technical terms, the fundamental theorem of space surfaces.

3.112 Give a brief definition of Dupin indicatrix and state its significance and usage in

differential geometry.

3.113 What is the shape of Dupin indicatrix at elliptic, parabolic and hyperbolic points on

a smooth surface? What is the shape of Dupin indicatrix at flat points?

3.114 Make a simple sketch to illustrate Dupin indicatrix at an elliptic point, a parabolic

point and a hyperbolic point on a surface marking the two principal directions in each

case.

3.115 Write down the mathematical expression for the third fundamental form IIIS in terms

of the unit normal vector to the surface and in terms of the coefficients cαβ.

3.116 Express the coefficients of the third fundamental form as a function of the coefficients

of the surface metric and curvature tensors.

3.117 Explain all the symbols involved in the following equation: KIS−2H IIS + IIIS = 0.

3.118 Derive the equation in the last question using the Weingarten equations.

3.119 Starting from the equation: Kaαβ − 2Hbαβ + cαβ = 0, derive, with full explanation,

the following relation: tr
(
cβα
)

= 4H2 − 2K.

3.120 Explain the correspondence between the Frenet-Serret formulae for space curves and

the equations of Gauss and Weingarten for space surfaces.

3.121 Why the partial derivatives of the surface basis vectors, E1 and E2, and the unit

normal vector to the surface, n, with respect to the surface coordinates, u1 and u2,

can be expressed as combinations of these vectors?

3.122 Prove Eq. 282 using the Weingarten equations.

3.123 Write the derivatives of the surface basis vectors (i.e. ∂βEα) in terms of the surface

vectors (i.e. Eγ and n) in their vector and tensor forms.

3.124 What is the essence of the equations of Weingarten? Provide qualitative and quan-

titative descriptions of these equations. Also write these equations in a matrix form
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involving the covariant curvature tensor and the contravariant metric tensor of the

surface.

3.125 Derive Weingarten equations for a Monge patch of the form r(u, v) = (u, v, f(u, v)).

3.126 Express the partial derivatives of n with respect to the surface coordinates in terms

of the Gaussian and mean curvatures and the coefficients of the first and second

fundamental forms.

3.127 Give the equations of Gauss for a Monge patch of the form r(u, v) = (u, v, f(u, v)).

3.128 State, using full tensor notation, the equations of Codazzi-Mainardi explaining all the

symbols involved.

3.129 Derive, using the Codazzi-Mainardi equations, the following relation: bαβ;γ = bαγ;β.

3.130 Explain how the relation in the previous question indicates that there are only two

independent components for the Codazzi-Mainardi equations. What are these two

independent components?

3.131 Describe sphere mapping in qualitative and technical terms. Also, explain the meaning

of the following equation:

lim
R→P

σ(R̄)

σ(R)
= |KP |

3.132 Prove the theorem represented by the equation in the previous question.

3.133 Prove that at a given point P on a surface with K 6= 0, there exists a neighborhood

N of P where an injective mapping can be established between N and its spherical

image N̄ .

3.134 State one of the global theorems of space surface and explain why it is global.



Chapter 4

Curvature

“Curvature” is a property of both curves and surfaces at a given point which is determined

by the shape of the curve or surface at that point. There are also global characteristics of

curvature like total curvatureKt (see § 4.8) of a surface but they are based in general on the

local characterization of curvature at individual points. The curvature also has intrinsic

as well as extrinsic attributes and hence it characterizes the manifold internally as seen by

an inhabitant of the manifold and externally as seen by an outsider. In this chapter, we

investigate this property in its general meaning and examine the main parameters used

to describe curvature and quantify it focusing on space surfaces and curves embedded in

such surfaces. The materials are largely based on a 3D flat ambient space coordinated by

a Cartesian orthonormal system.

4.1 Curvature Vector

At a given point P on a surface S, a plane containing the vector n, which is the normal

unit vector to the surface at P , intersects the surface in a surface curve C having a tangent

vector t at P . The curve C is called the normal section of S at P in the direction of t.

The principal normal vector N of a normal section at P is collinear with the unit normal

vector n at P . We note that for a normal section, N and n can be parallel or anti-parallel

since on an orientable surface the vector n can have one of two possible directions. On the

other hand, a surface curve passing through P in the direction of t may not be a normal

section and hence the vectors N and n at P have different orientations. In this context

we remark that we are considering here the part of the curve in the neighborhood of the

point P as part of a normal section or not, and not necessarily the whole curve.

As explained before, a space curve C can be parameterized by s, representing the distance

traversed along C, and hence the curve is defined by the position vector r(s). At a given

point P on C, the vector T = dr
ds

is a unit vector tangent to C at P in the direction of

141
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increasing s. When C is embedded in a surface, T will be contained in the tangent plane

to the surface at P , as explained previously in § 2.2 and 3.1. We note that the vector

T can be parallel or anti-parallel to the aforementioned vector t. We chose to introduce

t and define it in this way to be more general since the curve orientation can be in one

direction or the other and hence T and t can be parallel or anti-parallel. Moreover, t is

not necessarily of unit length or based on a natural parameterization of the curve.

The curvature vector of C at P , which is orthogonal to T, is defined by:

K =
dT

ds
(304)

where K, which is the uppercase Greek letter kappa, symbolizes the curvature vector.

The curvature κ of C at P (which is defined previously in § 2.2) is the magnitude of the

curvature vector, that is: κ = |K|, and the radius of curvature when κ 6= 0 is its reciprocal,

i.e. Rκ = 1
κ
, which is the radius of the osculating circle of C at P (see § 2.6). The curvature

vector can therefore be expressed as:

K = |K| K

|K| = κN (305)

where N is the principal normal vector of the curve C at P as defined previously in § 2.2.
The curvature vector of a surface curve is independent of the orientation and parameter-

ization of the surface and the curve. However, the curvature vector at a particular point

is determined by the local shape of the curve, which is partly determined by the position

on the surface and the tangential direction to the surface at that position, and hence the

curvature vector depends on the surface point and tangential direction, as well as on other

factors.

A point on the curve at which the curvature vector K vanishes, and hence κ = 0, is called

inflection point. At such a point, the radius of curvature is infinite and the principal normal

vector N and the osculating circle are not defined. However, since it is usually assumed

that the curve is of class C2, the curvature vector varies smoothly and hence at isolated

points of inflection on such a curve, N may be defined in such a way to ensure continuity

when this is possible, which is not always the case.

On introducing a new unit vector which is orthogonal to both n and T and defined by
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the following cross product:

u = n×T (306)

the curvature vector, which lies in the plane spanned by n and u, can then be resolved

in the n and u directions, which represent the normal and tangential directions to the

surface at the given point, as:

K = Kn + Kg = κnn + κgu (307)

where Kn and Kg are the normal and geodesic components of the curvature vector K,

while κn and κg are the normal and geodesic curvatures of the curve at the given point

respectively.

On dot producting both sides of Eq. 307 with n and u in turn, noting that n and u are

orthogonal unit vectors, the normal and geodesic curvatures can be obtained, that is:

κn = n ·K = −T · dn
ds

= −dr
ds
· dn
ds

(308)

κg = u ·K = u · dT
ds

= (n×T) · dT
ds

(309)

The second equality of Eq. 308 is based on the fact that T and n are orthogonal (since T

is tangent to the surface while n is normal to the surface); therefore by the product rule

of differentiation we have:

d (n ·T)

ds
=
d (0)

ds
= 0 = n · dT

ds
+
dn

ds
·T = n ·K + T · dn

ds
(310)

and hence: n · K = −T · dn
ds
. The other equalities in Eqs. 308 and 309 are based on

definitions which have been given previously.

The vector u, which is a unit vector normal to the curve C, is called the geodesic

normal vector. This vector is the normalized projection of K onto the tangent space of

the surface and hence it is contained in the tangent plane of the surface at the given point.

Also, because the vector u is orthogonal to the curve C at P (since u is orthogonal to

T by the cross product), it is contained in the normal plane of C at P . Hence, u occurs

at the intersection of the tangent plane of the surface and the normal plane of the curve

which correspond to the given point.
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While the normal curvature κn is an extrinsic property, since it depends on the first and

second fundamental form coefficients, as seen in § 3.6 (Eq. 260) and as will be seen in 4.2,

the geodesic curvature κg in an intrinsic property as it depends only on the first funda-

mental form coefficients and their derivatives (see § 4.3). We note that the triad (n,T,u)

is another moving frame which is in common use in differential geometry in addition to

the curve-based Frenet frame (T,N,B) and the surface-based frame (E1,E2,n).

Regarding the relation between the principal normal vector of the curve N, and the unit

normal vector to the surface n, let C be a curve on a sufficiently smooth surface S. If φ is

the angle between the vector N of C at a given point P and the vector n of S at P then

we have:

cosφ = n ·N (311)

Accordingly, the normal and geodesic curvatures, κn and κg, of C at P are given by:

κn = κ cosφ (312)

κg = κ sinφ (313)

where κ is the curvature of C at P as defined previously (see § 2.2 and the previous parts

of the present section). In fact, Eq. 312 can be easily obtained by combining Eq. 308 with

Eq. 305, while Eq. 313 can be similarly obtained by combining Eq. 309 with Eq. 305,

that is:

κn = n ·K = n · (κN) = κ (n ·N) = κ cosφ (314)

κg = u ·K = u · (κN) = κ (u ·N) = κ cos
(π

2
− φ
)

= κ sinφ (315)

According to the theorem of Meusnier, if P is a given point on a sufficiently smooth

surface S, then all curves on S that pass through P with the same tangent direction at

P have the same normal curvature at P . The theorem of Meusnier may also be stated in

this context as: the curvature of any surface curve at a given point P on the curve is equal

in magnitude to the curvature of the normal section which is tangent to the curve at P

divided by the cosine of the angle between the principal normal vector to the curve at P

and the normal vector to the surface at P . This version of the theorem is based on Eq. 312

plus the fact that the normal curvature κn of a normal section is equal in magnitude to its
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curvature κ. Also, we should exclude from this version the case of having cosφ = 0 when

the curvature vector of the curve is tangent to the surface. More details about Meusnier

theorem will be given in § 4.2.1.

4.2 Normal Curvature

Using the first and second fundamental forms, given by Eqs. 233 and 244, the normal

curvature at a given point on the surface in the du2

du1
direction can be expressed as the

following quotient of the second fundamental form involving the coefficients of the surface

covariant curvature tensor to the first fundamental form involving the coefficients of the

surface covariant metric tensor (see Eq. 259):

κn =
IIS
IS

=
e(du1)2 + 2f du1du2 + g(du2)2

E(du1)2 + 2F du1du2 +G(du2)2
=
bαβdu

αduβ

aγδduγduδ
(316)

where the symbols are as explained before, and the last part is to be interpreted as the

sum of the terms in the numerator divided by the sum of the terms in the denominator.

This equation can be obtained as follows:

κn = −T · dn
ds

(Eq. 308) (317)

= −
(
∂r

∂uα
duα

ds

)
·
(
∂n

∂uβ
duβ

ds

)
(Eq. 106)

= −
(
∂r

∂uα
· ∂n

∂uβ

)
duα

ds

duβ

ds

=
−
(
∂r
∂uα
· ∂n
∂uβ

)
duαduβ

ds ds

=
bαβdu

αduβ

(ds)2
(Eq. 213)

=
bαβdu

αduβ

aγδduγduδ
(Eq. 233)

From the previous statements plus Eq. 307, it can be seen that the normal component

of the curvature vector may also be given by:

Kn =

[
e

(
du1

ds

)2

+ 2f
du1

ds

du2

ds
+ g

(
du2

ds

)2
]

n (318)
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Also, from Eq. 316 it can be seen that the sign of the normal curvature κn (i.e. being

greater than, less than or equal to zero) is determined solely by the sign of the second

fundamental form since the first fundamental form is positive definite. As seen before (see

§ 3.6), the sign of the second fundamental form depends on the surface orientation which

is determined by the direction of n. Therefore, the sign of κn depends on the surface

orientation. Apart from this, the sign of the second fundamental form is related to the

sign of the determinant of the surface covariant curvature tensor b, and hence the sign of

κn is also related to the sign of b.

As given earlier, all surface curves passing through a given point P on a surface and

have the same tangent line at P have identical normal curvature at P . Hence, the normal

curvature is a property of the surface at a given point and in a given direction and not

only a property of the curve. The normal curvature κn of a given normal section C of a

surface at a particular point P is equal in magnitude to the curvature κ of C at P , i.e.

|κn| = κ. This can be explained by the fact that the normal vector n to the surface at

P is collinear with the principal normal vector N of C at P so there is only a normal

component to the curvature vector with no tangential geodesic component.

The normal curvature of a surface at a given point and in a given spatially-fixed tan-

gential direction is an invariant property with respect to change of parameterization and

representation of the surface apart from its sign which is dependent on the choice of the

direction of the unit normal vector n to the surface, as seen earlier. The normal curva-

ture is an extrinsic property, since it necessarily depends on the coefficients of the second

fundamental form, and hence it cannot be expressed purely in terms of the coefficients of

the first fundamental form.

At flat points on a surface, κn = 0 in all directions. At elliptic points, κn 6= 0 in any

direction and it has the same sign in all directions. At parabolic points, κn has the same

sign in all directions except the direction in which the second fundamental form vanishes

where κn = 0. At hyperbolic points, κn is negative, positive and zero depending on the

direction. For the definition of flat, elliptic, parabolic and hyperbolic points and their

significance, the reader is referred to § 4.9.
In any two orthogonal tangential directions at a given point P on a sufficiently smooth

surface, the sum of the normal curvatures corresponding to these directions at P is con-

stant. At any point P of a sufficiently smooth surface S, there exists a paraboloid (elliptic
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or hyperbolic) which is tangent at its vertex to the tangent plane of S at P such that

the normal curvature of the paraboloid in a given direction at P is equal to the normal

curvature of S at P in that direction. This paraboloid takes the degenerate form of a

plane at flat points and a parabolic cylinder at parabolic points (see § 4.9).
The normal curvatures of the surface curves at a given point P in the directions of the

u and v coordinate curves are given respectively by:

κnu =
b11

a11

=
e

E
(319)

κnv =
b22

a22

=
g

G
(320)

where κnu and κnv are the normal curvatures in the directions of the u and v coordinate

curves, the indexed a and b are the coefficients of the covariant metric tensor and the

covariant curvature tensor and where these are evaluated at P . This can be seen, for

example, from Eq. 316 where the last two terms in the sums will vanish for the u1

coordinate curve since du2 = 0 while the first two terms in the sums will vanish for the

u2 coordinate curve since du1 = 0. We note that du1 6= 0 on the u1 coordinate curve and

du2 6= 0 on the u2 coordinate curve. As we will see in § 4.4, at each non-umbilical point

P (refer to § 4.10) of a sufficiently smooth surface there are two perpendicular directions

along which the normal curvature of the surface at P takes its maximum and minimum

values of all the normal curvature values at P .

The necessary and sufficient condition for a given point P on a sufficiently smooth surface

S to be umbilical point is that the coefficients of the first and second fundamental forms

of the surface at P are proportional, that is:

e

E
=
f

F
=
g

G
(= κn) (321)

where E,F,G, e, f, g are the coefficients of the first and second fundamental forms at P ,

and κn is the normal curvature of S at P in any direction. This can be seen from Eq.

316 where κn in this case becomes independent of the direction since by taking out the

common proportionality factor the expression will be reduced to: κn = c where c is the

proportionality factor. More explicitly, according to Eq. 321: e = cE, f = cF and

g = cG where c is the common proportionality factor, and hence from Eq. 316 we obtain:
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κn = c× 1 = c.

As seen before, the curvature κ and the normal curvature κn of a surface curve at a given

point P on the curve are related by:

κn = κ cosφ (322)

where φ is the angle between the principal normal vector N of the curve at P and the unit

normal vector n of the surface at P .

At every point on a sphere and in any direction, the normal curvature is constant given

by: |κn| = 1
R
where R is the sphere radius. At any point P on a sphere, any surface curve

C passing through P in any direction is a normal section iff C is a great circle. All these

great circles have constant curvature κ and normal curvature κn which are both equal in

magnitude to 1
R
where R is the sphere radius. We remark that the great circles of a sphere

are the plane sections formed by the intersection of the sphere with the planes passing

through the center of the sphere.

4.2.1 Meusnier Theorem

According to the theorem of Meusnier, all surface curves passing through a given point

P on a surface and have the same tangential non-asymptotic direction (see § 5.9) at P

have identical normal curvature which is the normal curvature κn (and the curvature κ

considering the magnitude) of the normal section at P in the given direction. Moreover,

the osculating circles of these curves lie on a sphere Ss with radius 1
κ
and with center at

rC = rP + N
κ
where κ (which is equal in magnitude to κn) is the curvature of the normal

section at P , N is the principal normal vector of the normal section at P and rP is the

position vector of P . As a consequence of this theorem, we have:

1. The center of the sphere Ss is the center of curvature (see § 2.6) of the normal section

at P in the given direction.

2. These curves are characterized by being tangent to the normal section at P in the

given direction and by being plane sections of the surface with shared tangent direc-

tion at P .[16]

3. The osculating circles of these curves are the intersection of the sphere Ss with the

[16]We are considering here the part of these curves in the neighborhood of the point P on the surface.
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osculating planes of these curves at P .

4. The sphere Ss is tangent to the tangent plane of the surface at P .

The theorem of Meusnier may also be stated as follows: the center of curvature of a surface

curve at a given point P on the curve is obtained by orthogonal projection of the center

of curvature of the normal section, which is tangent to the curve at P , on the osculating

plane of the curve.

4.3 Geodesic Curvature

As described earlier (see § 4.1), the curvature vector K of a surface curve lies in a plane

perpendicular to the tangent vector T and it can be resolved into a normal component

Kn = κnn and a geodesic component Kg = κgu where the normal and geodesic curvatures,

κn and κg, are given by Eqs. 308 and 309. The geodesic component Kg of the curvature

vector K of a surface curve at a given point P and in a given direction is the projection

of K onto the tangent space TPS of the surface at P . This geodesic component of the

curvature vector of a surface curve is given by:

Kg = κgu =

(
d2u1

ds2
+ Γ1

αβ

duα

ds

duβ

ds

)
E1 +

(
d2u2

ds2
+ Γ2

αβ

duα

ds

duβ

ds

)
E2 (323)

where the Christoffel symbols are derived from the surface metric. Since u = n×T, the

sense of the geodesic curvature vector depends on the orientation of the surface and the

orientation of the curve. The geodesic component of the curvature vector may also be

given by the following expression:

Kg =

[
n×

(
∂E1

∂u1

(
du1

ds

)2

+ 2
∂E1

∂u2

du1

ds

du2

ds
+
∂E2

∂u2

(
du2

ds

)2
)]
× n

+ E1
d2u1

ds2
+ E2

d2u2

ds2

(324)

where the symbols are as explained before.

As well as the previously developed expressions for κg (see Eqs. 309 and 313), it can be
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shown that for a naturally parameterized curve the geodesic curvature κg is also given by:

κg =
√
a

[
Γ2

11

(
du1

ds

)3

+
(
2Γ2

12 − Γ1
11

)(du1

ds

)2
du2

ds
+

(
Γ2

22 − 2Γ1
12

) du1

ds

(
du2

ds

)2

− Γ1
22

(
du2

ds

)3

+
du1

ds

d2u2

ds2
− d2u1

ds2

du2

ds

] (325)

where the Christoffel symbols are derived from the surface metric and a = EG − F 2 is

the determinant of the surface covariant metric tensor. While the curvature κ and the

normal curvature κn are extrinsic properties of the surface, the geodesic curvature κg is

an intrinsic property. This can be seen, for example, from Eq. 325.

On the u1 coordinate curves, du2
ds

= 0 and du1

ds
= 1√

E
.[17] Hence, Eq. 325 will simplify to:

κgu =
√
aΓ2

11

(
du1

ds

)3

=

√
a

E3/2
Γ2

11 (326)

where κgu is the geodesic curvature of the u1 coordinate curve. The last formula will be

simplified further if the u1 and u2 coordinate curves are orthogonal, since in this case

F = 0 and Γ2
11 = −Ev

2G
(see Eq. 74), and the formula will become:

κgu = − Ev

2E
√
G

(327)

Similarly, on the u2 coordinate curves, du1

ds
= 0 and du2

ds
= 1√

G
.[18] Hence, Eq. 325 will

simplify to:

κgv = −√aΓ1
22

(
du2

ds

)3

= −
√
a

G3/2
Γ1

22 (328)

where κgv is the geodesic curvature of the u2 coordinate curve. The last formula will be

simplified further if the u1 and u2 coordinate curves are orthogonal, since in this case

[17]This may be demonstrated non-rigorously as:

ds

du1

ds

du1
=

Edu1du1

du1du1
= E

since on the u1 coordinate curves we have: IS = (ds)2 = E(du1)2 (see Eq. 233). Hence, du
1

ds = 1√
E
.

[18]This can be demonstrated non-rigorously as in the previous footnote by replacing du1 with du2 and E
with G.
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F = 0 and Γ1
22 = −Gu

2E
(see Eq. 77), and the formula then becomes:

κgv =
Gu

2G
√
E

(329)

Although the geodesic curvature is an intrinsic property, as can be seen from the above

equations, it can also be calculated extrinsically by:

κg =
r̈ · (n× ṙ)

(ṙ · ṙ)3/2
(330)

where the overdots stand for differentiation with respect to a general parameter t of the

curve. As discussed previously, some intrinsic properties can also be defined in terms of

extrinsic parameters.

As seen before, the curvature κ and the geodesic curvature κg of a surface curve at a

given point P on the curve are related by:

κg = κ sinφ (331)

where φ is the angle between the principal normal vector N of the curve at P and the unit

normal vector n of the surface at P . It should be remarked that the geodesic curvature

can take any real value: positive, negative or zero. However, there are some details related

to the definition of the angle φ in the last equation and the geodesic normal vector u that

should be considered.

On a surface patch of class C2 with orthogonal coordinate curves, an s-parameterized

curve C of class C2 has a geodesic curvature given by:

κg =
dθ

ds
+ κgu cos θ + κgv sin θ (332)

where κgu and κgv are the geodesic curvatures of the u and v coordinate curves and θ is

the angle such that:

T =
E1

|E1|
cos θ +

E2

|E2|
sin θ (333)

where T is the tangent unit vector of C, and E1 and E2 are the surface basis vectors, and

where all the given quantities are evaluated at a given point on the curve. We note that

Eq. 332 is known as Liouville formula.
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4.4 Principal Curvatures and Directions

On rotating the plane containing n (i.e. the unit normal vector to the surface at a given

point P on the surface) around n, the normal section and hence its curvature κ and normal

curvature κn at P will vary in general.[19] Based on the previous findings (see § 4.2), the
normal curvature κn (which, for a normal section, is equal in magnitude to its curvature

κ) of the surface at P in a given direction λ can be given by:

κn =
e+ 2fλ+ gλ2

E + 2Fλ+Gλ2
(334)

where E,F,G, e, f, g are the coefficients of the first and second fundamental forms and

λ = du2

du1
. In fact, Eq. 334 is a variant of Eq. 316 obtained by dividing the numerator and

denominator of Eq. 316 by (du1)2. The directions represented by du2

du1
are the directions of

the tangents to the normal sections at P . We note that for ease of notation and expression,

symbols like du2

du1
and du : dv are laxly labeled as directions since a pair like (du1, du2) or

(du, dv) represents a direction.

The two principal curvatures of the surface at P , κ1 and κ2, which represent respectively

the maximum and minimum values of the normal curvature κn of the surface at P as given

by Eq. 334, correspond to the two λ roots of the following quadratic equation:

(gF − fG)λ2 + (gE − eG)λ+ (fE − eF ) = 0 (335)

where (gF − fG) 6= 0. The last equation is obtained by equating the derivative of κn (as

given by Eq. 334) with respect to λ to zero to obtain the extremum values.

Eq. 335 possesses two roots, λ1 and λ2, which according to the rules of polynomials are

linked by the following relations:

λ1 + λ2 = − gE − eG
gF − fG λ1λ2 =

fE − eF
gF − fG (336)

where (gF − fG) 6= 0. These roots represent the two directions corresponding to the two

principal curvatures, κ1 and κ2, of the surface at the given point, as indicated above.

[19]The plane containing n is also characterized by being orthogonal to the tangent plane to the surface
at P .
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The following two vectors on the surface, which are defined in terms of the two λ roots of

the above quadratic equation, define the spatial directions corresponding to the principal

curvatures: (
dr

du1

)
1

=
∂r

∂u1
+ λ1

∂r

∂u2
= E1 + λ1E2 (337)(

dr

du1

)
2

=
∂r

∂u1
+ λ2

∂r

∂u2
= E1 + λ2E2 (338)

These directions, which are called the principal directions or the curvature directions of

the surface at point P , are orthogonal at non-umbilical points where κ1 6= κ2. At umbilical

points (see § 4.10), the normal curvature is the same in all directions and hence there are

no principal directions to be orthogonal or every direction is a principal direction and

hence there is no sensible meaning for being orthogonal. Consequently, at any point on a

plane surface all directions are principal directions or, alternatively, there is no principal

direction (depending on allowing more than two principal directions or not). Similarly,

at any point on a sphere all directions are principal directions or there is no principal

direction.

It is noteworthy that the principal directions are invariant with respect to permissi-

ble changes in surface representation and parameterization. However, we remark that

although the principal directions in a given coordinate system of the ambient space are

fixed and hence their position and orientation relative to the surface are invariant, their

position and orientation with respect to the surface coordinates depend on the coordinate

system employed to represent the surface.

The positions of the centers of curvature (see § 2.6) of the normal sections corresponding

to the two principal curvatures at a given point P on a surface S are given in tensor

notation by:

xi1 = xiP +
N i

1

|κ1|
(339)

xi2 = xiP +
N i

2

|κ2|
(340)

where xi1 and xi2 are the spatial coordinates of the first and second center of curvature

corresponding to the two principal curvatures, xiP are the spatial coordinates of P , N i
1 and
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N i
2 are the principal normal vectors of the two normal sections corresponding to the two

principal curvatures, κ1 and κ2 are the principal curvatures of S at P , and i = 1, 2, 3.

We note that the principal normal vector N of a normal section at a given point P

on the surface is collinear with the unit normal vector n to the surface at P and hence

the principal normal vectors are in the same orientation for all normal sections at P .

However, the two principal normal vectors corresponding to the two principal curvatures

may be parallel or anti-parallel and hence we labeled them differently to be general.[20]

We also remark that the two normal sections in the principal directions at P are called

the principal normal sections of the surface at P , while the centers of curvature of these

principal normal sections are described as the principal centers of curvature of the surface

at P .

According to one of the Euler theorems, the normal curvature κn at a given point P on a

surface of class C2 in a given direction can be expressed as a combination of the principal

curvatures, κ1 and κ2, at P as:

κn = κ1 cos2 θ + κ2 sin2 θ (341)

where θ is the angle between the principal direction of κ1 at P and the given direction.

Since the principal directions at non-umbilical points are orthogonal, θ could represent the

angle with the other principal direction but with relabeling of the two kappas.

There are a number of invariant parameters of the surface at a given point P on the

surface which are defined in terms of the principal curvatures at P ; these include:

1. The principal radii of curvature: R1 =
∣∣∣ 1
κ1

∣∣∣ and R2 =
∣∣∣ 1
κ2

∣∣∣.
2. The Gaussian curvature: K = κ1κ2.

3. The mean curvature: H = κ1+κ2
2

.

Table 1 shows the restricting conditions on the principal curvatures, κ1 and κ2, for a

number of common surfaces with simple geometric shapes (plane, cylinder, sphere, ellipsoid

and hyperboloid of one sheet) and the effect on the Gaussian curvature K and the mean

curvature H.

[20]Alternatively, we can use a single principal normal vector for both normal sections with the use of the
principal curvatures instead of their absolute values. However, the sign of the second term on the right
hand side of the above equations should be selected properly as it can be plus or minus depending on
the choice of n direction.
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Table 1: The limiting conditions on the principal curvatures, κ1 and κ2, for a number of
surfaces of simple geometric shapes alongside the corresponding mean curvature H and
Gaussian curvature K. Apart from the plane, the unit normal vector to the surface, n, is
assumed to be in the outside direction.

κ1 κ2 H K
Plane 0 0 0 0
Cylinder κ1 = 0 κ2 < 0 H < 0 0
Sphere κ1 = κ2 < 0 κ2 = κ1 < 0 H < 0 K > 0
Ellipsoid (Fig. 4) κ1 < 0 κ2 < 0 H < 0 K > 0
Hyperboloid of one sheet (Fig. 5) κ1 > 0 κ2 < 0 — K < 0

The Gaussian curvature may also be called the “Riemannian curvature”. However, the

“Riemannian curvature” is usually used to label this type of curvature for general nD

spaces while the “Gaussian curvature” is being used to label the special instance of it that

applies to 2D spaces, and hence the Gaussian curvature is the Riemannian curvature of

surfaces.

It should be remarked that some authors use “total curvature” for the “Gaussian curva-

ture” and hence these two terms are synonym, while others use “total curvature” for the

area integral
´
Kdσ as used, for example, in the Gauss-Bonnet theorem (refer to § 4.8).

In the present book, we use total curvature strictly for the integral and hence we label

the Gaussian curvature with K and the total curvature with Kt. Another remark is that

some authors define H as the sum of κ1 and κ2, that is: H = κ1 + κ2, rather than the

average as defined above. In fact each one of these conventions has its merit. However, in

the present book we define H as the average, not the sum, of the two principal curvatures.

In the neighborhood of a given point on a surface, the surface can be approximated by

a quadratic expression involving the principal curvatures at that point. More formally, let

P be a point on a sufficiently smooth surface S embedded in a 3D space coordinated by

a rectangular Cartesian system (x, y, z) with P being above the origin, the tangent plane

of S(x, y) at P being parallel to the xy plane, and the principal directions being along

the x and y coordinate lines. The equation of S in the neighborhood of P can then be

expressed, up and including the quadratic terms, in the following form:

S(x, y) ' S(0, 0) +
κ1x

2

2
+
κ2y

2

2
(342)
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where κ1 and κ2 are the principal curvatures of S at P . This means that in the immediate

neighborhood of P , S resembles a quadratic surface (see § 6.2) of the given form. The

above form includes umbilical points (see § 4.10) where the principal directions can be

arbitrarily chosen as the directions of the x and y coordinate lines.

The necessary and sufficient condition for a number κ ∈ R to be a principal curvature of

a smooth surface S at a given point P and in a given direction dv
du
, where (du)2 +(dv)2 6= 0,

is that the following equations are satisfied:

(e− κE)du+ (f − κF )dv = 0 (343)

(f − κF )du+ (g − κG)dv = 0 (344)

where E,F,G, e, f, g are the coefficients of the first and second fundamental forms at P .

It is worth noting that for simplicity in notation, we use κ in these and the following

equations to represent principal curvature. This use should not be confused with the

curve curvature which is also symbolized by κ. However, for this case the curvature is

equal (in magnitude at least) to the principal curvature since the latter is the curvature

of a normal section and hence the use of κ is justified.

The above equations can be cast in a matrix form as:[
e− κE f − κF
f − κF g − κG

][
du

dv

]
=

[
0

0

]
(345)

This system of homogeneous linear equations has a non-trivial solution (du, dv) iff the

determinant of the coefficient matrix is zero, that is:∣∣∣∣∣ e− κE f − κF
f − κF g − κG

∣∣∣∣∣ =
(
EG− F 2

)
κ2 − (gE − 2fF + eG)κ+

(
eg − f 2

)
= 0 (346)

Based on the given conditions, this quadratic equation in κ has a non-negative discriminant

and hence it possesses either two distinct real roots or a repeated real root. In the former

case there are two distinct principal curvatures at P corresponding to two orthogonal

principal directions, while in the latter case the point is umbilical where all the normal

sections at the point have the same “principal curvature” although there is no specific
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principal direction since each direction can be a principal direction. So in brief, a given

real number κ is a principal curvature of S at P iff it is a solution of Eq. 346.

From Eq. 346, it can be seen that the principal curvatures of a surface at a given point

P are the solutions of this quadratic equation and hence they are given by (noting that

the comma here does not mean differentiation):

κ1,2 =
gE − 2fF + eG±

√
(gE − 2fF + eG)2 − 4 (EG− F 2) (eg − f 2)

2 (EG− F 2)
(347)

On dividing Eq. 346 by a = EG−F 2 (which is positive definite as established before) we

obtain:

κ2 − 2Hκ+K = 0 (348)

where H and K are the mean and Gaussian curvatures whose expressions in terms of the

coefficients of the first and second fundamental forms are taken from Eqs. 383 and 356.

Hence, Eq. 347 can be expressed compactly as:

κ1,2 = H ±
√
H2 −K (349)

In fact, this formula can be obtained directly from Eq. 348 using the quadratic formula.

The above conditions about the principal curvatures may be stated rather differently

in terms of the principal directions that is, for a non-umbilical point P on a sufficiently

smooth surface S, a direction du2

du1
is a principal direction of S at P iff the following

condition is true:

(fE − eF ) du1du1 + (gE − eG) du1du2 + (gF − fG) du2du2 = 0 (350)

The last equation, which is obtained from Eq. 335 by multiplying both sides with (du1)
2,

can be factored into two linear equations each of the form: Adu1 + B du2 = 0 (with A

and B being real constants) where these equations represent the two orthogonal principal

directions.

Similarly, at a given non-umbilical point P on a sufficiently smooth surface S, a direction
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dv
du

is a principal direction iff for a real number κ the following relation holds true:

dn = −κ dr (351)

where:

dn =
∂n

∂u
du+

∂n

∂v
dv dr =

∂r

∂u
du+

∂r

∂v
dv (352)

If this condition is satisfied, then κ is the principal curvature of S at P corresponding to the

principal direction dv
du
. Eq. 351 is known as the Rodrigues curvature formula. The obvious

interpretation of the Rodrigues formula is that in any principal direction the two vectors

dn and dr have the same orientation where the principal curvature κ in that direction

is the scale factor between the two vectors. From the Rodrigues curvature formula, the

following subsidiary equations corresponding to the surface coordinate curves can be easily

obtained:

∂n

∂u
= −κE1

∂n

∂v
= −κE2 (353)

On each non-umbilical point P of a smooth surface S an orthonormal moving “Darboux

frame” can be defined. This frame consists of the vector triad (d1,d2,n) where d1 and d2

are the unit vectors corresponding to the principal directions at P , and n = d1×d2 is the

unit normal vector to the surface at P . This is another moving frame in use in differential

geometry in addition to the three previously-described frames: the (T,N,B) frame, the

(E1,E2,n) frame and the (n,T,u) frame (see § 1.4.5, 2.5, 3.2 and 4.1). The first of these

frames, i.e. (T,N,B), is associated with curves while the remaining three are associated

with surfaces. What is common to all these four frames is that they are moving frames

whose vectors can be used as basis sets for the embedding 3D space since each one of these

sets consists of three linearly independent vectors. Also, all these sets, except (E1,E2,n),

are orthonormal.

When the u and v coordinate curves of a surface at a given point P are aligned along

the principal directions at P , the principal curvatures at P will be given by (see § 4.2):

κ1 =
b11

a11

=
e

E
κ2 =

b22

a22

=
g

G
(354)

where the indexed a and b are the coefficients of the surface covariant metric and covariant
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curvature tensors, and E,G, e, g are the coefficients of the first and second fundamental

forms at P . This may be obtained from Eq. 316 where the last two terms in the sums

will vanish for the u coordinate curve since dv = 0 while the first two terms in the sums

will vanish for the v coordinate curve since du = 0. We note that we are assuming here

a particular labeling of the u and v coordinate curves for the labeling of the two kappas

to be appropriate, i.e. the u coordinate curve is aligned along the first principal direction

and the v coordinate curve is aligned along the second principal direction.

It should be remarked that on an oriented and sufficiently smooth surface, the principal

curvatures, κ1 and κ2, are continuous functions of the surface coordinates. Another remark

is that the principal curvatures are the eigenvalues of the mixed type surface curvature

tensor bαβ .

4.5 Gaussian Curvature

The Gaussian curvature, which may also be called the Riemannian curvature of the surface,

represents a generalization of curve curvature to surfaces since it is the product of two

curvatures of curves embedded in the surface and hence in this sense it is a 2D curvature.

As given earlier, the Gaussian curvature K at a given point P on a surface is defined as

the product of the two principal curvatures, κ1 and κ2, of the surface at P that is:

K ≡ κ1κ2 (355)

The Gaussian curvature of a surface at a given point P on the surface is given by:

K =
eg − f 2

EG− F 2
=
b

a
=
R1212

a
(356)

where E,F,G, e, f, g are the coefficients of the first and second fundamental forms at

P , a and b are the determinants of the surface covariant metric and covariant curvature

tensors, and R1212 is the component of the 2D covariant Riemann-Christoffel curvature

tensor. From Eq. 231 we have:

R1212 = b11b22 − b12b21 = eg − f 2 = b (357)
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where the indexed b are the coefficients of the surface covariant curvature tensor, and hence

the equalities in Eq. 356 are fully justified. As discussed previously (see § 1.4.10), the 2D

Riemann-Christoffel curvature tensor has only one independent non-vanishing component

which is represented by R1212. Therefore, Eq. 356 provides a full link between the Gaussian

curvature and the Riemann-Christoffel curvature tensor.

The above formulae (Eq. 356) are also based on the fact that the Gaussian curvature K

is the determinant of the mixed curvature tensor bαβ of the surface, that is:

K = det(bαβ) = det(aαγbγβ) = det(aαγ)det(bγβ) =
det(bγβ)

det(aαγ)
=
b

a
(358)

where the symbols are as defined previously. From Eq. 356, we see that the sign of K

(i.e. K > 0, K < 0 or K = 0) is the same as the sign of b and the sign of R1212 since a

is positive definite. We note that being the determinant of a tensor establishes the status

of K as an invariant under permissible coordinate transformations. We also note that the

chain of formulae in Eq. 358 may be taken in the opposite direction starting primarily

from K = b
a
or K = R1212

a
as a definition or as a derived result from other arguments, and

hence the statement K = det(bαβ) will be obtained as a secondary result.

Since both R1212 (see Eq. 88) and a depend exclusively on the surface metric tensor, Eq.

356 reveals that K depends only on the first fundamental form coefficients and hence it is

an intrinsic property of the surface (refer to § 4.7). The dependence of K on the second

fundamental form coefficients in Eq. 356 or Eq. 358 does not affect its qualification as

an intrinsic property since this dependency is not indispensable as K can be expressed in

terms of the first fundamental form coefficients exclusively. In fact, according to Eq. 262

even b can be expressed exclusively in terms of the first fundamental form coefficients.

Because the Gaussian curvature is an invariant with respect to permissible coordinate

transformations in 2D manifolds, we have:

K =
R1212

a
=
R̄1212

ā
(359)

where the barred and unbarred symbols represent the quantities in the barred and unbarred

coordinate systems. The Gaussian curvature is also invariant with respect to the type of

representation and parameterization of the surface. In particular, the Gaussian curvature
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is independent, in sign and magnitude, of the orientation of the surface which is based

on the choice of the direction of the normal vector n to the surface. This is because a

change in the direction of n will change the sign of the principal curvatures but not their

absolute value and hence the magnitude is preserved. Furthermore, this change of sign

will not affect the sign of the Gaussian curvature since both signs will be changed by the

reversal of n direction and hence their product will not be affected. Therefore, the sign

and magnitude of the Gaussian curvature are both preserved under this reversal.

From Table 1 we see that the Gaussian curvature of planes and cylinders are both

identically zero. At the root of this is the fact that the Gaussian curvature is an intrinsic

property and the cylinder is a developable surface obtained by warping a plane with no

localized distortion by stretching or compression. Hence, the planes and cylinders possess

identical first fundamental forms, as indicated previously in § 3.5, and consequently they

have identical Gaussian curvature (also see § 4.7).
Since the magnitude of the normal curvature of a sphere of radius R is |κn| = 1

R
at any

point on its surface and for any normal section in any direction, its Gaussian curvature is

a constant given by K = 1
R2 . For a Monge patch of the form r(u, v) = (u, v, f(u, v)), the

Gaussian curvature is given by:

K =
fuufvv − f 2

uv

(1 + f 2
u + f 2

v )2 (360)

where the subscripts u and v stand for partial derivatives of f with respect to these surface

coordinates. The last equation can be obtained by combining Eq. 356 (or Eq. 358) with

Eqs. 201 and 226.

The Gaussian curvature of a surface of revolution generated by revolving a plane curve

of class C2 having the form y = f(x) around the x-axis is given by:

K = − fxx

f (1 + f 2
x)2 (361)

where the subscript x represents derivative of f with respect to this variable.

At any point on a sufficiently smooth surface the Gaussian curvature satisfies the follow-

ing relation:
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∂un× ∂vn = K (E1 × E2) (362)

On dot producting both sides with n we obtain:

n · (∂un× ∂vn) = K n · (E1 × E2) = K
√
a (363)

where the last equality is based on Eq. 169. Hence:

K =
n · (∂un× ∂vn)√

a
(364)

In the last equation the Gaussian curvature, which is an intrinsic property, is expressed

in terms of the normal vector n, which is an extrinsic entity, and its derivatives as well as

the metric tensor.

There are surfaces with constant zero Gaussian curvature K = 0 (e.g. planes, cylin-

ders and cones excluding the apex), surfaces with constant positive Gaussian curvature

K > 0 (e.g. spheres with K = 1
R2 where R is the sphere radius), and surfaces with con-

stant negative Gaussian curvature K < 0 (e.g. Beltrami pseudo-spheres, seen in Fig. 14,

with K = − 1
ρ2

where ρ is the pseudo-radius of the pseudo-sphere). However, in general

the Gaussian curvature is a variable function, in sign and magnitude, of the surface co-

ordinates and hence a single surface can have Gaussian curvature of different signs and

magnitudes. It is noteworthy that surfaces with constant non-zero Gaussian curvature K

may be described as spherical if K > 0 and pseudo-spherical if K < 0.

On scaling a surface up or down by a constant factor c > 0, the Gaussian curvature K

will scale by a factor of 1
c2
. This is based on the fact that scaling the surface by a constant

factor c > 0 is equivalent to scaling the coefficients of the surface metric tensor by c2 (see

Eq. 187) and scaling the coefficients of the surface curvature tensor by c (see Eq. 214),

and hence according to Eq. 356 or Eq. 358, K will be scaled by a factor of 1
c2
. This

leads to the conclusion that when the surface curvature is a non-zero constant, the surface

can be scaled up or down to make its Gaussian curvature 1 or −1 and hence simplify the

formulations and calculations.

Based on the previous statements plus the fact that the Gaussian curvature is an intrinsic

property, the Gaussian curvature is invariant with respect to all isometric transformations

since, intrinsically, these transformations correspond to scaling the surface with unity
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even though the shape of the surface may have been deformed extrinsically. Hence, two

isometric surfaces have identical Gaussian curvature at each pair of their corresponding

points. However, two surfaces with equal Gaussian curvature at their corresponding points

are not necessarily isometric. Yes, in the case of two sufficiently smooth surfaces with equal

constant Gaussian curvature the two surfaces have local isometry. The details can be found

in more advanced books on differential geometry.

In 3D manifolds, there is no compact surface of class C2 with non-positive Gaussian

curvature (i.e. K ≤ 0) over the whole surface. Also, any compact surface, excluding

the sphere, should have points with negative Gaussian curvature. In fact, the sphere

is the only connected, compact and sufficiently smooth surface with constant Gaussian

curvature. According to the Hilbert lemma, if P is a point on a sufficiently smooth surface

S with κ1 and κ2 being the principal curvatures of S at P such that: κ1 > κ2, κ1 is a

local maximum, and κ2 is a local minimum, then the Gaussian curvature of S at P is

non-positive, that is K ≤ 0.

At a given point P on a spherically-mapped (see § 3.10) and sufficiently smooth surface

S, the ratio of the area of the spherical image R̄ of a mapped region R surrounding P

on S to the area of R converges to the absolute value of the Gaussian curvature at P as

R shrinks to P (see Eq. 303). From the Gauss-Bonnet theorem (see § 4.8), it can be

shown that a surface will have identically-vanishing Gaussian curvature if at any point P

on the surface there are two families of geodesic curves (see § 5.7) in the neighborhood of

P intersecting at a constant angle.

From Eqs. 93 and 356, it can be seen that the Gaussian curvature K of a sufficiently

smooth surface represented by r = r(u, v) = r(u1, u2) can also be given by:

K =
1

a

[
Fuv −

1

2
Evv −

1

2
Guu + aαβ

(
Γα12Γβ12 − Γα11Γβ22

)]
(α,β=1,2) (365)

where E,F,G are the coefficients of the first fundamental form, the subscripts u and v

stand for partial derivatives with respect to these surface coordinates, a = EG−F 2 is the

determinant of the surface covariant metric tensor and the indexed a are its coefficients.

The Christoffel symbols in the last equation are based on the surface metric.

The Gaussian curvature of a smooth surface of class C3 represented by r(u, v) may also
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be given by:

K =
1

2
√
a

[
∂u

(
FEv
E
√
a
− Gu√

a

)
+ ∂v

(
2Fu√
a
− Ev√

a
− FEu
E
√
a

)]
(366)

where the symbols are as defined above. Accordingly, the Gaussian curvature of a surface

of class C3 represented by r(u, v) with orthogonal surface coordinate curves is given by:

K = − 1

2
√
EG

[
∂u

(
Gu√
EG

)
+ ∂v

(
Ev√
EG

)]
(367)

This formula is obtained from the previous formula by setting F = 0 identically due to

the orthogonality of the surface coordinate curves. The last formula will simplify to:

K = −∂uu
√
G√

G
(368)

when the surface r(u, v) is represented by geodesic coordinates (see § 1.4.8) with the u

coordinate curves being geodesics and u is a natural parameter.[21]

The Gaussian curvature K can also be expressed in terms of the mean curvature H (see

§ 4.6), that is:
K = (H + C) (H − C) = H2 − C2 (369)

where C is given by:

C =

√
(e2G2 + E2g2)− 4fF (eG+ Eg) + 4 (f 2EG+ F 2eg)− 2egEG

2 (EG− F 2)
(370)

and E,F,G, e, f, g are the coefficients of the first and second fundamental forms. This can

be verified by transforming Eq. 369 to the following form: C2 = H2−K and substituting

for H and K from Eqs. 383 and 356.

The Gaussian curvature of a surface S at a given point P on the surface is positive if all

the surface points in a deleted neighborhood of P on S are on the same side of the tangent

plane to S at P . The Gaussian curvature is negative if for all deleted neighborhoods of

P on S some points are on one side of the tangent plane and some are on the other side.

[21] In brief, “geodesic coordinates” here stands for a coordinate system on a coordinate patch of a surface
whose u and v coordinate curve families are orthogonal with one of these families (u or v) being a
family of geodesic curves.
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The Gaussian curvature is zero if, in a deleted neighborhood, either all the points lie in

the tangent plane or all the points are on one side except some which lie on a curve in the

tangent plane. Hence:

1. A sphere has positive Gaussian curvature at all points.

2. A hyperbolic paraboloid (Fig. 8) has negative Gaussian curvature at all points.

Similarly, the monkey saddle (Fig. 12) has negative Gaussian curvature at all points

except the origin (x, y, z) = (0, 0, 0) which is an umbilical point (see § 4.10) with

zero Gaussian curvature.

3. A plane has zero Gaussian curvature at all points.

4. A cylinder has zero Gaussian curvature at all points.

5. A torus (Fig. 36) has points with positive Gaussian curvature (outer half), points

with zero Gaussian curvature (top and bottom circles) and points with negative

Gaussian curvature (inner half).

Figure 36: Points of torus with positive Gaussian curvature (outer blue), points with zero
Gaussian curvature (middle yellow) and points with negative Gaussian curvature (inner
red).

Based on the above statements, the Gaussian curvature of a developable surface (see § 6.4)
is identically zero. Hence, beside the plane, there are other surfaces with constant zero

Gaussian curvature such as cones, cylinders and tangent surfaces of space curves (refer to

§ 6.6).
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Examples of the Gaussian curvature, K, for a number of simple surfaces are:

1. Plane: K = 0.

2. Sphere of radius R: K = 1
R2 .

3. Torus parameterized by x = (R + r cosφ) cos θ, y = (R + r cosφ) sin θ and z =

r sinφ: K = cosφ
r(R+r cosφ)

.

The total curvature Kt is defined as the area integral of the Gaussian curvature K over a

surface or a patch of a surface, S, that is:

Kt =

¨
S

Kdσ (371)

where dσ symbolizes infinitesimal area element on the surface and where K is a function

of the surface coordinates in general.

From Eqs. 206 and 282, it can be seen that the total curvature Kt may be given by:

Kt ≡
¨
S

Kdσ =

¨
S

K |E1 × E2| dudv =

¨
S

sgn (K) |∂un× ∂vn| dudv (372)

where sgn (K) is the sign function of K as a function of the surface coordinates, u and v.

The Riemann-Christoffel curvature tensor is related to the Gaussian curvature through

the absolute permutation tensor of the surface by the following relation:

Rαβγδ = Kεαβεγδ (373)

where the indexed ε are the 2D covariant absolute permutation tensors and all the indices

range over 1 and 2. On multiplying both sides of the last equation by εαβεγδ we get:

εαβεγδRαβγδ = Kεαβεγδεαβεγδ (374)

Now, since εαβεαβ = εγδεγδ = 2, the last equation becomes:

K =
1

4
εαβεγδRαβγδ =

1

4
εαβεγδ (bαγbβδ − bαδbβγ) (375)

where the indexed b are the components of the surface covariant curvature tensor, and

where the last step is based on Eq. 227. The last equation is a demonstration of the
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fact that K is an absolute rank-0 tensor since it is represented in both equalities by a

combination of absolute tensors with all the indices of these tensors being consumed by

contraction.

The Gaussian curvature is also linked to the Riemann-Christoffel curvature tensor,

through the surface metric tensor, by the following relation:

Rαβγδ = K (aαγaβδ − aαδaβγ) (376)

In fact, Eq. 356 is an instance of the last equation with α = γ = 1 and β = δ = 2. The

other combinations of index values provide the link between K and the other elements

of Rαβγδ. We note that Eq. 376 may be extended to nD spaces for n > 2 and with K

(representing Riemannian curvature) being constant but this is out of the scope of this

book.

The Gaussian curvature K may also be given by the following relation:

K =
1

2
εαβεγδbγαbδβ (377)

where the indexed ε are the 2D contravariant absolute permutation tensors. From Eqs.

227 and 373, it can be seen that the Gaussian curvature and the surface curvature tensor

are also related by:

Kεαβεγδ = bαγbβδ − bαδbβγ (378)

Other formulae for the Gaussian curvature (in terms of the surface basis vectors, their

derivatives and the coefficients of the first fundamental form) may also be obtained from

the formula K = b
a
by manipulating b as follows:

b = eg − f 2 (379)

=
(∂uE1 · E1 × E2) (∂vE2 · E1 × E2)− (∂vE1 · E1 × E2)2

a

=
(∂uE1 · E1 × E2) (∂vE2 · E1 × E2)− (∂vE1 · E1 × E2)2

EG− F 2

=
(∂uE1 · E1 × E2) (∂vE2 · E1 × E2)− (∂vE1 · E1 × E2)2

|E1 × E2|2

where these steps are based on Eqs. 253-255 and Eq. 170 as well as the obvious fact that
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a = EG− F 2. Hence:

K =
b

a
(380)

=
(∂uE1 · E1 × E2) (∂vE2 · E1 × E2)− (∂vE1 · E1 × E2)2

a2

=
(∂uE1 · E1 × E2) (∂vE2 · E1 × E2)− (∂vE1 · E1 × E2)2

(EG− F 2)2

=
(∂uE1 · E1 × E2) (∂vE2 · E1 × E2)− (∂vE1 · E1 × E2)2

|E1 × E2|4

Finally, on a 2D surface, the Gaussian curvature K is related to the Ricci curvature

scalar R (see § 1.4.11) by the following relation:

|K| = |R|
2

(381)

As seen, the Gaussian curvature is just a constant multiple of the Ricci curvature scalar of

the surface and hence they are essentially the same. Details about the signs of these cur-

vature parameters should be sought in more expanded textbooks on differential geometry

and tensor analysis.

4.6 Mean Curvature

The mean curvature of a surface at a given point P is a measure of the rate of change of area

of the surface elements in the neighborhood of P with respect to the surface coordinates.

As given earlier, the mean curvature H is defined as the average[22] of the two principal

curvatures, κ1 and κ2, that is:

H ≡ κ1 + κ2

2
(382)

The mean curvature is given by the following formula:

H =
eG− 2fF + gE

2 (EG− F 2)
=

tr
(
bαβ
)

2
=
bαα
2

(α, β = 1, 2) (383)

where E,F,G, e, f, g are the coefficients of the first and second fundamental forms, the

indexed b represent the surface mixed curvature tensor, and tr stands for the trace of
[22]Or the sum depending on the authors although it will not be a mean anymore.
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matrix. The first equality can be obtained by combining Eq. 382 with Eq. 347, while

the second equality can be verified by taking the trace of bαβ as given by Eq. 223. The

third equality is just a matter of different symbolism according to the matrix and tensor

notations.

Unlike the Gaussian curvature, the sign of the mean curvature H is dependent on the

choice of the direction of the unit normal vector to the surface, n. This can be seen from

Eq. 382 where the signs of both kappas will be reversed by the change of n direction

although the magnitude of kappas, and hence the magnitude of H, will not be affected

by this change. Like the Gaussian curvature, the mean curvature is invariant under per-

missible coordinate transformations and representations as long as the surface orientation

is preserved. Being half the trace of a tensor establishes the status of H as an invariant

under permissible coordinate transformations.

Examples of the mean curvature, H, for a number of simple surfaces are:

1. Plane: H = 0.

2. Sphere of radius R: |H| = 1
R
. As stated above, the sign of H depends on the choice

of n direction being inward or outward.

3. Torus parameterized by x = (R + r cosφ) cos θ, y = (R + r cosφ) sin θ and z =

r sinφ: |H| =
∣∣∣ R+2r cosφ

2r(R+r cosφ)

∣∣∣. The sign of H in this case depends on the location of

the point on the surface as well as the choice of n direction.

For a Monge patch of the form r(u, v) = (u, v, f(u, v)), the mean curvature is given by:

H =
(1 + f 2

v ) fuu − 2fufvfuv + (1 + f 2
u) fvv

2 (1 + f 2
u + f 2

v )3/2
(384)

where the subscripts u and v stand for partial derivatives of f with respect to these surface

coordinates. This equation can be obtained from the first equality of Eq. 383 where the

coefficients of the first and second fundamental forms of Monge patch are obtained from

Eqs. 201 and 226.

The mean curvature may be considered as the 2D equivalent of the geodesic curvature in

1D. The equivalence can be understood in the sense that the mean curvature is a measure

for extremizing surface area while the geodesic curvature is a measure for extremizing curve

length. Accordingly, the 2D minimal surfaces (see § 6.7) correspond to the 1D geodesic

curves (see § 5.7).
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4.7 Theorema Egregium

The essence of Gauss Theorema Egregium or Remarkable Theorem is that the Gaussian

curvatureK of a surface is an intrinsic property of the surface and hence it can be expressed

as a function of the coefficients of the first fundamental form and their partial derivatives

alone with no involvement of the coefficients of the second fundamental form. This can be

guessed for example from the last part of Eq. 356. In fact, even the first part of Eq. 356

can be used in this argument since b can be expressed purely in terms of the coefficients

of the first fundamental form and their derivatives according to Eq. 262.

The essence of Theorema Egregium, as a statement of the fact that certain types of

curvature are intrinsic to the surface, is contained in several forms and equations; some of

which are indicated in this book when they occur. For example, Eq. 227 which links the

surface curvature tensor to the Riemann-Christoffel curvature tensor (which is an intrinsic

property of the surface and is related to the Gaussian curvature by Eq. 373 for instance)

can be regarded as a statement of Theorema Egregium since it expresses a form of surface

curvature represented by a certain combination of the coefficients of the curvature tensor

in terms of a combination of purely intrinsic surface parameters.

An example may be given to demonstrate the significance of Theorema Egregium that is,

if a piece of plane is rolled into a cylinder of radius R, then κ1, κ2, H will change from 0, 0, 0

to 1
R
, 0, 1

2R
where, for the cylinder, we are assuming a normal unit vector n in the inner

direction. However, as a consequence of Theorema Egregium, K will not change since K

is dependent exclusively on the first fundamental form which is the same for planes and

cylinders as stated previously.

According to Theorema Egregium, the Gaussian curvature of a sufficiently smooth surface

of class C3 at a given point P can be represented by the following function of the coefficients

of the first fundamental form and their partial derivatives at P :

K = 1
(EG−F 2)2


∣∣∣∣∣∣∣∣

C Fv − 1
2
Gu

1
2
Gv

1
2
Eu E F

Fu − 1
2
Ev F G

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣

0 1
2
Ev

1
2
Gu

1
2
Ev E F

1
2
Gu F G

∣∣∣∣∣∣∣∣
 (385)
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= 1
(EG−F 2)2


∣∣∣∣∣∣∣∣

C [22, 1] [22, 2]

[11, 1] a11 a12

[11, 2] a21 a22

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣

0 [21, 1] [21, 2]

[21, 1] a11 a12

[21, 2] a21 a22

∣∣∣∣∣∣∣∣


where C = 1
2

(−Evv + 2Fuv −Guu) and the subscripts u and v stand for partial derivatives

with respect to these surface coordinates. The other symbols and notations are as defined

previously.

4.8 Gauss-Bonnet Theorem

This theorem ties the geometry of surfaces to their topology. There are several variants

of this theorem; some of which are local while others are global. Due to the importance

and subtlety of this theorem we give two variants of the theorem and several examples

from both plane and twisted surfaces. According to the Gauss-Bonnet theorem, if S is a

simply connected region on a surface of class C3 where S is bordered by a finite number

m of piecewise regular curves Cj that meet in n corners then we have:

m∑
j=1

ˆ
Cj

κg +
n∑
k=1

φk +

¨
S

Kdσ = 2π (386)

where the first sum is over the curves while the second sum is over the corners, κg is

the geodesic curvature of the curves Cj as a function of their coordinates, φk are the

exterior angles of the corners and K is the Gaussian curvature of S as a function of the

coordinates overS. The geodesic and Gaussian curvatures in the above formulation should

be continuous and finite over their domain. As indicated previously, the term
˜

S
Kdσ,

which represents the area integral of the Gaussian curvature over the region S of the

above-described surface, is called the total curvature Kt of S.

We note that the corners indicated in the last paragraph can be defined as the points

of discontinuity of the tangents of the boundary curves. The angles of these corners are

therefore defined as the angles between the tangent vectors at the points of discontinuity

when traversing the boundary curves in a predefined sense. As indicated above, these

angles are exterior to the region surrounded by the curves. Sometimes, “artificial corners”

at regular points are introduced for convenience to establish an argument; in which case
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the exterior angle is zero. Several examples related to artificial corners will be given in

the forthcoming parts of the book.

It should be remarked that the form of the Gauss-Bonnet theorem given by Eq. 386

may be labeled as a local variant of the theorem although its locality may not be obvious.

However, it can be justified by its application in principle to a part of the surface in

comparison to the forthcoming global variant of the theorem which applies to the whole

surface and involves the Euler characteristic and the genus of the surface which are global

features of the surface. Anyway, these labels are not of crucial importance as long as the

theorem and its significance are understood and appreciated.

Some examples for the application of the above form of the Gauss-Bonnet theorem are

given below:

1. A disc in a plane with radius R where Eq. 386 becomes:

1

R
2πR + 0 + 0 = 2π + 0 + 0 ≡ 2π (387)

which is an identity.

2. A semi-circular disc in a plane with radius R where Eq. 386 becomes:(
1

R
πR + 0× 2R

)
+ 2

(π
2

)
+ 0 = π + π + 0 ≡ 2π (388)

which is an identity again.

3. A spherical triangle (Fig. 37) on a sphere of radius R whose sides are two half

meridians connecting a pole to the equator and one quarter of an equatorial parallel

and all of its three corners are right angles where Eq. 386 becomes:[
0

(
3× πR

2

)]
+ 3

(π
2

)
+

1

R2

4πR2

8
= 0 +

3π

2
+
π

2
≡ 2π (389)

4. The upper half of a sphere (or a hemisphere in general) of radius R where Eq. 386

becomes:

0 (2πR) + 0 +
1

R2
2πR2 = 0 + 0 + 2π ≡ 2π (390)

The fact that the sum of the interior angles of a planar triangle is equal to π can also be

regarded as an instance of the Gauss-Bonnet theorem since for a planar triangle Eq. 386
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Figure 37: A spherical triangle with three right angles on the surface of a sphere. The
three sides of this spherical triangle are arcs of great circles.

becomes:

0 +
3∑
i=1

(π − θi) + 0 = 3π −
3∑
i=1

θi = 2π (391)

where θi are the interior angles of the triangle and hence
∑3

i=1 θi = π as it should be.

By a similar argument, we can obtain the sum of the interior angles of a planar polygon

of n sides (n > 2) using the Gauss-Bonnet theorem, that is:

0 +
n∑
i=1

(π − θi) + 0 = nπ −
n∑
i=1

θi = 2π (392)

where θi are the interior angles of the n-polygon and hence
∑n

i=1 θi = (n− 2)π as it should

be.

The fact that the perimeter of a planar circle of radius R is 2πR can be regarded as

another instance of the Gauss-Bonnet theorem since for such a planar circle Eq. 386

becomes:
1

R
L+ 0 + 0 = 2π (393)

where L is the length of the circle perimeter and hence L = 2πR which is the required

result.

As a result of the Gauss-Bonnet theorem, the sum θs of the interior angles of a geodesic
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triangle on a surface with Gaussian curvature of constant sign is:

1. θs < π iff K < 0.

2. θs = π iff K = 0.

3. θs > π iff K > 0.

Figure 38: Geodesic triangles on a surface with negative Gaussian curvature (left frame), a
surface with zero Gaussian curvature (middle frame), and a surface with positive Gaussian
curvature (right frame).

These cases are depicted in Fig. 38. This shows that the total curvature provides the

excess over π for the sum when K > 0 on the surface and the deficit when K < 0. The

vanishing total curvature in the case of K = 0 is the intermediate case where the total

curvature term has no contribution to the sum. This can be seen from Eq. 386 which, for

a geodesic triangle, will reduce to:

0 + (3π − θs) +

¨
S

Kdσ = 2π =⇒ θs = π +

¨
S

Kdσ (394)

We remark that “geodesic triangle” is a triangle with geodesic sides and hence κg = 0

identically over its boundary (see § 5.7). Also, “triangle” here and in the spherical triangle

example related to Fig. 37 is more general than a three-side planar polygon with three

straight segments as it can be on a curved surface with curved non-planar sides.

As a consequence of the findings in the last paragraph, two geodesic curves on a simply

connected patch of a surface with negative Gaussian curvature cannot intersect at two

points because on introducing a vertex at a regular point on one curve we will have an

artificial corner with zero exterior angle and hence π interior angle. We will then have a

geodesic triangle with θs > π on a surface over which K < 0, in violation of the above-

stated condition. By a similar argument to the argument in the previous paragraph, the
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area of a geodesic polygon on a surface with constant non-zero Gaussian curvature is

determined by the sum of the polygon interior angles θs. This can also be seen from Eq.

386 which in this case will be reduced to:

0 + (nπ − θs) +K

¨
S

dσ = 2π =⇒
¨

S

dσ =
θs + (2− n) π

K
(395)

where n > 2 is the number of sides of the polygon. As for geodesic triangle, “geodesic

polygon” is a polygon with geodesic sides and hence κg = 0 identically over its boundary.

Again, “polygon” here is general and hence it includes curvilinear polygon on curved surface

with curved non-planar sides.

It is worth noting that because the geodesic curvature is an intrinsic property, as dis-

cussed in § 4.3, the Gauss-Bonnet theorem, as given by Eq. 386, is another indication

to the fact that the Gaussian curvature (as well as the total curvature) is an intrinsic

property and hence it is another demonstration of Theorema Egregium (see § 4.7).
The Gauss-Bonnet theorem has also a global variant which links the Euler characteristic

χ, which is a topological invariant of the surface, to the Gaussian curvature K, which is a

geometric invariant of the surface. This global form of the Gauss-Bonnet theorem states

that: on a compact orientable surface S of class C3 these two invariants are linked through

the following equation: ¨
S

Kdσ = 2πχ (396)

Now, since χ is a topological invariant of the surface, Eq. 396 reveals that the total

curvature is also a topological invariant of the surface.

The global Gauss-Bonnet theorem can be used to determine the total curvature Kt of a

surface. For example, the Euler characteristic of a sphere is 2 and hence from Eq. 396 it

can be concluded that its total curvature is Kt = 4π with no need for evaluating the area

integral. Similarly, the Euler characteristic of a torus is 0 and hence it can be concluded

immediately that its total curvature is Kt = 0 with no need for evaluating the integral.

The Euler characteristics of the sphere and torus in these examples can be obtained easily

by polygonal decomposition, as described in § 1.4.1. For example, the Euler characteristic

of the sphere can be calculated by dividing the surface of the sphere to 4 curved polygonal
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faces with 4 vertices and 6 edges and hence the Euler characteristic is:

χ = V + F − E = 4 + 4− 6 = 2 (397)

as seen in Fig. 16.

The global Gauss-Bonnet theorem can also be used in the opposite direction, that is it

may be used for determining the Euler characteristic of a surface knowing its Gaussian,

and hence total, curvature although in most cases this may be of little use practically. For

instance, the Gaussian curvature of a sphere of radius R is 1
R2 at every point on the sphere

and hence its total curvature is Kt = Kσ = 1
R2 4πR2 = 4π, therefore from Eq. 396 its

Euler characteristic is χ = 4π
2π

= 2.

The Gauss-Bonnet theorem can also be used to find the total curvature of a smooth

surface which is topologically-equivalent (i.e. homeomorphic) to another surface with

known total curvature without need for any calculation. For example, the ellipsoid (Fig.

4) is homeomorphic to the sphere and hence they have the same Euler characteristic.

Therefore, according to Eq. 396 they have the same total curvature which is 4π as known

from the aforementioned sphere example. As a consequence, the total curvature Kt of a

smooth surface with a complex shape can be obtained from the Gauss-Bonnet theorem by

reducing the surface to a topologically-equivalent simpler surface whose total curvature

can be evaluated promptly.

As seen before (refer to § 1.4.1), for an orientable surface of genus g the Euler charac-

teristic is given by: χ = 2 (1− g), and hence its total curvature is given by:

Kt = 2πχ = 4π (1− g) (398)

So, for a compact orientable complexly-shaped surface which can be reduced to a sphere

with 2 handles the total curvature is Kt = 4π (1− 2) = −4π. Similarly, the genus of a

torus is g = 1 and hence its total curvature is Kt = 4π (1− 1) = 0, as found earlier by

another method. Hence, the total curvature of any complexly-shaped surface that can be

reduced to a torus is zero.

The important and obvious implication of the global variant of the Gauss-Bonnet the-

orem that can be concluded from the previous discussion is that the total curvature of a

closed surface is dependent on its genus and Euler characteristic and not on its geometric
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shape and hence it is a topological parameter of the surface as stated before.

4.9 Local Shape of Surface

Using the principal curvatures, κ1 and κ2, a point P on a surface is classified according to

the shape of the surface in the close proximity of P as:

1. Flat when κ1 = κ2 = 0, and hence K = H = 0 (see Eqs. 355 and 382).

2. Parabolic when either κ1 = 0 and κ2 6= 0 or κ2 = 0 and κ1 6= 0, and hence K = 0

and H 6= 0.

3. Elliptic when either κ1 > 0 and κ2 > 0 or κ1 < 0 and κ2 < 0, and hence K > 0.

4. Hyperbolic when κ1 > 0 and κ2 < 0, and hence K < 0.

These constraints on κ1 and κ2, and hence on K and H, are sufficient and necessary

conditions for determining the type of the surface point as described above.

The following are some examples for the above classification:

1. The points of plane are flat.

2. The points of cone (excluding the apex) and the points of cylinder are parabolic.

3. The points of ellipsoid (Fig. 4) are elliptic.

4. The points of catenoid (Fig. 10) are hyperbolic.

Surfaces normally contain points of different shapes. For example, the torus has elliptic

points on its outside half, parabolic points on its top and bottom parallels,[23] and hy-

perbolic points on its inside half, as seen in Fig. 36. However, there are some types of

surface whose all points are of the same shape; e.g. all points of planes are flat, all points

of spheres are elliptic, all points of catenoids are hyperbolic, and all points of cylinders are

parabolic.

The above classification regarding the local shape can also be based on the determinant

b of the covariant curvature tensor and the coefficients e, f, g of the second fundamental

form of the surface where:

1. b = eg − f 2 = 0 and e = f = g = 0 for flat points.

2. b = eg − f 2 = 0 and e2 + f 2 + g2 6= 0 for parabolic points.

3. b = eg − f 2 > 0 for elliptic points.

4. b = eg − f 2 < 0 for hyperbolic points.

[23]These parallels correspond to the two circles contacting its two tangent planes at the top and bottom
which are perpendicular to its axis of symmetry (see Fig. 36).
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Considering Eqs. 356 and 383 plus the fact that the first fundamental form is positive

definite and hence a > 0, this classification which is based on b and e, f, g is equivalent to

the previous classification which is based on K and H.

The above classification of the shape of a surface in the immediate neighborhood of a

point (i.e. being flat, parabolic, elliptic or hyperbolic) is an invariant property with respect

to permissible coordinate transformations. This can be concluded from the dependence

of the classification on the sign of b as explained above, plus Eq. 221 where the square

of the Jacobian (which is real) is positive and hence the sign of b and b̄ is the same. The

classification is also independent of the representation and parameterization of the surface

since these point types are real geometric properties of the surface in their local definitions.

The invariance of the shape type of the surface points, as explained in the previous

statements, holds true even for the transformations that reverse the direction of the normal

vector to the surface, n, because the classification depends on the Gaussian curvature

which is invariant even under this type of transformations (refer to § 4.5). Regarding the

distinction between the flat and parabolic points which involves H as well, the distinction

is not affected since it depends on the magnitude of H (i.e. being zero or not) and not on

its sign and the magnitude is not affected by such transformations.

In the immediate neighborhood of an elliptic point P of a surface S, the surface lies

completely on one side of the tangent plane to S at P (Fig. 39 a), while at a hyperbolic

point the tangent plane cuts through S and hence some parts of S are on one side of the

tangent plane while other parts are on the other side (Fig. 39 b). In the neighborhood

of a parabolic point, the surface lies entirely on one side of the tangent plane except for

some points on a curve which lies in the tangent plane itself (Fig. 39 c).[24] As for planar

points, the neighborhood of the point lies in the tangent plane.

The surface points can also be classified according to the geometric shape of Dupin

indicatrix (refer to § 3.6.1) as follows:
1. If eg − f 2 = 0 and e = f = g = 0, then the point is flat and the Dupin indicatrix is

not defined. Hence, having undefined Dupin indicatrix is a characteristic for planar

points. The normal curvature at the point is zero in all directions.

2. If eg − f 2 = 0 and e2 + f 2 + g2 > 0, then either κ1 = 0 and κ2 6= 0 or κ2 = 0 and

[24]This is the common case, however in some exceptional cases the surface in the neighborhood of a
parabolic point lies on both sides of the tangent plane.
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(a) Elliptic point

(b) Hyperbolic point

(c) Parabolic point

Figure 39: Tangent plane at (a) elliptic point, (b) hyperbolic point and (c) parabolic point.
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κ1 6= 0; hence the point is parabolic and the Dupin indicatrix becomes two parallel

lines. The point is characterized by having a vanishing normal curvature along the

direction of these lines while it has the same sign in all other directions.

3. If eg− f 2 > 0 then κ1 and κ2 have the same sign; hence the point is elliptic and the

Dupin indicatrix is an ellipse or circle. The normal curvature at the point has the

same sign in all directions.

4. If eg− f 2 < 0 then κ1 and κ2 have opposite signs; hence the point is hyperbolic and

the Dupin indicatrix becomes two conjugate hyperbolas. The normal curvature at

the point is positive along the directions corresponding to one of these hyperbolas

and negative along the directions corresponding to the other hyperbola, while along

the common asymptotes of these hyperbolas the normal curvature is zero.

In brief, because of these correlations between the type of point and the shape of its Dupin

indicatrix, the Dupin indicatrix can be used to classify the point as flat, parabolic, elliptic

or hyperbolic. It is worth noting that the relation between eg−f 2 and κ1 and κ2 as stated

in the above bullet points can be concluded from the fact that (see Eqs. 355 and 356):

K = κ1κ2 =
eg−f 2

a
(399)

since a is positive definite.

We remark that in the immediate neighborhood of a point on a surface, the surface may

be approximated by:

1. A plane at a flat point.

2. A parabolic cylinder (Fig. 9) at a parabolic point.

3. An elliptic paraboloid (Fig. 7) at an elliptic point.

4. A hyperbolic paraboloid (Fig. 8) at a hyperbolic point.

Another remark is that in the neighborhood of a parabolic point P on a surface S, the tan-

gent plane of S at P meets S in a single line passing through P , while in the neighborhood

of a hyperbolic point P on a surface S, the tangent plane meets S in two lines intersecting

at P where these two lines divide S alternatively into regions above the tangent plane and

regions below the tangent plane. Finally, the following function:

IIS
2

=
e dudu+ 2f dudv + g dvdv

2
(400)
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evaluated at a given point P of a class C2 surface may be called the osculating paraboloid

of P . This osculating paraboloid, represented by half the second fundamental form, is

used to determine the shape of the surface at P (also see § 4.2).

4.10 Umbilical Point

A point on a surface is called “umbilical” or “umbilic” or “navel” if all the normal sections

of the surface at the point have the same normal curvature κn. Hence, at umbilical points

we have the following condition:

κ1 = κ2 (401)

As stated before, for normal sections the normal curvature κn is equal in magnitude to the

curvature κ. Therefore, the curvature of all the normal sections at umbilical points is also

equal. The condition of Eq. 401 implies that an umbilical point cannot be a hyperbolic

point because at hyperbolic points we should have κ1 > 0 and κ2 < 0 (refer to § 4.9).
Hence, at umbilical points the Gaussian curvature should satisfy the necessary (but not

sufficient) condition: K ≥ 0.

The following are some examples of umbilical points on common surfaces:

1. All points of planes are umbilical. However, some authors impose the condition

K > 0 at umbilical points and hence the points of planes are not umbilical according

to these authors.

2. All points of spheres are umbilical. Hence, umbilical points may be called spherical

points.

3. The vertex of an elliptic paraboloid of revolution is an umbilical point.

4. The two vertices of an ellipsoid of revolution are umbilical points.

If all points of a surface of class C3 are umbilical then the surface must be a sphere. The

plane is a special case of sphere as it can be regarded as a sphere with an infinite radius.

A sufficient and necessary condition for a given point P to be umbilical is that the coef-

ficients of the curvature tensor bαβ at P are proportional to the corresponding coefficients

of the metric tensor aαβ at P , that is:

bαβ = c aαβ (α, β = 1, 2) (402)
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where c, which is a proportionality factor, is independent of the direction of the tangent

to the normal section at the umbilical point. In fact, this condition is the same as the

previously stated condition of Eq. 321, and hence the same justification of Eq. 321 will

apply here. We also note that c = κn, as seen there.

As a result of Eq. 402, at umbilical points the determinants of the two tensors, a and b,

satisfy the following relation:

b = c2a (403)

where c is squared because aαβ is a tensor represented by a 2× 2 matrix. Now, since the

first fundamental form is positive definite, and hence a > 0, then if at the umbilical point

c = 0 then b = 0 according to Eq. 403 and the point is a flat umbilic; otherwise b > 0

(since c is real) and the point is an elliptic umbilic (see § 4.9).[25] On a plane surface all

points are flat umbilic, while on a sphere all points are elliptic umbilic.

As seen earlier, a hyperbolic point cannot be an umbilical point since at the umbilical

point we should have identical normal curvatures in all directions, both in sign and in

magnitude, and this cannot happen at a hyperbolic point whose κ1 and κ2 should be of

opposite signs. This is inline with the fact that at an umbilical point b cannot be negative

since c is real. In fact, Eq. 403 can be recast into the following form:

K =
b

a
= c2 = κ2

n (404)

where the equation: c = κn and Eq. 356 are used. Hence, all the above-stated facts about

the nature of the umbilical point and the impossibility of being hyperbolic, as represented

by the condition K ≥ 0, are justified.

Because at umbilical points κ1 = κ2, we have:

K = κ1κ2 = κ1κ1 = (κ1)2 =

(
2κ1

2

)2

=

(
κ1 + κ2

2

)2

= H2 (405)

where K and H are the Gaussian and mean curvatures at the point (see § 4.5 and 4.6).

This can also be obtained from Eq. 348 where the discriminant of this quadratic equation

becomes zero (i.e. 4H2 − 4K = 0), since at an umbilical point the two roots are equal,

and hence H2 = K.

[25]The latter may also be called spherical umbilic.
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It should be remarked that the provision H2 = K is a sufficient and necessary condition

for a point at which this condition is satisfied to be umbilical. This can be concluded

from the stated requirements in the last paragraph. Another remark is that the relation

between K and H at umbilical points, as expressed by Eq. 405, may be stated by some

authors in the following disguised form:

(
aαβbαβ

)2
=

4

a

(
b11b22 − b2

12

)
(α, β = 1, 2) (406)

where Eqs. 356 and 383 are employed in this form.

4.11 Exercises

4.1 Discuss the similarities and differences between the curvature of curves and the cur-

vature of surfaces.

4.2 Define, descriptively and mathematically, the curvature vector K of surface curves

and its relation to the principal normal vector N of the curve.

4.3 Compare the vectors n and N at a point on a surface curve outlining their similarities

and differences.

4.4 Discuss the dependency of the curvature vector of a surface curve at a given point

of the curve on the following parameters: curve orientation, curve parameterization,

surface orientation as indicated by the direction of n, surface parameterization, tan-

gential direction and position of the point on the surface.

4.5 What “inflection point” on a surface curve means?

4.6 What is the radius of curvature at a point of inflection?

4.7 Resolve the curvature vector of a surface curve into its tangential and normal com-

ponents and name these components. Express these components in terms of the unit

vectors n and u explaining all the symbols involved in this expression.

4.8 Find the curvature vector, K, of a space curve represented by: r(t) = (3t2, t, 2 sin t).

4.9 Define, descriptively and quantitatively, the normal and geodesic curvatures κn and

κg.

4.10 Which of κn and κg is an intrinsic property and which is an extrinsic property? Explain

why.

4.11 Compare the following four moving frames: (T,N,B), (E1,E2,n), (n,T,u) and
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(d1,d2,n) outlining their similarities and dissimilarities.

4.12 Which of the frames in the previous question employ both surface and curve vectors?

Which of these frames are orthonormal by definition and which are not?

4.13 How the curvature κ of a surface curve at a given point is related to its normal and

geodesic curvatures κn and κg at that point? Can you make sense of this considering

the normal and tangential components of the curvature vector K?

4.14 Prove that the geodesic curvature of a naturally parameterized curve is given by Eq.

325.

4.15 Show that in any two orthogonal directions at a given point P on a sufficiently smooth

surface, the sum of the normal curvatures corresponding to these directions at P is

constant.

4.16 Give a brief statement of the theorem of Meusnier outlining its significance. State

this theorem in a second alternative form.

4.17 Show that the osculating circles of all curves on a surface that pass through a given

point and in a specific direction are on a sphere.

4.18 Define, descriptively and mathematically, the normal component Kn of the curvature

vector K of a surface curve outlining its relation to the curvature vector and the

normal vector to the surface, n.

4.19 Define, descriptively and mathematically, the geodesic component Kg of the curvature

vector K of a surface curve outlining its relation to the curvature vector and the surface

basis vectors E1 and E2.

4.20 Derive the formula for the normal curvature κn as a ratio of the second fundamental

form to the first fundamental form.

4.21 Why the sign of the normal curvature κn is determined only by the sign of the second

fundamental form?

4.22 Show that at any point P of a smooth surface S there exists a paraboloid tangent to

S at P such that the normal curvature of the paraboloid in any direction is equal to

the normal curvature of S at P in that direction.

4.23 Discuss, in detail, the following statement: “The normal curvature at a given point

on a surface and in a given tangential direction to the surface is a property of the

surface”. Can you link this to the Meusnier theorem?

4.24 For what type of surface curve the following relation is true: |κn| = κ? Explain why
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this is so.

4.25 What is the significance of having a paraboloid at the points of a smooth surface

whose normal curvature in a given direction is equal to the normal curvature of the

surface in that direction?

4.26 What is the sign of b (i.e. being greater than, less than or equal to zero) at flat,

elliptic, parabolic and hyperbolic points on a surface, where b is the determinant of

the surface covariant curvature tensor?

4.27 Classify the local shape of a surface at a given point P according to the values of K

and H at P .

4.28 Using one of the mathematical definitions of the geodesic curvature κg, explain why

κg should be classified as an intrinsic or extrinsic property.

4.29 At what type of surface points the following relation is true: e
E

= f
F

= g
G

= c where c

is constant for all directions? What c stands for?

4.30 Express the equalities in the previous question in terms of the coefficients of the

covariant metric and covariant curvature tensors, aαβ and bαβ, of the surface.

4.31 Outline two direct consequences of Meusnier theorem.

4.32 Write a mathematical relation linking the geodesic component Kg of the curvature

vector to the surface basis vectors E1 and E2.

4.33 What is the relation between Kg and the tangent space TPS of the surface at a given

point?

4.34 Give the formulae of the geodesic curvature κg of the coordinate curves. Simplify

these formulae in the case of having orthogonal coordinate curves.

4.35 State a mathematical relation between the curvature κ and the geodesic curvature κg
of a surface curve at a given point on the curve explaining all the symbols involved.

4.36 Give a formula for the geodesic curvature κg in which extrinsic entities are involved.

Does this mean that κg is an extrinsic property of the surface?

4.37 Explain, in detail, all the symbols used in the following formula:

κg =
dθ

ds
+ κgu cos θ + κgv sin θ

What is the name of this formula?

4.38 Prove the relation given in the last question.
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4.39 Give a mathematical formula in which κn is expressed in terms of the coefficients of

the first and second fundamental forms E,F,G, e, f, g.

4.40 What the two “principal curvatures” of a surface at a given point mean?

4.41 Find analytical expressions for the principal curvatures on a surface represented by

the equation: ξ2 cos ξ3 − ξ1 sin ξ3 = 0 where ξ1, ξ2, ξ3 are real variables.

4.42 The principal curvatures of a surface at a given point correspond to the two directions

represented by λ1 and λ2 which are the roots of the following quadratic equation:

(gF − fG)λ2 + (gE − eG)λ+ (fE − eF ) = 0

From the rules of polynomial equations, find the sum and product of these roots.

4.43 Define the “principal directions” descriptively and mathematically.

4.44 Show that κ is a principal curvature with a principal direction dv
du

iff the following

conditions are satisfied:

(e− κE)du+ (f − κF )dv = 0

(f − κF )du+ (g − κG)dv = 0

4.45 Find the principal curvatures and the principal directions on a surface represented

parametrically by: r(u, v) = (u, v, 2u2 + 5v2) at the point with (u, v) = (2.3, 1.6).

4.46 Prove Euler theorem (see Eq. 341 and the surrounding text).

4.47 What is Darboux frame? Are the vectors of this frame orthonormal? Is this frame

defined at umbilical points on the surface? Fully justify your answer related to the

last two parts of the question.

4.48 Write the formulae for the positions of the centers of curvature of the normal sections

corresponding to the two principal curvatures at a given point on a surface.

4.49 Correlate, mathematically with full explanation of all the symbols involved, the normal

curvature κn at a given point and in a given direction on a smooth surface to the two

principal curvatures at that point.

4.50 Define, mathematically in terms of the principal curvatures, the following terms: prin-

cipal radii, mean curvature and Gaussian curvature.

4.51 Distinguish between the “total curvature” of a curve and the “total curvature” of a
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surface. For surface, what are the two meanings of this term?

4.52 Find the Gaussian and mean curvatures of a surface given by: r(u, v) = (3u− v, u+

2v, 1.5uv) at the point with (u, v) = (3, 1).

4.53 State the limiting conditions on the principal curvatures, and hence deduce the con-

ditions on the mean and Gaussian curvatures, on the surface of sphere and on the

surface of hyperboloid of one sheet.

4.54 Prove that there is no compact surface of class C2 with non-positive Gaussian curva-

ture over the whole surface.

4.55 Analyze the following equation outlining its significance:

S(x, y) ' S(0, 0) +
κ1x

2

2
+
κ2y

2

2

4.56 State the necessary and sufficient condition for a real number to be a principal cur-

vature of a surface at a given point.

4.57 Investigate the number of roots of the following quadratic equation and the impact

of this on the number of principal curvatures of the surface at the point where this

equation applies:

(
EG− F 2

)
κ2 − (gE − 2fF + eG)κ+

(
eg − f 2

)
= 0

4.58 From the equation in the previous question, obtain an analytical expression for the

principal curvatures of the surface at the point where this equation applies.

4.59 From the equation in the last two questions, obtain the equation: κ2 − 2Hκ+K = 0

and hence verify that the principal curvatures are given by: κ1,2 = H ±
√
H2 −K.

4.60 Write down the equations of the principal curvatures when the u1 and u2 coordinate

curves are aligned along the principal directions.

4.61 Obtain Eq. 367 for the Gaussian curvature of a surface with orthogonal coordinate

curves by using Eq. 366.

4.62 Show that the spheres are the only connected, compact and sufficiently smooth sur-

faces with constant Gaussian curvature.

4.63 State the curvature formula of Rodrigues defining all the symbols involved and dis-

cussing its significance.
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4.64 Test the validity of the Rodrigues formula for the principal directions at the point

with (u, v) = (1.4, 3.9) on a surface parameterized by: r(u, v) = (u, v, u2 + 3v2).

4.65 Use the Rodrigues curvature formula to prove that spheres are the only connected

closed surfaces of class C3 whose all points are spherical umbilical.

4.66 Give a mathematical expression for the Gaussian curvature in terms of the coefficients

of the surface metric and curvature tensors.

4.67 What is the significance of having an intrinsic surface curvature, represented usually

by the Gaussian curvature, as a way for a 2D inhabitant to have some perception

of the nature of the surface and its shape as seen from the ambient space by a 3D

inhabitant?

4.68 Discuss the following statement: “The Gaussian curvature along any parallel line of a

surface of revolution is constant”.

4.69 Starting from the following relation: K = b
a
, derive the relation: K = det(bαβ).

4.70 Give a mathematical relation correlating the Gaussian curvature to the following

coefficients of the 2D Riemann-Christoffel curvature tensor: R1212, R1221, R2121 and

R2112.

4.71 What is the Gaussian curvature of a Monge patch of the form r(u, v) = (u, v, f(u, v))?

4.72 Why the Gaussian curvature is independent of the orientation of the surface (where

orientation is based on the choice of the direction of the unit normal vector to the

surface)?

4.73 Which of the following geometric shapes have identical Gaussian curvatures at their

corresponding points and why: plane, sphere, cylinder, catenoid, ellipsoid, hyperbolic

paraboloid, helicoid, and cone? Compare, in your answer, each pair of these shapes.

4.74 Write down an expression for the Gaussian curvature of a surface of revolution gener-

ated by revolving a sufficiently differentiable plane curve of the form x = f(y) around

the y-axis.

4.75 Explain all the symbols of the following equation with discussion of its significance in

relation to the intrinsic and extrinsic geometries of the surface:

∂un× ∂vn = K (E1 × E2)

4.76 State the mathematical expression that correlates the Gaussian curvature to the Ricci
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curvature scalar of a surface.

4.77 Using Eq. 367 and the parametric equations of Beltrami pseudo-sphere (Eqs. 43-45),

show that the pseudo-sphere has a negative constant Gaussian curvature and find this

curvature.

4.78 Classify surfaces with regard to their Gaussian curvature as having constant or variable

curvature giving two examples for each.

4.79 What is the impact of scaling a surface up or down by a constant positive factor on

its Gaussian curvature?

4.80 Discuss the effect of an isometric mapping of a surface on its Gaussian curvature.

4.81 State the Hilbert lemma giving examples for its applications from common types of

surface.

4.82 Give the conditions for the validity of the following equation:

K = − 1

2
√
EG

[
∂u

(
Gu√
EG

)
+ ∂v

(
Ev√
EG

)]
Also, give its simplified form in the case of representing the surface by geodesic coor-

dinates stating the other conditions required for this simplification.

4.83 Express the mean curvature as a function of the Gaussian curvature taking care of

the signs.

4.84 Show that spheres are the only connected compact surfaces with constant mean cur-

vature and positive Gaussian curvature.

4.85 Explain how the position of the surface in a deleted neighborhood of a given point

P relative to the tangent plane of the surface at P is used to classify the nature of

the Gaussian curvature at P . From this perspective, discuss the sign of the Gaussian

curvature on the points of the following surfaces: hyperbolic paraboloid, sphere, torus

and cylinder.

4.86 The Gaussian curvature of a developable surface is identically zero. Why?

4.87 What is the Gaussian curvature of a surface parameterized by: x = (5 + cosφ) cos θ,

y = (5 + cosφ) sin θ and z = sinφ?

4.88 Provide a mathematical definition for the total curvature of a surface explaining all

the symbols used in the definition.
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4.89 Define all the symbols used in the following equation:

εαβεγδRαβγδ = Kεαβεγδεαβεγδ

4.90 Explain in detail how the following equation implies that the Gaussian curvature is a

rank-0 tensor: K = 1
4
εαβεγδRαβγδ.

4.91 Write the Gaussian curvature in terms of the surface curvature tensor using the most

simple form.

4.92 Algebraically manipulate the relation K = b
a
to obtain the following relation:

K =
(∂uE1 · E1 × E2) (∂vE2 · E1 × E2)− (∂vE1 · E1 × E2)2

(EG− F 2)2

4.93 Express the mean curvature H in terms of the coefficients of the first and second

fundamental forms.

4.94 What is the relation between the mean curvature H and the mixed type surface

curvature tensor bβα?

4.95 Compare the sign of the mean curvature to the sign of the Gaussian curvature with

regard to their dependency on the direction of the unit normal vector to the surface.

4.96 Give two examples of common types of surface over which the mean curvature is

constant. Also, give an example of a surface with variable mean curvature.

4.97 What is the mean curvature of a Monge patch of the form r(u, v) = (u, v, f(u, v))?

4.98 What is the essence of Gauss Theorema Egregium? Give an example of an equation

or a theorem that demonstrates this theorem.

4.99 Derive Eq. 385 using Eq. 380.

4.100 Write down the mathematical equation representing the local form of the Gauss-

Bonnet theorem explaining all the symbols involved.

4.101 Give an example for the application of the local Gauss-Bonnet theorem using a planar

geometric shape and another example using a non-planar shape.

4.102 Explain why two geodesic curves on a patch of a surface with negative Gaussian

curvature cannot intersect at two points.

4.103 Apply the Gauss-Bonnet theorem on the spherical triangle of Fig. 37 giving detailed

explanations for each step.
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4.104 Use a circular flat disc to demonstrate the application of the local form of the Gauss-

Bonnet theorem giving detailed explanations for each step.

4.105 What is the global form of the Gauss-Bonnet theorem and what is its significance

geometrically and topologically?

4.106 Find the total curvature of the surfaces depicted in Fig. 17.

4.107 Show, mathematically, that the area of a geodesic polygon on a surface with constant

non-vanishing Gaussian curvature is determined by the sum of the internal angles of

the polygon.

4.108 Verify that the total curvatures of ellipsoid and torus are respectively 4π and 0 by

performing detailed surface integral calculations.

4.109 Outline the usefulness of the global form of the Gauss-Bonnet theorem in obtaining

the total curvature of a surface with known topological properties without performing

detailed calculations.

4.110 Using the Gauss-Bonnet theorem, prove that the Gaussian curvature is identically

zero on a surface S if at any point P on S there are two families of geodesic curves in

the neighborhood of P intersecting at a constant angle.

4.111 Write down the mathematical relation that links the Euler characteristic of a surface

to its topological genus.

4.112 Use the principal curvatures and the mean and Gaussian curvatures to classify the

points with regard to the local shape of the surface as flat, elliptic, parabolic and

hyperbolic giving examples of common geometric shapes for each case.

4.113 Repeat the classification of the previous question using this time the coefficients of

the second fundamental form of the surface.

4.114 Prove that on a circular cylinder all points are parabolic.

4.115 Show that in the neighborhood of an elliptic point on a surface, the surface lies on

one side of its tangent plane at that point.

4.116 A surface is represented parametrically by: r(u, v) = (u, v, u2 + v3). Determine the

conditions that identify the parabolic, hyperbolic and elliptic points on the surface.

4.117 Give an example of a surface having elliptic, parabolic and hyperbolic points at dif-

ferent locations.

4.118 Why the point type (i.e. being flat, elliptic, hyperbolic or parabolic) on a surface

is an invariant property with respect to changes in the surface representation and
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parameterization?

4.119 Why the point type is invariant with respect to a change of the surface orientation by

reversing the direction of the normal vector to the surface?

4.120 Make a simple sketch outlining the position of a surface relative to the tangent plane

at elliptic, parabolic and hyperbolic tangency points.

4.121 Demonstrate that the surface represented parametrically by: r(u, v) = (u, v, u2 + v3)

lies on both sides of its tangent plane at the point (u, v) = (0, 0).

4.122 For a surface represented parametrically by: r = (u, v, v4), find the equation of a

curve on the surface whose points have a common tangent plane.

4.123 Describe how Dupin indicatrix can be used to classify the points of a surface with

regard to the local shape (i.e. flat, elliptic, parabolic and hyperbolic).

4.124 What are the prototypical geometric shapes that provide the best approximation for

the local shape of a sufficiently smooth surface at its: flat, elliptic, hyperbolic and

parabolic points?

4.125 What “umbilical point” means? What are the other terms used to label such a point?

4.126 What are the characteristic features of umbilical points?

4.127 Give five examples of umbilical points on common geometric surfaces such as spheres

and paraboloids.

4.128 State the mathematical relation between the coefficients of the metric and curvature

tensors at umbilical points.

4.129 Demonstrate that at an umbilical point of a surface we have: K = H2 where K and

H are the Gaussian and mean curvatures at the point.

4.130 Show that the relation: K = H2 can also be written as:

(
aαβbαβ

)2
=

4

a

(
b11b22 − b2

12

)
4.131 Explain why at umbilical points we have b = c2a where a and b are the determinants of

the covariant metric and covariant curvature tensors and c is a proportionality factor.

4.132 Give two examples of surfaces whose all points are umbilical, and two other examples

of surfaces with no umbilical point at all. Also, give an example of a surface with only

one umbilical point, and another example of a surface with only two umbilical points.



Chapter 5

Special Curves

There are many classifications to space curves depending on their properties and their

relations with each other. In the following sections of this chapter, we briefly investigate

a few of these categories.

5.1 Straight Line

A necessary and sufficient condition for a curve of class C2 to be a straight line is that its

curvature is zero at every point on the curve. Hence, another criterion for a curve to be a

straight line is that all the tangents of the curve are parallel, where “parallel” here is used

in its absolute Euclidean sense (see § 2.7). Another criterion for a curve C(t) : I → R3

where t ∈ I ⊆ R to be a straight line is that for all points t in the domain of the curve,

ṙ and r̈ are linearly dependent where r(t) is the spatial representation of the curve and

the overdots represent derivative with respect to the general parameter t of the curve. A

straight line lying on a surface has the same tangent plane at each of its points, and hence

the line is contained in this unique tangent plane. Any straight line on any surface is a

geodesic curve (see § 5.7) and an asymptotic line (see § 5.9).

5.2 Plane Curve

A curve is described as a plane curve if the whole curve can be contained in a plane with

no distortion (Fig. 40). A necessary and sufficient condition for a curve parameterized

by a general parameter t to be a plane curve is that the relation ṙ · (r̈× ...
r ) = 0 holds

identically where r(t) is the spatial representation of the curve and the overdots represent

differentiation with respect to t. Plane curves are characterized by having identically

vanishing torsion. In fact, having identically vanishing torsion is a necessary and sufficient

condition for a regular curve of class C2 to be a plane curve. For plane curves, the

osculating plane at each regular point on the curve contains the entire curve. Therefore,

193
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the plane curve may be characterized by having a common intersection point for all of its

osculating planes. It also implies that the curve has the same osculating plane at all of its

points. Two curves are plane curves if they have the same binormal lines at each pair of

their corresponding points. The locus of the centers of curvature of a curve C is an evolute

(see § 5.3) of C iff C is a plane curve. On a smooth surface, a geodesic curve (see § 5.7)
which is also a line of curvature (see § 5.8) is a plane curve. A plane curve has always a

Bertrand curve associate (see § 5.4).

Figure 40: Plane curve.

5.3 Involute and Evolute

If Ce is a space curve with a tangent surface ST (see § 6.6) and Ci is a curve embedded

in ST and it is orthogonal to all the tangent lines of Ce at their intersection points, then

Ci is called an involute of Ce while Ce is called an evolute of Ci (see Fig. 41). Hence, the

involute is an orthogonal trajectory of the generators of the tangent surface of its evolute.

Accordingly, the equation of an involute Ci to a curve Ce is given by:

ri = re + (c− s) Te (407)

where ri is an arbitrary point on the involute, re is the point on the curve Ce corresponding

to ri, c is a given constant, s is a natural parameter of Ce and Te is the unit vector tangent

to Ce at re.

A visual demonstration of how to generate an involute Ci of a curve Ce, when (c− s)
in Eq. 407 is positive, may be given by detaching a taut string attached to Ce where the

string is kept in the tangent direction as it is detached. A fixed point P on the string,

where the distance between P and the point of contact of the string with Ce represents a

natural parameter of Ce, then traces an involute of Ce.
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Ce

Ci

Figure 41: Evolute Ce, involute Ci, tangent lines (dashed) and tangent surface (shaded).

A curve has infinitely many involutes corresponding to different values of c in Eq. 407.

Therefore, the involutes may be described as parallel curves on the tangent surface. Sim-

ilarly, an involute has an infinite number of evolutes corresponding to different values of

c. For any tangent of a given curve, the length of the line segment confined between two

given involutes is constant which is the difference between the two c’s in Eq. 407 of the

two involutes.

If Ce is an evolute of Ci, then for a given point Pe on Ce and the corresponding point Pi
on Ci the principal normal line of Ce at Pe is parallel to the tangent line of Ci at Pi. A

curve Ci is a plane curve iff the locus of the centers of curvature of Ci is an evolute of Ci.

The involutes of a circle are congruent. The evolutes of plane curves are helices.
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5.4 Bertrand Curve

Bertrand curves are two associated space curves with common principal normal lines at

their corresponding points. Associated Bertrand curves are characterized by the following

properties:

1. The product of the torsions of their corresponding points is constant, that is:

τ1τ2 = constant (408)

where τ1 and τ2 are the torsions of the two curves at their corresponding points.

2. The distance between their corresponding points is constant.

3. The angle between their corresponding tangent lines is constant.

For a plane curve C1, there is always a curve C2 such that C1 and C2 are associated

Bertrand curves. If C1 is a curve with non-vanishing torsion such that C1 has more than

one Bertrand curve associate, then C1 is a circular helix. The reverse is also true. If C1 is

a curve with non-vanishing torsion then a necessary and sufficient condition for C1 to be a

Bertrand curve (i.e. it possesses an associate curve C2 such that C1 and C2 are Bertrand

curves) is that there are two constants c1 and c2 such that:

κ = c1τ + c2 (409)

where κ and τ are the curvature and torsion of the curve C1. If C1 and C2 are two involutes

of a plane curve C, then C1 and C2 are Bertrand curves.

5.5 Spherical Indicatrix

A spherical indicatrix of a continuously-varying unit vector is a continuous curve C̄ on

the origin-based unit sphere generated by mapping the unit vector (e.g. T or N or B) of

a particular space curve C on an equal unit vector represented by a point on the origin-

based unit sphere. Hence, we have C̄T, C̄N and C̄B as the spherical indicatrices of C

corresponding respectively to the tangent, principal normal and binormal vectors of C.[26]

Figure 42 is a simple demonstration of the spherical indicatrix C̄T of a space curve C.

[26]As seen, the spherical indicatrix may be ascribed to the vector or to the curve; the meaning should be
obvious.
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Figure 42: The spherical tangent indicatrix C̄T of a space curve C where the numbers
indicate the correspondence between the unit tangent vectors of C and their map on C̄T.

If C(s) is a naturally parameterized curve then s will not necessarily be a natural pa-

rameter for the tangent indicatrix C̄T. A necessary and sufficient condition for s to be

a natural parameter for C̄T is that κ(s) = 1 identically where κ is the curvature of C.

The tangent to the curve C̄T of a curve C is parallel to the normal vector N of C at the

corresponding points of the two curves. The tangent to the curve C̄T of a curve C is also

parallel to the tangent to the curve C̄B of C at the corresponding points of the two curves.

The necessary and sufficient condition for the curve C̄T of a curve C to be a circle is that

C is a helix.

The curvature of the curve C̄T of a curve C is related to the curvature and torsion of C

by:

κ2
T =

κ2 + τ 2

κ2
(410)

where κT is the curvature of C̄T while κ and τ are the curvature and torsion of C re-

spectively. The torsion of the curve C̄T of a naturally parameterized curve C is given
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by:

τT =
κ′τ − κτ ′
κ (κ2 + τ 2)

(411)

where τT is the torsion of C̄T, κ and τ are the curvature and torsion of C respectively,

and the prime stands for derivative with respect to the natural parameter s of C.

The curvature of the curve C̄B of a curve C is given by:

κB =
κ2 + τ 2

κ2
(412)

where κB is the curvature of C̄B while the other symbols are as explained before. The

torsion of the curve C̄B of a naturally parameterized curve C is given by:

τB =
κ′τ − κτ ′
τ (κ2 + τ 2)

(413)

where τB is the torsion of C̄B.

5.6 Spherical Curve

A spherical curve is a curve that lies completely on the surface of a sphere. Spherical

indicatrices are common examples of spherical curves (see § 5.5). Circles are the only

spherical curves with constant curvature. At all points of a spherical curve, the normal

plane of the curve passes through the center of the embedding sphere. Conversely, if all

the normal planes of a curve meet in a common point, then the curve is spherical with the

common point being the center of the sphere that envelops the curve.

The sufficient and necessary condition that should be satisfied by a spherical curve is

given by:
Rκ

Rτ

+
d

ds

(
Rτ

dRκ

ds

)
= 0 (414)

where Rκ and Rτ are the radii of curvature and torsion and s is a natural parameter of

the curve. The center of curvature of a twisted spherical curve C at a given point P on C

is the projection of the center of the enveloping sphere on the osculating plane of C at P .
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5.7 Geodesic Curve

The characteristic feature of a geodesic curve is that it has vanishing geodesic curvature

κg at every point on the curve. This is a necessary and sufficient condition for a surface

curve to be geodesic. In more technical terms, let S : Ω → R3 be a surface defined on a

set Ω ⊆ R2 and let C(t) : I → R3, where I ⊆ R, be a regular curve on S, then C is a

geodesic curve iff κg(t) = 0 on all points t ∈ I in its domain. The path of the shortest

distance connecting two points in a Riemannian space is a geodesic. The length of arc, as

given by Eq. 204, is used in the definition of geodesic in this sense.

A physical interpretation may be given to the geodesic curve that a free particle restricted

to move on the surface will follow a geodesic path. Another physical interpretation is that

a geodesic path minimizes the total kinetic energy spent by a massive object in moving

between two points when the path is traversed with constant speed. These two physical

interpretations may rest on the same physical principle.

The geodesic is a straight line in a Euclidean space, but it is a generalized curved path

in a general Riemannian space. If a geodesic surface curve is not a straight line then its

principal normal vector N is collinear with the normal vector n to the surface at each point

on the curve with non-vanishing curvature; the opposite is also true. In fact, a curve on a

surface is geodesic iff it is either a straight line or its principal normal vector is collinear

with n over the whole curve. As stated before, collinearity of N and n is equivalent to the

condition that n lies in the osculating plane of the curve at the given point.

Another sufficient and necessary condition for a curve to be a geodesic curve is that the

first variation (see § 1.4.2) of its length is zero. In fact, this may be taken as the basis

for the definition of geodesic as the curve connecting two fixed points, P1 and P2, whose

length possesses a stationary value with regard to small variations in its neighborhood,

that is:

δ

ˆ P2

P1

ds = 0 (415)

It can be shown that a geodesic curve satisfies the Euler-Lagrange variational principle

(see § 1.4.2) which is a necessary and sufficient condition for extremizing the arc length.

Figure 43 is an illustration of how the length of the geodesic curve between two given

points is subject to the variational principle.

Examples of geodesic curves on simple surfaces are the arcs of great circles on spheres.
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P1

P2

Figure 43: The length of a geodesic curve (solid) connecting two points, P1 and P2, as
an extremum with respect to the length of other curves (dashed) connecting these points
that result from small perturbations in its neighborhood.

In fact, being an arc of a great circle is a sufficient and necessary condition for being a

geodesic curve on a sphere. Other examples of geodesic curves are the arcs of helices, the

generating straight lines and the circles on cylinders (Fig. 44). The generating straight

lines and the circles on cylinders may be considered as degenerate helices. The meridians

of a surface of revolution are also geodesics. The arcs of parallel circles on a surface

of revolution corresponding to stationary points on the generating curve of the surface

are also geodesic curves. All straight lines on any surface are geodesic curves. For plane

surfaces in particular, being a straight line on a plane is a sufficient and necessary condition

for being a geodesic. The lines of curvature (see § 5.8) are also geodesic curves.

a

b
c

Figure 44: The three types of geodesic curves on cylinders (a) circular arcs (b) generating
lines and (c) helical arcs.
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Intrinsically, the geodesic curves are straight lines in the sense that a 2D inhabitant will

see them straight since he cannot detect their curvature. This is due to the fact that only

the geodesic part of the curvature is an intrinsic property and hence it can be detected

by a 2D inhabitant, therefore if this part of the curvature vanished the 2D inhabitant will

fail to detect any curvature to the curve which is equivalent for him to having a straight

line. Any deviation from such “straight lines” within the surface is therefore a geodesic

curvature and hence it can be detected intrinsically by a 2D inhabitant.

Although a geodesic curve is frequently the curve of the shortest distance between two

points on the surface it is not necessarily so. For instance, the largest of the two arcs

forming a great circle on a sphere is a geodesic curve but it is not the curve of the shortest

distance on the sphere between its two end points; in fact it is the curve of the longest

distance among the circular arcs connecting the two points (Fig. 45). A similar example is

the two arcs of a parallel circle on a circular cylinder connecting two points where the two

arcs are different in length. Anyway, if on a surface S there is exactly one geodesic curve

connecting two given points, P1 and P2, then the length of the geodesic curve segment

between P1 and P2 is the shortest distance on S between these points.

Based on the previous statements, being a shortest path is a sufficient but not necessary

condition for being a geodesic, that is all shortest paths connecting two given points

are geodesics but not all geodesics are shortest paths. A constraint may be imposed

to make the criterion of minimal length apply to all geodesics by stating that geodesics

minimize distance locally but not necessarily globally where an infinitesimal element of arc

is considered in this constraint. Anyway, the universal criterion that should be adopted to

identify geodesic curves is the vanishing of the geodesic curvature over the whole curve,

as stated at the start of this section.

The geodesic, even in its restricted sense as the curve of the shortest distance, is not

necessarily unique; for example all semi-circular meridians of longitude connecting the two

poles (or in fact all semi-circular arcs connecting any two antipodal points) of a sphere

are geodesics even in that sense and there is an infinite number of them. In fact, even

the existence, not only uniqueness, of a geodesic connecting two points on a surface is

not guaranteed. An example is the xy plane excluding the origin of coordinates with two

points on a straight line lying in the plane and passing through the origin where there is

a lower limit for the length of any curve connecting the two points (Fig. 46). This limit is
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P1

P3
P2

Figure 45: Two geodesic curves connecting two points, P1 and P2, on the surface of a
sphere: a short one between P1 and P2 directly, and a long one between P1 and P2 through
P3. Both of these geodesics are arcs of a great circle on the sphere.

the straight line segment connecting the two points but this segment cannot be a geodesic

on the plane since it includes the origin which is not on the plane. Any curve C (other

than the straight line segment) on the plane connecting the two points cannot be a curve

of shortest length, and hence a geodesic, since there is always another curve on the plane

connecting the two points which is shorter than C. In this context, we note that on a

plane surface all geodesic curves are straight lines and hence of shortest length.

In the neighborhood of a given point P on a surface and for any specific direction, there

is exactly one geodesic curve passing through P in that direction. More technically, for

any specific point P on a surface S of class C3, and for any tangent vector v in the tangent

space of S at P , there exists a geodesic curve on the surface in the direction of v that

passes through P . In fact, this is based on the existence of a unique solution to the geodesic

differential equations (Eqs. 416-417) when initial values of a point on the curve and its

derivative (which represents its tangent direction) at that point are given. An obvious

example of the previous statement is the plane where a straight line passes through any

point and in any direction. Another example is the sphere where a great circle passes
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P1

y

x

P2

C
O

Figure 46: Non-existence of a geodesic curve connecting the two points P1 and P2 on
the shown xy plane which does not include the origin of coordinates O. The dashed line
represents the straight line segment connecting P1 and P2 while the solid line C represents
other curves on the plane between the two points.

through any point and in any direction. A less obvious example is the cylinder where

a helix (including the straight line generators and the circles which can be regarded as

degenerate forms of helix) passes through any point and in any direction. Similarly, there

is exactly one geodesic curve passing through two sufficiently close points on a smooth

surface.[27]

As indicated before, geodesics in curved spaces are the equivalent of straight lines in

flat spaces. For planes (or in fact for any Euclidean nD manifold) there exists a unique

geodesic passing between any two points (whether the two points are close or not) which

is the straight line segment connecting the two points.

The necessary and sufficient condition that should be satisfied by a naturally parameter-

ized curve on a surface, both of class C2, to be a geodesic curve is given by the following

[27] In this type of statement, which is found in common textbooks on differential geometry, we may need
to add extra restrictions such as excluding closed surfaces or adding further conditions like “in the
immediate neighborhood of the two points” to make the statement applicable to all types of surface.
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set of second order non-linear differential equations:

d2u1

ds2
+ Γ1

11

(
du1

ds

)2

+ 2Γ1
12

du1

ds

du2

ds
+ Γ1

22

(
du2

ds

)2

= 0 (416)

d2u2

ds2
+ Γ2

11

(
du1

ds

)2

+ 2Γ2
12

du1

ds

du2

ds
+ Γ2

22

(
du2

ds

)2

= 0 (417)

where s is the arc length, and the Christoffel symbols are derived from the surface metric.

The last equations can be merged in a single equation using tensor notation, that is:

δ

δs

(
duα

ds

)
≡ d2uα

ds2
+ Γαβγ

duβ

ds

duγ

ds
= 0 (418)

where α, β, γ = 1, 2 and the standard notation of absolute derivative is in use (see § 7).
These equations, which can be obtained from Eq. 323 by setting the two components of

the geodesic curvature vector to zero, have no closed form explicit solutions in general

because of their non-linearity. Similar equations are used to identify the geodesic curves

in general nD spaces.

From Eq. 418, it can be seen that being a geodesic is an intrinsic property since the

conditions represented by this equation depend exclusively on the Christoffel symbols

which depend only on the coefficients of the first fundamental form and their partial

derivatives. Hence, geodesic curves can be detected and measured by a 2D inhabitant.

From Eq. 418, it can also be seen that for planes (or indeed for any Euclidean nD manifold)

the geodesic is a straight line since in this case the Christoffel symbols vanish identically

and Eq. 418 will be reduced to d2uα

ds2
= 0 which has a straight line solution.

From Eq. 326, we see that the u1 coordinate curves on a sufficiently smooth surface are

geodesics iff Γ2
11 = 0. Similarly, from Eq. 328, we see that the u2 coordinate curves are

geodesics iff Γ1
22 = 0. We also see from Eqs. 327 and 329 that for coordinate systems with

orthogonal coordinate curves, the coordinate curves are geodesics iff E is independent of

v and G is independent of u.

For a Monge patch of the form r(u, v) = (u, v, f(u, v)), the geodesic differential equations

are given by:

(
1 + f 2

u + f 2
v

)
u′′ + fufuu(u

′)2 + 2fufuvu
′v′ + fufvv(v

′)2 = 0 (419)
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(
1 + f 2

u + f 2
v

)
v′′ + fvfuu(u

′)2 + 2fvfuvu
′v′ + fvfvv(v

′)2 = 0 (420)

where the subscripts u and v represent partial derivatives of f with respect to the sur-

face coordinates u and v, and the prime represents derivatives with respect to a natural

parameter.

Based on what we have seen so far, it can be concluded that each one of the following

provisions is a necessary and sufficient condition for a curve C on a surface S to be a

geodesic curve:

1. The geodesic component of the curvature vector is zero at each point on the curve,

that is Kg = 0 identically. This is based on the definition of geodesic curve which

we stated earlier.

2. The osculating plane of the curve at each point of the curve is orthogonal to the

tangent plane of S at that point. The reason is that on geodesic curves κg = 0 and

hence n and N are in the same orientation (parallel or anti-parallel) on all points

along the curve (refer to Eqs. 305 and 307) and hence n lies in the osculating plane

and the osculating plane will be orthogonal to the tangent plane.

3. The normal vector n to the surface at any point on the curve lies in the osculating

plane. This is because for a geodesic curve, Kg vanishes identically and hence K =

κN = κnn = Kn.

4. The principal normal vector N of C is normal to the surface at each point on C

since N is collinear with n.

5. The curvature vector K of the curve is normal to the tangent plane of the surface

at each point on the curve.

Being a geodesic is independent of the choice of the coordinate system and hence it is

invariant under permissible transformations. It is also independent of the type of repre-

sentation and parameterization and hence it is invariant in this sense.

Geodesic curves can be open or closed curves and may be self-intersecting. In this

statement, we are considering the totality of the geodesic path as characterized by having

identically vanishing geodesic curvature and not as a connecting arc between two distinct

points.[28] Examples of open geodesics are the straight lines on planes and the helices on

[28]To put it in a different way, “geodesic curves” has two common uses: (a) curves with identically
vanishing geodesic curvature and (b) arcs of optimal length connecting two points, where (b) in a
sense is a subset of (a). Here, “geodesic curves” is used in the first sense.
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cylinders while examples of closed geodesics are the geodesics of spheres which are great

circles and the parallel circles on cylinders. In fact, all the geodesics on sphere are closed

curves as they are great circles, while circles on cylinder is the only case of closed geodesics

on this type of surface.

As a result of the Gauss-Bonnet theorem (see § 4.8), on a surface with negative Gaussian

curvature two geodesics cannot intersect at more than one point if the geodesics enclose a

simply-connected region. The reason is that on introducing an artificial vertex at a regular

point on one of these curves we will have a new corner with π interior angle and hence the

sum of the angles of the geodesic triangle will exceed π which is impossible on a surface

with K < 0 . Also, on introducing an artificial vertex at a regular point on each one of

these curves we will have a geodesic quadrilateral whose internal angles add up to more

than 2π on a surface with K < 0 which is not possible (see § 4.8).
Another result of the Gauss-Bonnet theorem is that a surface with negative Gaussian

curvature cannot have a geodesic that intersects itself. This may be established by a

similar argument to the previous one that is: on introducing two artificial corners at two

regular points on the curve, we will have a geodesic triangle whose interior angles add up

to more than π which is not possible on a surface with K < 0 (see § 4.8).
On a patch of a surface of class C2 with orthogonal coordinate curves and with the

first fundamental form coefficients being dependent on only the u coordinate variable (i.e.

E = E(u), F = 0 and G = G(u)) the following statements apply:

1. The u coordinate curves are geodesics.

2. The v coordinate curves are geodesics iff ∂uG = 0 along these curves.

3. A curve C represented by r = r (u, v(u)) is a geodesic iff :

v = ±
ˆ
C

k
√
E√

G (G− k2)
du (421)

where k is a constant.

The case of dependence on only the v coordinate variable can be obtained by re-labeling

the coordinate variables and coefficients. The second of the above statements may be gen-

eralized by saying: on a surface with orthogonal coordinate curves, the curves of constant

uα are geodesics iff aββ (β 6= α) is a function of uβ only.

As indicated before, geodesics in curved spaces represent a generalization of straight lines
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in flat spaces. Hence, geodesics may be described as the straightest curves in the space.

In fact, geodesic curves on a developable surface become straight lines when the surface is

developed into a plane by unrolling. This may be demonstrated by the perception of a 2D

inhabitant of the surface who will fail to observe any difference to the geodesic curve when

the surface is developed into a plane and the geodesic curve necessarily becomes a straight

line on the plane. More generally, a geodesic curve will be mapped onto a geodesic curve

by any isometric transformation due to the invariance of the geodesic curvature under

this type of transformations since geodesic curvature is an intrinsic property. Therefore,

isometric surfaces possess identical geodesic equations.

Another sufficient and necessary condition for a surface curve to be geodesic is being a

tangent to a parallel vector field. A vector attained by parallel propagation (see § 2.7)
of a tangent vector to a geodesic curve stays always tangent to the geodesic curve. As a

result, a vector field attained by parallel propagation along a geodesic makes a constant

angle with the geodesic.

5.8 Line of Curvature

A “line of curvature” is a curve C on a surface S defined on an interval I ⊆ R as C : I → S

with the condition that the tangent of C at each point on C is collinear with one of the

principal directions (see § 4.4) of the surface at that point. We note that “line” here

does not mean straight. Since the definition of the line of curvature is seemingly based

on the existence of distinct principal directions, umbilical points (see § 4.10) may be

excluded from the above definition of the line of curvature due to the absence of distinct

principal directions at these points although there seems to be no harm in including isolated

umbilical points (at least) over the path of the line of curvature.[29] Referring to Eq. 134,

on a line of curvature either sin θ = 0 or cos θ = 0 and hence the lines of curvature are

characterized by having identically vanishing geodesic torsion (i.e. τg = 0).

The condition that should be satisfied by a line of curvature is usually given by the

[29]There are some details about this issue that could be elaborated where different conventions should be
considered. The main issue is that: can the number of principal directions at a given point on a surface
exceed two or not. Hence, some of the future materials may not be based on a single convention.
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following relation:

(a12b11 − a11b12) du1du1 + (a22b11 − a11b22) du1du2 + (a22b12 − a12b22) du2du2 = 0 (422)

where the indexed a and b are the coefficients of the surface covariant metric and covariant

curvature tensors respectively. In fact, this is the same as the condition given by Eq. 350

for the principal directions, which is consistent with the fact that the line of curvature

is aligned along a principal direction at each of its points. The condition that should be

satisfied by a line of curvature on a surface may be given in tensor notation by:

εγδaαγbβδdu
αduβ = 0 (423)

where εγδ is the 2D absolute permutation tensor.

Examples of lines of curvature are meridians and parallels of surface of revolution of class

C2. For a developable surface, the lines of curvature consist of its generators and their

orthogonal trajectories. On a sufficiently smooth surface, any geodesic which is a plane

curve is a line of curvature. Similarly, on a sufficiently smooth surface, if a geodesic curve

C is a line of curvature then C is a plane curve. The lines of intersection of each pair of

a triply orthogonal system are also lines of curvature. We remark that three families of

surfaces in a subset V of a 3D space form a triply orthogonal system if at each point P of

V there is a single surface of each family passing through P such that each pair of these

surfaces intersect orthogonally at their curve of intersection.

At a non-umbilical point P on a sufficiently smooth surface S, the u1 and u2 coordinate

curves are aligned with the principal directions iff f = F = 0 at P . The “if” part can

be seen, for example, from Eq. 350 which in this case (i.e. f = F = 0) will reduce to

(gE − eG) du1du2 = 0 and hence it will be satisfied on the coordinate curves, since du2

will vanish on the u1 coordinate curve while du1 will vanish on the u2 coordinate curve,

and these curves become aligned with the principal directions. The “only if” part can

also be seen from Eq. 350 because if the coordinate curves are aligned with the principal

directions then this equation should be satisfied where it becomes (fE − eF ) du1du1 = 0

for the u1 coordinate curve and (gF − fG) du2du2 = 0 for the u2 coordinate curve and

both of these equations imply f = F = 0 since du1 6= 0 on the u1 coordinate curve and

du2 6= 0 on the u2 coordinate curve. We note that by considering the stated conditions
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and the definitions of the coefficients of the first and second fundamental forms as well as

the Rodrigues curvature formula (see § 4.4), it can be concluded that the coefficients E, e

and g,G cannot vanish.

As a consequence of the last paragraph, the coordinate curves on the surface S, excluding

the umbilical points, are lines of curvature iff f = F = 0 over the entire surface. This may

also be stated by saying that on a smooth surface, excluding planes and spheres (whose all

points are umbilical), if the lines of curvature are selected as the net of coordinate curves

then a12 = b12 = 0 over the entire surface excluding the umbilical points. We remark that

when the u and v coordinate curves of a surface patch are lines of curvature, the principal

curvatures, κ1 and κ2, over the entire patch will be given by:

κ1 =
e

E
κ2 =

g

G
(424)

where E,G, e, g are the coefficients of the first and second fundamental forms at the points

of the patch. The reader is referred to § 4.4 for justification (see Eq. 354 and related text).

On a surface of class C3, there are two perpendicular families of lines of curvature in the

neighborhood of any non-umbilical point. If the curve of intersection of two surfaces is a

line of curvature for one surface then it is a line of curvature for the other surface when

the two surfaces are intersecting each other at a constant angle.

The lines of curvature form a real orthogonal grid over the surface. A curve is a line of

curvature iff the tangent to the curve and the tangent to its spherical image (see § 3.10)
at their corresponding points are parallel. The lines of curvature on a surface, which is

not a sphere or minimal surface (see § 6.7), are represented by an orthogonal net on its

spherical image.

As indicated above, in the neighborhood of a non-umbilical point on a sufficiently smooth

surface there are two orthogonal families of lines of curvature. Hence, at each point P on

such a surface a coordinate patch including P can be introduced in the neighborhood of P

where the coordinate curves at P are aligned with the principal directions. On a surface

patch where the Gaussian curvature does not vanish, the angles between the asymptotic

lines (see § 5.9) are bisected by the lines of curvature.
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5.9 Asymptotic Line

An asymptotic direction of a surface at a given point P is a direction for which the normal

curvature vanishes, i.e. κn = 0. Hence, in an asymptotic direction at a point on a surface

we have (see Eq. 307):

K = Kg = κgu (425)

As a consequence of Eq. 316, κn is zero in the directions for which the second fundamental

form is zero. Hence, the necessary and sufficient condition for the asymptotic directions

is that:

bαβdu
αduβ = b11(du1)2 + 2b12 du

1du2 + b22(du2)2 = 0 (426)

We note that asymptotic directions are defined only at points for which the Gaussian

curvature is non-positive (K ≤ 0) and hence it is not defined at elliptic points (see § 4.9)
where K > 0. This is because at elliptic points either κ1 > 0 and κ2 > 0 or κ1 < 0 and

κ2 < 0 and hence κn cannot take the value zero at these points.

As a result, the number of asymptotic directions at elliptic, parabolic and hyperbolic

points is 0, 1 and 2 respectively, while at flat points all directions are asymptotic. The

two asymptotic directions of a hyperbolic point separate the directions of positive normal

curvature from the directions of negative normal curvature. The sign of the normal curva-

ture at elliptic and parabolic points is the same in all directions, excluding the asymptotic

direction of the parabolic point. Similarly, at flat points the normal curvature is zero in

all directions.

A t-parameterized surface curve C(t) : I → S, where I ⊆ R is an open interval and

S represents the surface, is described as an asymptotic line if at each point t ∈ I the

vector T, which is the tangent to the curve, is collinear with an asymptotic direction at

that point. It should be remarked that “line” here is not required to be straight; hence

asymptotic lines are also called asymptotic curves.

From the above statements, it can be seen that the asymptotic lines are characterized

by the following features:

1. The normal component of the curvature vector is zero at each point on the curve,

that is Kn = 0 identically. This is based on the definition of asymptotic line as

stated above.



5.9 Asymptotic Line 211

2. The tangent plane to the surface at each point of the curve coincides with the oscu-

lating plane of the curve at that point. This is a consequence of having identically

vanishing normal curvature, since the curvature vector will then have only a tangen-

tial component and hence the osculating plane at each point of an asymptotic line

becomes tangent to the surface at that point.

The differential equation representing asymptotic lines can be obtained from the condition

that the normal curvature vanishes identically over the line, that is:

e

(
du1

ds

)2

+ 2f
du1

ds

du2

ds
+ g

(
du2

ds

)2

= 0 (427)

which is based on Eqs. 316 and 233 or on Eq. 318. The necessary and sufficient condition

for the u1 and u2 coordinate curves to become asymptotic lines is that e = 0 identically

on the u1 coordinate curve and g = 0 identically on the u2 coordinate curve.[30] This is

based on Eqs. 319 and 320 which are fully justified there.

According to Eq. 308, κn = n · K where n and K are respectively the normal vector

to the surface and the curve curvature vector. Hence, a curve on a sufficiently smooth

surface is an asymptotic line iff n · K = 0 identically. Now, since the vector n cannot

vanish on the regular points of the surface, then this condition is realized if at each point

on the curve either K = 0 or K and n are orthogonal vectors. In the former case the point

is an inflection point while in the latter case the osculating plane is tangent to the surface

at the point. Therefore, all points on an asymptotic line should be one of these types or

the other. The reverse is also true, i.e. a curve whose all points are one of these types or

the other is an asymptotic line. As a result of the last statements, any straight line on

a surface is an asymptotic line since the curve curvature vector K vanishes identically on

such a line.

According to the theorem of Beltrami-Enneper, along an asymptotic non-straight line

on a sufficiently smooth surface the square of the torsion τ is equal to the negative of the

Gaussian curvature K, that is:

τ 2 = −K (428)

where τ and K are evaluated at each individual point along the curve. Since asymptotic

[30]These conditions can be taken together or separately.
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directions are defined only at points for which K ≤ 0, the square of the torsion in the

above equation is equal to the absolute value of the Gaussian curvature at the point, that

is: τ 2 = |K| and hence τ is real as it should be. The torsions of two asymptotic lines

passing through a given point on a sufficiently smooth surface are equal in magnitude and

opposite in sign.

As we will see (refer to § 5.10), asymptotic directions are self-conjugate. In fact, some

authors take self-conjugation as the defining characteristic for being asymptotic. From the

definition of the asymptotic direction plus the Euler equation (Eq. 341), we see that the

angle θ which an asymptotic direction makes with the principal direction of κ1 at a given

non-umbilical point P on a sufficiently smooth surface S is given by:

tan2 θ = −κ1

κ2

(429)

where κ1 and κ2 are the principal curvatures of S at P . When κ2 = 0, the reciprocal of

this relation should be taken. Again, tan θ is real since at points with K < 0, the two

kappas should have opposite signs (see Eq. 355). The situation is similar when κ1 = 0 and

κ2 < 0. However, when κ1 > 0 and κ2 = 0 the reciprocal will be taken and the cotangent

will be real. The possibility of κ1 = κ2 = 0 is already excluded by the non-umbilical

condition since a point with κ1 = κ2 = 0 is a flat umbilic.

Because Eq. 426 is quadratic, it possesses two solutions which are real and distinct,

or real and coincident, or conjugate imaginary depending on its discriminant ∆ which is

opposite in sign to the determinant b of the surface covariant curvature tensor.[31] Hence,

the asymptotic directions at a given point on a surface can be classified according to the

determinant b at the point as:

1. Real and distinct for ∆ > 0 and hence b < 0.

2. Real and coincident for ∆ = 0 and hence b = 0.

3. Conjugate imaginary for ∆ < 0 and hence b > 0.

This is inline with the above statement that the number of asymptotic directions at elliptic,

parabolic and hyperbolic points is 0, 1 and 2 respectively because, as seen in § 4.9, the
local shape of a surface at a given point is determined by the sign of b at the point where

b < 0 at hyperbolic point, b = 0 at parabolic and flat points, and b > 0 at elliptic point.
[31]The discriminant is: ∆ = 4(b12)2 − 4b11b22 while the determinant is: b = b11b22 − (b12)2, and hence

∆ = −4b.
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We also remark that from Eq. 356 we can see that the sign of the Gaussian curvature

K is the same as the sign of b due to the fact that a > 0 since the first fundamental

form is positive definite, as established earlier. Hence, the above-described classification

of the asymptotic directions can also be based on K, as stated for b in the previous points.

Again, as seen in § 4.9, the sign of K is used to determine the local shape at a point, and

hence the number of the asymptotic directions is determined accordingly.

It is worth noting that on a sufficiently smooth surface with orthogonal families of asymp-

totic lines the mean curvature H is zero. This can be seen from Eq. 383 where by aligning

the coordinate curves along the asymptotic directions with a proper labeling, we will get:

F = 0 since the coordinate curves are orthogonal, and e = g = 0 according to the above

condition which we stated after Eq. 427, and hence H = 0. Now since H is invariant,

then this will remain valid under permissible transformations to other surface coordinates.

Another note is that the principal directions at a given point on a smooth surface bisect

the asymptotic directions at the point, as indicated before. Also, on a smooth surface of

class C3, there are two distinct families of asymptotic directions in the neighborhood of

any hyperbolic point.

As seen before, any straight line contained in a surface is an asymptotic line. As well as

the previously stated explanation, this may also be justified by the fact that such a line

is wholly contained in a plane, which is the tangent space of each of its points, and hence

the line is an asymptotic line with an identically vanishing normal curvature.

5.10 Conjugate Direction

A direction δv
δu

at a point on a sufficiently smooth surface is described as conjugate to the

direction dv
du

iff the following relation holds true:[32]

dr · δn = 0 (430)

where:

dr = E1du+ E2dv δn = ∂unδu+ ∂vnδv (431)

[32]The notation δv
δu is not related to the notation of absolute derivative (see § 7).
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From Eq. 244, it can be seen that the condition given by Eq. 430 is equivalent to the

following condition:

e duδu+ f (duδv + dvδu) + g dvδv = 0 (432)

The last equation may also be obtained directly by substituting from Eq. 431 into Eq.

430 and performing the dot product with the use of Eqs. 249-251 to obtain the coefficients

e, f, g. Due to the symmetry in the above relations, dv
du

is also conjugate to δv
δu
, and hence

the two directions are described as conjugate directions. At a hyperbolic or an elliptic

point on a sufficiently smooth surface, each direction has a unique conjugate direction. As

stated earlier, an asymptotic direction is a self-conjugate direction.

Two families of curves on a sufficiently smooth surface are described as conjugate families

if the directions of their tangents at each intersection point of the curves are conjugate

directions. The u and v coordinate curves on a smooth surface are conjugate families of

curves iff f , which is the coefficient of the second fundamental form, vanishes identically.

This can be seen from Eq. 432 where by a proper labeling of the u and v coordinates

in the two directions to make duδu = dvδv = 0 on the coordinate curves the first and

last terms of Eq. 432 will vanish on the coordinate curves and hence the curves will be

conjugate families by satisfying the reduced condition f(duδv + dvδu) = 0 which leads

to the condition f = 0 since duδv + dvδu 6= 0 according to this labeling. Similarly, if

f = 0 then the coordinate curves will satisfy the reduced condition f(duδv + dvδu) = 0

and hence they are conjugate families.

5.11 Exercises

5.1 State two criteria for a space curve to be straight.

5.2 Prove that a curve represented by r(t) is a straight line if ṙ and r̈ are linearly dependent

over the whole curve.

5.3 Show that a space curve whose all tangent lines are parallel is a straight line.

5.4 Correct, if necessary, the following statement: “All straight lines on a surface are

geodesic curves and vice versa”.

5.5 What is the characteristic feature of plane curves? From this, explain why the torsion

of plane curves is identically zero.

5.6 Prove that a curve is a plane curve if its osculating planes have a common intersection
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point.

5.7 Show that a space curve represented by r(t) is a plane curve iff ṙ · (r̈ × ...
r ) vanishes

identically.

5.8 Prove that having an identically vanishing torsion is a necessary and sufficient condi-

tion for a curve to be a plane curve.

5.9 Show that two curves are plane curves if they have the same binormal lines at each

pair of their corresponding points.

5.10 Define, rigorously, involute and evolute curves making a simple plot to outline their

relation. Also explain the role of the tangent surface of the evolute in this context.

5.11 Explain all the symbols used in the following equation which is related to involute

curves: ri = re + (c− s) Te. Make sense of this equation using your plot in the

previous exercise.

5.12 Outline the visual demonstration which is commonly used to explain the relation

between an involute and its evolute. Use the plot mentioned in the last two questions

in your explanation.

5.13 Show that the tangent line of a curve and the principal normal line of its evolute are

parallel at their corresponding points.

5.14 Prove that the evolutes of plane curves are helices.

5.15 Prove that for a plane curve C the locus of the centers of curvature of C is an evolute

of C.

5.16 Derive the parametric equation of the involute of a circle represented by: r(θ) =

(5 cos θ, 5 sin θ) where 0 ≤ θ < 2π.

5.17 Prove that any two involutes of a plane curve are associated Bertrand curves.

5.18 How many involutes a given curve can have? How these involutes are related to each

other through the constant c (see Eq. 407)?

5.19 How many evolutes a given curve can have? How these evolutes are related to each

other through the constant c (see Eq. 407)?

5.20 Justify the fact that the involutes of a circle are congruent with a clear explanation

of how these involutes are related to each other.

5.21 Define Bertrand curves outlining two of their main characteristic features.

5.22 Show that a helix has an infinite number of Bertrand associates and identify these

associates.
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5.23 Prove that on a pair of Bertrand curves, the angle between their tangents at corre-

sponding points is constant.

5.24 State a sufficient and necessary condition for a curve to be a Bertrand curve by having

an associate Bertrand curve.

5.25 Show that a plane curve has always a Bertrand associate.

5.26 Prove that the product of torsions at the corresponding points of a pair of associated

Bertrand curves is constant (see Eq. 408 and related text for explanation).

5.27 Prove that on a pair of Bertrand curves, the distance between their corresponding

points is constant.

5.28 Give a brief definition of spherical indicatrix with a simple sketch of the spherical

normal indicatrix C̄N of a space curve to illustrate this concept.

5.29 Prove the following equation (Eq. 410): κ2
T = κ2+τ2

κ2
.

5.30 Discuss the similarities and differences between Gauss mapping (see § 3.10) and spher-

ical indicatrix mapping.

5.31 Justify, using a simple fact about helices, that the spherical images of T,N,B of a

helix rotating around the z-axis are circles centered around the z-axis.

5.32 Justify the following statement: “The binormal indicatrix is a single point for a plane

curve, and the tangent indicatrix is a single point for a straight line”.

5.33 Prove, rigorously, that the tangent indicatrix of a helix is a circle.

5.34 Prove that the tangent to the spherical indicatrix of the tangent to a given space curve

C and the principal normal of C are parallel.

5.35 Write down the mathematical formula for the torsion of the spherical binormal indi-

catrix of a space curve explaining all the symbols used in the formula.

5.36 What “spherical curve” means? give a common example of a spherical curve.

5.37 State, mathematically, the sufficient and necessary condition for a curve to be a spher-

ical curve explaining all the symbols involved.

5.38 Investigate if the curve represented parametrically by: r(t) = (5 cos t, 5 cos t sin t, 5 sin2 t)

is a spherical curve or not.

5.39 Show that the spherical image of a curve C(t) is a closed curve when the vector

that generates the spherical image is a periodic function of t although C may not be

periodic. Discuss in this context the helix as an example.

5.40 What is the characteristic feature of geodesic curves?
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5.41 Give a rigorous mathematical definition of geodesic curve.

5.42 Give examples of geodesic curves on the following surfaces: plane, sphere and cylinder.

5.43 On a surface of revolution, what type of curve is necessarily geodesic and what type

is potentially geodesic?

5.44 Define geodesic curve variationally using the concepts of calculus of variations.

5.45 Show that any helix on a circular cylinder is a geodesic curve.

5.46 Outline the relation between the concept of geodesic curve and the concept of curve

of shortest distance between two points.

5.47 Prove that Eq. 418 is a sufficient and necessary condition for a curve to be geodesic.

5.48 Find an analytical expression representing the geodesic curves on a circular cone using

one of its parametric representations.

5.49 Outline the concept of geodesic curve on a surface as perceived by a 2D inhabitant of

the surface.

5.50 Prove that all the geodesic curves on a plane are straight lines.

5.51 Does a geodesic curve necessarily exist between two given points on a space surface,

and if it does exist is the geodesic curve necessarily unique? Support your answer

with illustrating examples for both cases.

5.52 Discuss the following statement and its implications: “Being a shortest path is a

sufficient but not necessary condition for being a geodesic curve”.

5.53 Correct, if necessary, the following statement: “In the neighborhood of a given point

P on a surface, there is exactly one geodesic curve that passes through P ”.

5.54 Write down, with full explanation, the differential equations which provide the neces-

sary and sufficient conditions for a naturally parameterized curve on a surface to be

geodesic.

5.55 Correct the following relations which represent the geodesic differential equations for

a Monge patch of the form r(u, v) = (u, v, f(u, v)):

(
1 + f 2

u + f 2
v

)
u′ + fufuu(u

′)2 + 2fufuvu
′v′ + fufvv(v

′)2 = 0(
1 + f 2

u + f 2
v

)
v′′ + fvfu(u

′)2 + 2fvfuvu
′v′ + fvfvv(v

′)2 = 0

5.56 Why the normal vector to the surface at any point on a geodesic curve should be

contained in the osculating plane of the curve at that point? Give a clear technical
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justification.

5.57 Using Gauss-Bonnet theorem, explain why a surface with negative Gaussian curvature

cannot have a geodesic that intersects itself.

5.58 Using Eq. 418, prove that all meridians of a surface of revolution are geodesic curves.

5.59 Discuss the following statement in the context of the perception of geodesic curves

by a 2D inhabitant: “Geodesic curves on a developable surface become straight lines

when the surface is developed into a plane”.

5.60 Give an example of a surface curve whose normal curvature and geodesic curvature

are identically zero over the whole curve.

5.61 What is the relation between a line of curvature on a surface and the principal direc-

tions at the points of the curve?

5.62 Prove that if a plane and a surface are intersecting at a constant angle then their

curve of intersection is a line of curvature.

5.63 Repeat the previous exercise replacing plane with sphere.

5.64 Can a line of curvature include umbilical points? Discuss this issue considering the

question of allowing more than two principal directions at a point or not.

5.65 Prove that for any sufficiently smooth surface of revolution, the parallels and meridians

are lines of curvature.

5.66 Show that for a given non-umbilical point P on a sufficiently smooth surface there is a

patch that contains P where the directions of the coordinate curves at P are principal

directions.

5.67 Prove Hilbert lemma using the proposal that the coordinate curves on a patch can

coincide with the lines of curvature in the neighborhood of a non-umbilical point.

5.68 Prove that if the curve of intersection of two surfaces is a line of curvature for one

surface then it is a line of curvature for the other surface when the two surfaces are

intersecting each other at a constant angle.

5.69 Outline the role of geodesic torsion in characterizing the line of curvature employing

a mathematical formulation in this context.

5.70 Give two examples for the line of curvature on specific types of surface discussing in

each case why the described curve should be a line of curvature.

5.71 Give the formulae for the principal curvatures, κ1 and κ2, when the u1 and u2 coor-

dinate curves of a surface patch are lines of curvature.
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5.72 Using tensor notation, state the mathematical condition that should be met by a line

of curvature on a space surface with full explanations of all the symbols involved.

5.73 Which types of surface should be excluded from the following statement: “The lines of

curvature on a surface are represented by an orthogonal net on its spherical image”?

5.74 Prove that on a Monge patch of the form r(u, v) = (u, v, f(u, v)), the coordinate

curves are orthogonal family iff fufv = 0 identically.

5.75 Give a mathematical condition for a direction on a surface at a given point to be

asymptotic.

5.76 Prove that the asymptotic directions are bisected by the lines of curvature.

5.77 Give a rigorous technical definition of asymptotic line.

5.78 Why the second fundamental form at a point of a surface should vanish in the asymp-

totic direction?

5.79 Prove Beltrami-Enneper theorem (see Eq. 428 and surrounding text).

5.80 One of the characteristic features of asymptotic line is that the tangent plane to the

surface at each point of the line coincides with the osculating plane of the line at that

point. Why?

5.81 Show that on a smooth surface with orthogonal families of asymptotic lines the mean

curvature is zero.

5.82 Justify the following statement: “The necessary and sufficient condition for the u1

and u2 coordinate curves to be asymptotic lines is that e = 0 identically on the u1

coordinate curves and g = 0 identically on the u2 coordinate curves”.

5.83 Using Eq. 426, prove that the generators of a circular cylinder are asymptotic lines.

5.84 According to the theorem of Beltrami-Enneper we have: τ 2 = −K where τ and K

stand for torsion and Gaussian curvature. Does this mean that τ is imaginary? Fully

justify your answer.

5.85 The angle θ which an asymptotic direction makes with the principal direction of κ1

is given by: tan2 θ = −κ1
κ2

where κ1 and κ2 are the principal curvatures. Derive this

equation.

5.86 Classify the asymptotic directions at a given point on a surface as real and distinct,

or real and coincident, or conjugate imaginary according to the determinant of the

surface covariant curvature tensor at that point.

5.87 Why the classification in the previous question can also be based on the Gaussian
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curvature of the point?

5.88 The classification in the two previous questions is related to the number of asymptotic

directions at elliptic, hyperbolic and parabolic points. How?

5.89 Justify the following statement: “A straight line contained in a surface is an asymptotic

line”.

5.90 State a mathematical condition for two directions at a given point on a surface to be

conjugate directions explaining all the symbols used.

5.91 What “conjugate families of curves on a surface” means?

5.92 Show that at hyperbolic and elliptic points each direction has a unique conjugate

direction.

5.93 Show that on a surface represented by r = r1(u) + r2(v), the coordinate curves are

conjugate families of curves.

5.94 What is the necessary and sufficient condition for the u1 and u2 coordinate curves on

a smooth surface to be conjugate families?



Chapter 6

Special Surfaces

There are many classifications to surfaces in 3D spaces depending on their properties and

relations. A few of these classifications are briefly investigated in the following sections of

this chapter.

6.1 Plane Surface

Planes are simple, ruled, connected, elementary surfaces. The following statements apply

to planes:

1. All the coefficients of the surface curvature tensor vanish identically throughout plane

surfaces.

2. The Riemann-Christoffel curvature tensor vanishes identically over plane surfaces.

3. The Gaussian curvature K and the mean curvature H vanish identically over planes.

4. Planes are minimal surfaces (see § 6.7).
5. All points on planes are flat umbilical.

6. At any point on a plane surface, κ1 = κ2 = 0 and hence all the directions are

principal directions (or there is no principal direction).

7. At any point on a plane surface, all the directions are asymptotic.

8. A sufficient and necessary condition for a surface to be plane is having an identically

vanishing surface curvature tensor.

9. A sufficient and necessary condition for a surface to be isometric with the plane

is having an identically vanishing Riemann-Christoffel curvature tensor. The same

applies for identically vanishing Gaussian curvature.

221
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6.2 Quadratic Surface

Quadratic surfaces are defined by the following quadratic equation:

Aijx
ixj +Bix

i + C = 0 (i, j = 1, 2, 3) (433)

where the coefficients Aij and Bi are real-valued tensors of rank-2 and rank-1 respectively

and C is a real scalar. There are many degenerate and non-degenerate types of quadratic

surface. However, we consider here only six non-degenerate types which are probably the

most commonly occurring in differential geometry. These six types are: ellipsoid, hyper-

boloid of one sheet, hyperboloid of two sheets, elliptic paraboloid, hyperbolic paraboloid,

and quadric cone. The first five of these quadratic surfaces have been defined in § 1.4.1
using parametric forms.

By rigid motion transformations, consisting of translation and rotation of coordinate

system, whose purpose is to put the center of symmetry or vertex of these surfaces at the

origin of coordinates and orient their axes and planes of symmetry with the coordinate

lines and coordinate planes, these types can be given in the following canonical forms

where we assume a Euclidean 3D space with a rectangular Cartesian coordinate system:

1. Ellipsoid (Fig. 47 a):
x2

a2
+
y2

b2
+
z2

c2
= 1 (434)

2. Hyperboloid of one sheet (Fig. 47 b):

x2

a2
+
y2

b2
− z2

c2
= 1 (435)

3. Hyperboloid of two sheets (Fig. 47 c):

x2

a2
− y2

b2
− z2

c2
= 1 (436)

4. Elliptic paraboloid (Fig. 47 d):

x2

a2
+
y2

b2
− z = 0 (437)
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5. Hyperbolic paraboloid (Fig. 47 e):

x2

a2
− y2

b2
− z = 0 (438)

6. Quadric cone (Fig. 47 f):
x2

a2
+
y2

b2
− z2

c2
= 0 (439)

We note that in the above equations a, b, c are real parameters,[33] and for convenience we

use x, y, z for x1, x2, x3 respectively. Also, for the first three of these surfaces the origin of

coordinates is not a valid surface point, as seen from their equations.

6.3 Ruled Surface

A “ruled surface”, or “scroll”, is a surface generated by a continuous translational-rotational

motion of a straight line in space. Hence, at each point of the surface there is a straight

line passing through the point and lying entirely in the surface. Planes, cones, cylinders

and Mobius strips (Fig. 1) are common examples of ruled surface. The parabolic cylinder

(Fig. 48) is another example of ruled surface. The different perspectives of the generating

line along its movement are described as the rulings of the surface. A ruled surface that

can be generated by two different families of lines is called doubly-ruled surface. Examples

of doubly-ruled surface are hyperbolic paraboloids (Fig. 49) and hyperboloids of one sheet

(Fig. 50). At any point of a regular ruled surface, the Gaussian curvature is non-positive

(K ≤ 0).

The tangent surface (see § 6.6) of a smooth curve is a ruled surface generated by the

tangent line of the curve. The tangent plane is constant along a branch, represented by

the tangent line at a given point, of the tangent surface of a curve. If P is a point on a

curve C where C has a tangent surface S, then the tangent plane to S along the ruling

that passes through P coincides with the osculating plane of C at P . Hence, the tangent

surface may be described as the envelope of the osculating planes of the curve.

[33]The symbols a, b, c here are defined locally and hence they should not be confused with similar symbols
used previously; in particular a and b which symbolize the determinants of the metric and curvature
tensors.
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(a) Ellipsoid (b) Hyperboloid of one sheet

(c) Hyperboloid of two sheets (d) Elliptic paraboloid

(e) Hyperbolic paraboloid (f) Quadric cone

Figure 47: Quadratic surfaces.
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Figure 48: Parabolic cylinder as a ruled surface.

6.4 Developable Surface

As defined previously (see § 3.1), a surface that can be flattened into a plane without local

distortion is called developable surface. A developable surface can also be defined as a

surface that is isometric to the Euclidean plane. In 3D manifolds, all developable surfaces

are ruled surfaces but not all ruled surfaces are developable surfaces. A ruled surface is

developable if the tangent plane is constant along every ruling of the surface as it is the

case with cones and cylinders. The neighborhood of each point on a sufficiently smooth

surface with no flat points is developable iff the Gaussian curvature vanishes identically

on the surface.

The generators of a developable surface and their orthogonal trajectories are its lines of

curvature. A developable surface, excluding cylinder and cone, is a tangent surface of a

curve where the osculating planes of the curve form the tangent planes of the surface. The

collection of normal lines to a surface S along a given curve C on S make a developable

surface iff C is a line of curvature (see § 5.8). Intrinsically, any developable surface is

equivalent (i.e. having the same metric characteristics) to a plane and hence any two

developable surfaces are isometric to each other.
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Figure 49: Hyperbolic paraboloid as a doubly-ruled surface where the grid demonstrates
the two sets of straight line rulings.

6.5 Isometric Surface

An isometry is an injective mapping from a surface S to a surface S̄ which preserves

distances. If the mapping preserves distances but it is not injective it is described as local

isometry. As a consequence of preserving the lengths in isometric mappings, the angles

and areas are also preserved. Examples of isometric surfaces are cylinder and cone which

are both isometric to plane.

Two isometric surfaces, such as a cylinder and a cone or each one of these and a plane,

appear identical to a 2D inhabitant. Any difference between the two can only be perceived

by an external observer residing in a reference frame in the enveloping space. Accordingly,

two isometric surfaces possess identical first fundamental forms and hence any difference

between them, as viewed extrinsically from the embedding space, is based on the difference

between their second fundamental forms.

Isometry is an equivalence relation and hence it is reflective, symmetric and transitive,

that is for three surfaces S1, S2 and S3 we have:

1. S1 ∼ S1.

2. S1 ∼ S2 ⇐⇒ S2 ∼ S1.
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Figure 50: Hyperboloid of one sheet as a doubly-ruled surface where the two frames
demonstrate the two sets of straight line rulings.

3. If S1 ∼ S2 and S2 ∼ S3 then S1 ∼ S3.

where the symbol ∼ represents an isometric relation. If two sufficiently smooth surfaces

have constant equal Gaussian curvature then they are locally isometric. The mapping

relation between the two surfaces then include three constants corresponding to the three

independent coefficients of the first fundamental form. A surface of revolution is isometric

to itself in infinitely many ways, each of which corresponds to a rotation of the surface

through a given angle around its axis of symmetry. As indicated before, any surface is

isometric to the plane iff the Gaussian curvature (or the Riemann-Christoffel curvature

tensor) vanishes identically on the surface.

6.6 Tangent Surface

As stated previously, the tangent surface of a space curve is a surface generated by the

assembly of all the tangent lines to the curve. The tangent lines of the curve are called

the generators or branches of the tangent surface. Accordingly, the equation of a tangent

surface ST to a curve C is given by:

rT = ri + kTi (440)

where rT is an arbitrary point on the tangent surface, ri is a given point on the curve C,

k is a real variable (−∞ < k < ∞), and Ti is the unit vector tangent to C at ri. The

tangent surface is generated by varying i along C and k along the tangent line.

The tangent surface of a curve is made of two parts: one part corresponds to k > 0



6.7 Minimal Surface 228

and the other part corresponds to k < 0 where the curve is a border line between these

two parts (see Fig. 51). The two parts of the tangent surface are tangent to each other

along the curve which forms a sharp edge between the two. The curve is, therefore, called

the edge of regression of the surface. The tangent plane is constant along a branch of the

tangent surface of a curve. This tangent plane is the osculating plane of the curve at the

point of contact of the branch with the curve. According to the definition of involute, all

the involutes of a curve Ce are wholly embedded in the tangent surface of Ce. The normal

to the tangent surface of a space curve C at a point of a given ruling R is parallel to the

binormal line of C at the point of contact of C with R.

C

Figure 51: Space curve C and the two parts of its tangent surface, shaded differently at
the top and the bottom.

6.7 Minimal Surface

A minimal surface is a surface whose area is minimum compared to the area of any other

surface sharing the same boundary. Hence, the minimal surface is an extremum with

regard to the integral of area over its domain. A common physical example of a minimal
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surface is a soap film formed between two coaxial circular rings where it takes the minimal

surface shape of a catenoid (Fig. 10) due to the surface tension. This problem, and

its alike of investigations related to the physical realization of minimal surfaces, may be

described as the Plateau problem. Geometric examples of minimal surface shapes are

planes, catenoids, helicoids (Fig. 11) and ennepers (Fig. 13).

Since the mean curvature H of a surface at a given point P is a measure of the rate

of change of area of the surface elements in the neighborhood of P , a minimal surface is

characterized by having an identically vanishing mean curvature and hence the principal

curvatures at each point have the same magnitude and opposite signs (see Eq. 382). A

minimal surface is also characterized by having an orthogonal net of asymptotic lines and

a conjugate net of minimal lines.[34] In fact, having an orthogonal net of asymptotic lines

is a sufficient and necessary condition for having zero mean curvature (refer to § 5.9).

Among surfaces of revolution, catenoid is the only minimal surface of this type.

6.8 Exercises

6.1 State three features which are specific to plane surfaces.

6.2 Why all directions are asymptotic at any point on a plane surface?

6.3 Show that having an identically vanishing surface curvature tensor is a necessary and

sufficient condition for a surface to be plane.

6.4 Show that plane is the only connected surface of class C2 whose all points are flat.

6.5 Give the tensor notation form of the equation that defines quadratic surfaces.

6.6 Name three types of quadratic surface giving their canonical equation in Cartesian

coordinates.

6.7 A surface is represented parametrically by: r(u, v) = (u + v, u − v, 2uv). Obtain the

surface representation in canonical Cartesian form and hence determine its type.

6.8 Make a simple 3D plot of a hyperbolic paraboloid showing the Cartesian coordinate

axes and indicating the parameters of the surface. Use a computer graphic package if

convenient.

6.9 For which types of quadratic surface the origin of coordinates is not a valid point

on the surface according to their canonical forms and why? Does this also apply to

[34]Minimal lines are curves of minimal length.
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the non-canonical forms of these surfaces? Assuming a canonical form, are there any

limiting conditions under which the origin can be included in these surfaces?

6.10 Find the parametric representation of a cylindrical surface whose intersection with

the xy plane is given by: 4x2 + 9y2 = 1 and whose central axis is the z-axis. What is

the type of this surface?

6.11 What is “ruled surface”? What is the other name given to this type of surface and

why?

6.12 Make simple sketches for plane, cone, cylinder and Mobius strip that demonstrate

their nature as ruled surfaces.

6.13 What “doubly-ruled surface” means? Give an example of such a surface with a simple

sketch.

6.14 Prove that the tangent plane is constant along a branch of the tangent surface of a

space curve.

6.15 Prove that the hyperbolic paraboloid is a doubly-ruled surface.

6.16 Show that a helix embedded in a circular cylinder intersects all the generators of the

cylinder with constant angle.

6.17 Show that all points on the tangent surface of a given space curve are parabolic.

6.18 Justify the following statement: “At any point of a ruled surface the Gaussian curva-

ture is non-positive”. From this perspective, discuss singly- and doubly-ruled surfaces.

6.19 Prove that the tangent plane to a cylinder or a cone is constant along their generators.

6.20 Prove that if P is a point on a curve C where C has a tangent surface S, then

the tangent plane to S along the ruling that passes through P coincides with the

osculating plane of C at P .

6.21 Define “developable surface” giving several examples of this type of surface with an

explanation of why they are developable surfaces.

6.22 Give an example of a ruled surface which is not developable.

6.23 State the condition for a ruled surface to be developable.

6.24 Why any two developable surfaces are equivalent to each other by having the same

metric characteristics?

6.25 Show that the generators of developable surfaces are lines of curvature.

6.26 Show that a necessary and sufficient condition for a ruled surface to be developable

is that its Gaussian curvature vanishes identically.
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6.27 What is “isometric mapping”? Give an example of such a mapping between two

common types of surface.

6.28 How two isometric surfaces are seen by a 2D inhabitant? Can he distinguish between

the two and why?

6.29 Prove that isometry is a symmetric relation.

6.30 Demonstrate symbolically that isometric mapping is an equivalence relation.

6.31 How two isometric surfaces are characterized in terms of their first and second funda-

mental forms? Provide detailed explanations.

6.32 Show that catenoid and helicoid are locally isometric.

6.33 Why a surface of revolution is isometric to itself in infinitely many ways? Demonstrate

your answer by an example.

6.34 Define “tangent surface” of a space curve descriptively and mathematically.

6.35 What is the difference between the “tangent surface” of a curve and the “tangent

plane” of a surface? Make detailed comparisons between the two.

6.36 Derive the equation representing the tangent surface of a space curve represented by:

r(t) = (t2, t− 2, t3 + 5).

6.37 Why the tangent surface of a space curve is made of two sections? How these sections

meet on the curve?

6.38 Make a simple 3D sketch of an arbitrary twisted space curve and its tangent surface

showing parts of its two sections.

6.39 Prove that the curve made by the intersection of the normal plane of a curve C at a

given point P with the tangent surface of C has a cusp at P .

6.40 Write down the equation representing the tangent surface of a space curve explaining

all the symbols used in the equation.

6.41 In the context of tangent surface of a curve, what “branch”, “generator”, and “edge of

regression” mean? Make an attempt to justify these names.

6.42 What is the meaning of “minimal surface”? Give geometric and physical examples of

this type of surface.

6.43 Check if the surface represented parametrically by: r(θ, φ) = (cosh θ cosφ, cosh θ sinφ, θ)

is minimal or not.

6.44 Why minimal surfaces are characterized by having identically vanishing mean curva-

ture?
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6.45 What is the implication of having vanishing mean curvature H on the principal cur-

vatures of the surface at the points where H vanishes?

6.46 Should a surface with orthogonal families of asymptotic lines be a minimal surface?

If so, why?



Chapter 7

Tensor Differentiation over Curves and

Surfaces

The focus of this chapter is the differentiation of tensor fields over surfaces, where general

surface and space coordinates are generally assumed. In general, tensor differentiation,

whether covariant or absolute, over a 2D surface follows similar rules to the rules that

apply to tensor differentiation over general nD curved spaces. Some of these rules are:

1. The sum and product rules of differentiation apply to covariant and absolute differ-

entiation as usual.

2. The covariant and absolute derivatives of tensors are tensors.

3. The covariant and absolute derivatives of scalars and invariant tensors of higher

ranks are the same as the ordinary derivatives.

4. The covariant and absolute derivative operators commute with the contraction of

indices.

5. The covariant and absolute derivatives of the metric, Kronecker and permutation

tensors (and their associated tensors) vanish identically in any coordinate system,

that is:

aαβ|γ = 0 aαβ|γ = 0 (441)

δαβ|γ = 0 δαδβω|γ = 0 (442)

εαβ|γ = 0 εαβ|γ = 0 (443)

where the sign | represents covariant or absolute differentiation with respect to the

surface coordinate uγ. Hence, these tensors should be treated like constants in tensor

differentiation.

233
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An exception to these rules is the covariant derivative of the space basis vectors in their

covariant and contravariant forms which is identically zero, that is:

Ei;j = ∂jEi − ΓkijEk = +ΓkijEk − ΓkijEk = 0 (444)

Ei
;j = ∂jE

i + ΓikjE
k = −ΓikjE

k + ΓikjE
k = 0 (445)

but this is not the case with the surface basis vectors in their covariant and contravariant

forms, Eα and Eα, whose covariant derivatives do not vanish identically. The reason is

that, due to curvature, the partial derivatives of the surface basis vectors do not necessarily

lie in the tangent plane and hence the following relations:

∂jEi = +ΓkijEk (446)

∂jE
i = −ΓikjE

k (447)

which are valid in the enveloping space and are used in Eqs. 444 and 445, are not valid

on the surface anymore.

At a given point P on a sufficiently smooth surface with geodesic surface coordinates

and rectangular Cartesian space coordinates, the covariant and absolute derivatives reduce

respectively to the partial and total derivatives at P .

The covariant derivative of the surface basis vectors is symmetric in its two indices, that

is:

Eα;β = ∂βEα − ΓγαβEγ (448)

= ∂αEβ − ΓγβαEγ

= Eβ;α

The covariant derivative of the surface basis vectors, Eα;β, represents space vectors which

are normal to the surface with no tangential component.

The covariant derivative of a differentiable rank-1 surface tensor A in its covariant and

contravariant forms with respect to a surface coordinate uβ is given by:

Aα;β =
∂Aα
∂uβ

− ΓγαβAγ (covariant) (449)
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Aα;β =
∂Aα

∂uβ
+ ΓαγβA

γ (contravariant) (450)

where the Christoffel symbols are derived from the surface metric.

The covariant derivative of a differentiable rank-2 surface tensor A in its covariant,

contravariant and mixed forms with respect to a surface coordinate uγ is given by:

Aαβ;γ =
∂Aαβ
∂uγ

− ΓδαγAδβ − ΓδβγAαδ (covariant) (451)

Aαβ;γ =
∂Aαβ

∂uγ
+ ΓαδγA

δβ + ΓβδγA
αδ (contravariant) (452)

Aβα;γ =
∂Aβα
∂uγ

− ΓδαγA
β
δ + ΓβδγA

δ
α (mixed) (453)

More generally, for a differentiable surface tensor A of type (m,n), the covariant deriva-

tive with respect to a surface coordinate uγ is given by:

Aα1α2...αm
β1β2...βn;γ =

∂A
α1α2...αm
β1β2...βn

∂uγ
+Γα1

δγA
δα2...αm
β1β2...βn

+ Γα2
δγA

α1δ...αm
β1β2...βn

+ · · ·+ Γαmδγ A
α1α2...δ
β1β2...βn

(454)

−Γδβ1γA
α1α2...αm
δβ2...βn

− Γδβ2γA
α1α2...αm
β1δ...βn

− · · · − ΓδβnγA
α1α2...αm
β1β2...δ

The covariant derivative of a space tensor with respect to a surface coordinate uα is

formed by the inner product of the covariant derivative of the tensor with respect to the

space coordinates xk by the tensor xkα. This may be considered as a form of the chain rule

of differentiation. For example, the covariant derivative of Ai with respect to uα is given

by:

Ai;α = Ai;kx
k
α (455)

The covariant derivative with respect to a surface coordinate uβ of a mixed tensor Aiα,

which is contravariant with respect to transformation in a space coordinate xi and covariant

with respect to transformation in a surface coordinate uα, is given by:[35]

Aiα;β =
∂Aiα
∂uβ

+ ΓijkA
k
α

∂xj

∂uβ
− ΓγαβA

i
γ (456)

where the Christoffel symbols with Latin and Greek indices are derived respectively from

the space and surface metrics. This pattern can be easily generalized to a mixed tensor

[35]An example of such a tensor is xiα which was discussed earlier, e.g. in § 3.3.
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Ai1...imα1...αn
of type (m,n) which is contravariant in transformations of space coordinates xi

and covariant in transformations of surface coordinates uα. For example, the covariant

derivative of a tensor Aijαβ with respect to uγ is given by:

Aijαβ;γ =
∂Aijαβ
∂uγ

+ ΓimkA
mj
αβ

∂xk

∂uγ
+ ΓjmkA

im
αβ

∂xk

∂uγ
− ΓδαγA

ij
δβ − ΓδβγA

ij
αδ (457)

The above rules can be extended further to include tensors with space and surface con-

travariant indices and space and surface covariant indices. For Example, the covariant

derivative of a tensor Aiαjβ with respect to a surface coordinate uγ, where i and j are space

indices and α and β are surface indices, is given by:

Aiαjβ;γ =
∂Aiαjβ
∂uγ

+ ΓimkA
mα
jβ

∂xk

∂uγ
+ ΓαδγA

iδ
jβ − ΓmjkA

iα
mβ

∂xk

∂uγ
− ΓδβγA

iα
jδ (458)

This example can be easily extended to the most general form of a tensor with any com-

bination of covariant and contravariant space and surface indices.

The covariant derivative of the surface basis vector Eα, which in tensor notation is

denoted by xiα, is given by:

xiα;β =
∂2xi

∂uβ∂uα
+ Γijkx

j
αx

k
β − Γδαβx

i
δ (459)

From the last equation, we conclude:

xiα;β = xiβ;α (460)

This is because the Christoffel symbols are symmetric in their paired indices (see Eq. 66)

and we have ∂αβxi = ∂βαx
i and xjαxkβ = xkβx

j
α. This symmetry has also been established

earlier using vector notation for the surface basis vectors (see Eq. 448).

The mixed second order covariant derivative of the surface basis vectors is given by:

xiα;βγ = bαβ;γn
i + bαβn

i
;γ = bαβ;γn

i − bαβaδωbδγxiω (461)
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where the covariant derivative of the surface covariant curvature tensor is given, as usual,

by:

bαβ;γ =
∂bαβ
∂uγ

− Γδαγbδβ − Γδβγbαδ (462)

The covariant differentiation operators in mixed derivatives are not commutative and

hence for a contravariant surface vector Aγ, for instance, we have:

Aγ;αβ − Aγ;βα = Rγ
δαβA

δ (463)

where Rγ
δαβ is the Riemann-Christoffel curvature tensor of the second kind for the surface.

Similarly, the mixed second order covariant derivatives of the surface basis vectors satisfy

the following relation:

xiα;βγ − xiα;γβ = Rδ
αβγx

i
δ (464)

This, in fact, is an instance of the general relation: Aj;kl − Aj;lk = Ri
jklAi which is found

in tensor calculus texts.

As defined in tensor calculus books, the absolute or intrinsic derivative of a tensor field

along a t-parameterized curve in an nD space with respect to the parameter t is the inner

product of the covariant derivative of the tensor and the tangent vector to the curve. This

identically applies to the absolute derivative of curves contained in 2D surfaces.

Consequently, the absolute derivative of a tensor field along a t-parameterized curve on a

surface with respect to the parameter t follows similar rules to those of a space curve in a

general nD space, as stated in the literature of tensor calculus. For example, the absolute

derivative of a differentiable surface vector field A in its covariant and contravariant forms

with respect to the parameter t is given by:

δAα
δt

=
dAα
dt
− ΓγαβAγ

duβ

dt
(465)

δAα

δt
=

dAα

dt
+ ΓαγβA

γ du
β

dt
(466)

where the Christoffel symbols are derived from the surface metric. It should be remarked

that if A is a space vector field defined along the above surface curve then the above

formulae will take a similar form but with change from surface to space coordinates, and
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hence the curve is treated as a space curve, that is:

δAi
δt

=
dAi
dt
− ΓjikAj

dxk

dt
(467)

δAi

δt
=

dAi

dt
+ ΓijkA

j dx
k

dt
(468)

where the Christoffel symbols are derived from the space metric.

The absolute derivative of the tensor Aiα, which is defined in the previous paragraphs,

along a t-parameterized surface curve is given by:

δAiα
δt

= Aiα;β

duβ

dt
=

(
∂Aiα
∂uβ

+ ΓijkA
k
α

∂xj

∂uβ
− ΓγαβA

i
γ

)
duβ

dt
(469)

The pattern of absolute differentiation, as seen in the above examples, can be easily

extended to a more general type of tensor with covariant and contravariant space and

surface indices, as done for covariant differentiation.

To extend the idea of geodesic coordinates to deal with mixed tensors of the type Aiα,

a rectangular Cartesian coordinate system over the space and a geodesic system on the

surface are introduced and hence at the poles the absolute and covariant derivatives become

total and partial derivatives respectively.

As indicated above, the covariant and absolute derivatives of space and surface metric,

permutation and Kronecker tensors in their covariant, contravariant and mixed forms

vanish identically and hence they behave as constants with respect to tensor differentiation

when involved in inner or outer product operations with other tensors and commute with

these operators. Similarly, the surface covariant and absolute derivatives of space metric

tensor, space Kronecker tensor, space permutation tensor and space basis vectors vanish

identically, that is:

gij|γ = 0 gij|γ = 0 (470)

δij|γ = 0 δijkl|γ = 0 (471)

εijk|γ = 0 εijk|γ = 0 (472)

Ei|γ = 0 Ei
|γ = 0 (473)



7.1 Exercises 239

where the sign | represents covariant or absolute differentiation with respect to the surface

coordinate uγ. Hence, these space tensors are in lieu of constants with respect to surface

tensor differentiation.

The nabla ∇ based differential operations, such as gradient and divergence, apply to

space surface as for any general curved space and hence the formulae given in the literature

of tensor calculus for a general nD space can be used with the substitution of the surface

coordinates and surface metric parameters. For example, the divergence of a surface vector

field Aα is given by:

∇ ·A =
1√
a
∂α
(√

aAα
)

(474)

and the Laplacian of a surface scalar field f is given by:

∇2f =
1√
a
∂α
(√

aaαβ∂βf
)

(475)

where aαβ is the surface contravariant metric tensor, a is the determinant of the surface

covariant metric tensor and α, β = 1, 2.

7.1 Exercises

7.1 Summarize the main rules that govern the differentiation of tensor fields over surfaces

and compare these rules to those of nD spaces (n > 2).

7.2 Is there any rule of tensor differentiation that applies to nD spaces (n > 2) but not

to surfaces? If so, which and why? State your answer with a full formal explanation.

7.3 At the points of a smooth surface with geodesic surface coordinates and Cartesian

spatial coordinates of a flat embedding 3D space, what happens to the covariant and

absolute derivatives of tensor fields?

7.4 Derive the following identity: Eα;β = Eβ;α.

7.5 Express the identity in the previous exercise in full tensor notation.

7.6 Is Eα;β a surface vector or a space vector? Discuss the possible different meanings of

these attributes.

7.7 Explain, in detail, the following equation related to the covariant derivative of space

tensors with respect to surface coordinates: Ai;α = Ai;kx
k
α.

7.8 Write down the mathematical expression for the covariant derivative of the tensor
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Aδjknβ with respect to the surface coordinate uγ where the Latin and Greek indices

represent space and surface general coordinates.

7.9 Write down the tensor equation for the covariant derivative of the surface basis vector

xmγ with respect to the index β.

7.10 Complete the following equation which involves the tensor B where the indices rep-

resent surface coordinates:

Bα
;γδ −Bα

;δγ = ?

7.11 Give a brief descriptive definition of the absolute differentiation of a tensor field along

a curve.

7.12 What is the other name given to the absolute differentiation?

7.13 Explain the mathematical pattern of absolute differentiation of tensor fields along

surface curves illustrating this by an example.

7.14 Is the pattern of absolute differentiation of surface tensor fields along surface curves

identical to the pattern of absolute differentiation of space tensor fields along space

curves? If there is any difference, identify and explain.

7.15 Write, in expanded form, the mathematical equation of the following intrinsic deriva-

tive: δBkγ
δt

where B is a tensor and k and γ are space and surface indices.

7.16 What are the covariant and absolute derivatives of space and surface metric, permu-

tation and Kronecker tensors in their covariant, contravariant and mixed forms?

7.17 Do the operators of covariant and absolute differentiation of space and surface fields

commute with the metric tensor involved in an inner or outer product with another

tensor? Explain why.

7.18 Explain the following identity giving detailed definitions of all the symbols and nota-

tions involved: εijk|γ = 0.

7.19 Do the nabla based differential operations apply to the surface tensor fields as to the

tensor fields in curved spaces of higher dimensionality?

7.20 What is the Laplacian of a differentiable coordinate-dependent surface scalar field h

(i.e ∇2h)? Write in your answer the mathematical equation for this operation defining

all the symbols used.

7.21 Compare the equation in the previous question with the equation of the Laplacian of

a scalar field defined over a general nD space.
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Bonnet
formula, 71
theorem, 119
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of spherical curvature, 75
Chain rule of differentiation, 235
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Cissoid of Diocles, 78
Closed

curve, 59, 77, 86, 205, 206, 216
surface, 8, 27, 76, 87, 131, 132, 176, 188, 203

Codazzi
-Mainardi equations, 118, 128, 129, 140
equation, 128, 129

Collinear, 71, 141, 146, 154, 199, 207, 210
Comma notation, 7
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Commutative, 237
Commute, 233, 238, 240
Compact surface, 27, 51, 87, 88, 131, 132, 163, 175,

176, 187, 189
Compression, 86, 88, 161
Cone, 36, 52, 86–88, 131, 132, 136, 162, 165, 177,

188, 217, 223, 225, 226, 230
Conformal mapping, 88, 90, 106, 130, 133
Conjugate

direction, 212–214, 219, 220
grid, 229
hyperbola, 120, 180
roots, 212

Connected surface, 52, 86, 87, 130, 131, 163, 187–
189, 221, 229

Continuous, 29, 33, 50, 58, 77, 86, 91, 111, 116, 134,
159, 171, 196, 223

Contraction of indices, 233
Contravariant, 8–10, 36, 38, 43, 46, 48, 63, 94, 96–

99, 106–108, 123, 125, 126, 134, 135, 137,
140, 234–240

Coordinate
curve, 10, 35, 38, 43, 44, 52, 85, 86, 92, 93, 95,

96, 101, 103, 105, 133, 147, 150, 151, 158,
159, 164, 185, 187, 204, 206, 208, 209, 211,
214, 218–220

grid, 92, 133
patch, 43, 83, 86, 87, 131, 164, 209

Corner of curve, 171, 172, 174, 206
Cosine of angle, 105, 144
Covariant, 7, 8, 10, 13, 36, 38, 43–45, 48, 49, 62,

88, 89, 92, 94–101, 103, 105–112, 116, 117,
119, 122, 123, 125–127, 129, 133–138, 140,
145–147, 150, 158–160, 163, 166, 177, 185,
208, 212, 219, 234–240

derivative, 7, 42, 76, 125, 128, 129, 233–240
differentiation, 233, 237–240

Cross product, 93, 94, 96, 143
Cube, 28
Curvature

direction, 153
invariant, 49
of curve, 10, 61, 62, 64–70, 72–75, 77–80, 124,

142–144, 146, 148, 149, 151, 152, 193–199,
201

scalar, 49
tensor, 7, 13, 15, 50, 67, 80, 106–111, 116, 117,

123, 125–127, 129, 136–140, 145–147, 159,
160, 166–168, 170, 177, 181, 185, 188, 190,
192, 208, 212, 219, 221, 229, 237

vector, 10, 66, 71, 141–143, 145, 146, 149, 183–
185, 205, 210, 211

Curved space, 38–41, 47, 51, 53, 203, 206, 233, 239,
240

Curvilinear
coordinate system, 34, 81, 83, 135
coordinates, 12, 42, 47, 60, 62, 70, 73
polygon, 27, 29, 175

Cylinder, 52, 86–88, 112, 119, 131, 132, 134, 154,
155, 161, 162, 165, 170, 177, 188, 189, 191,
200, 203, 206, 217, 219, 223, 225, 226, 230

Cylindrical coordinates, 10, 17

Darboux
frame, 7, 71, 158, 186
vector, 7, 72, 81

Degenerate, 18, 147, 200, 203, 222
Determinant, 8, 32, 100, 109, 156, 160

of curvature tensor, 7, 108–110, 127, 136, 138,
146, 159, 160, 177, 182, 185, 192, 212, 219

of metric tensor, 7, 45, 49, 94, 95, 99, 100, 103,
107, 108, 116, 119, 125, 135, 137, 150, 159,
163, 182, 192, 239

Developable surface, 88, 132, 161, 165, 189, 207,
208, 218, 225, 230

Diagonal, 38, 39, 41, 83, 93
Differentiable, 30, 33, 55, 58, 65, 86–88, 91, 104,

132, 188, 234, 235, 237, 240
Differential

calculus, 11
equation, 11, 26, 73, 118, 202, 204, 211, 217
geometry, 1, 11, 13–17, 35, 37–40, 46, 49, 53,

65, 79, 97, 118, 119, 130, 139, 144, 158,
163, 168, 203, 222

operation, 239, 240
operator, 7
topology, 11

Direct conformal mapping, 88, 133
Disc, 31, 172, 191
Discriminant, 9, 156, 182, 212
Distance, 15, 19, 28, 37, 66, 88, 90, 100, 124, 141,

194, 196, 199, 201, 216, 217, 226
Distortion, 59, 88, 161, 193, 225
Divergence operation, 239
Dodecahedron, 51
Dot product, 44, 68, 69, 76, 94, 95, 106, 112, 116,

137, 143, 162, 214
Double-side surface, 14
Doubly-ruled surface, 223, 226, 227, 230
Dupin indicatrix, 120–122, 139, 178, 180, 192

Edge
of polyhedron, 8, 27, 51, 176
of regression, 228, 231

Element of
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arc, 101, 102, 111, 136, 201
area, 166
curve, 8
surface, 8, 103, 136, 168, 229

Elementary surface, 87, 132, 221
Ellipse, 50, 58, 59, 77, 120, 180
Ellipsoid, 19, 20, 27, 28, 39, 40, 51, 87, 131, 154,

155, 176, 177, 181, 188, 191, 222, 224
Elliptic

paraboloid, 21, 22, 40, 51, 52, 86, 88, 132, 146,
180, 181, 222, 224

point, 120–122, 139, 146, 177–180, 185, 191,
192, 210, 212, 214, 220

umbilic point, 182
Embedding space, 15, 39, 55, 60, 80, 112, 124, 158,

226
Enneper surface, 25, 26, 51, 229
Enveloping space, 37, 56, 97, 111, 112, 134, 226, 234
Euclidean

motion, 66
plane, 47, 225
space, 8, 28, 35, 39–41, 47, 52, 53, 60, 61, 66,

76, 82, 83, 97, 133, 134, 193, 199, 203, 204,
222

Euler
-Lagrange variational principle, 32, 199
-Poincare characteristic, 27
characteristic, 10, 27, 28, 51, 172, 175, 176, 191
equation, 212
theorem, 154, 186

Evolute, 7, 90, 133, 194, 195, 215
Exterior angle, 171, 172, 174
Extremum, 152, 200, 228
Extrinsic

geometry, 40, 114, 117, 139, 188
property, 14–16, 50, 66, 110, 133, 136, 144, 146,

150, 162, 183, 185

Face of polyhedron, 8, 27, 51, 176
Finite, 27, 87, 171
First

curvature, 64
derivative, 8, 80
fundamental form, 8, 13, 15, 16, 44, 47, 50,

67, 80, 88–90, 93, 98–100, 102, 103, 108,
111–114, 116–119, 123–127, 129, 134–140,
144–147, 152, 156, 157, 159–161, 163, 164,
167–170, 178, 182, 184, 186, 190, 204, 206,
209, 213, 226, 227, 231

fundamental quadratic form, 111
groundform, 97
order differential equation, 73
variation, 32, 199

Flat
point, 120, 130, 139, 146, 147, 177, 178, 180,

182, 185, 191, 192, 210, 221, 229
space, 12, 38–42, 46, 47, 51, 53, 60, 75, 97, 110,

112, 141, 203, 207, 239
surface, 31, 47
umbilical point, 182, 221

Frenet
-Serret formulae, 62, 67, 69, 72, 73, 79, 81, 124,

139
formulae, 72
frame, 63, 64, 78
trihedron, 63

Functional mapping, 29, 34, 35, 58, 84
Fundamental

surface tensor, 97
theorem of curves, 65–67, 73, 79, 118, 119
theorem of surfaces, 67, 118, 119, 139

Gauss
-Bonnet theorem, 131, 155, 163, 171–177, 190,

191, 206, 218
-Codazzi equation, 129
equations, 124, 127, 128, 139, 140
mapping, 129, 130, 216

Gaussian
coordinates, 12
curvature, 8, 15, 39, 40, 47–49, 54, 76, 88, 109,

123, 126, 130, 131, 137, 140, 154, 155, 157,
159–171, 174–176, 178, 182, 186–192, 206,
209–213, 218–221, 223, 225, 227, 230

General
coordinates, 12, 97, 111, 240
parameter, 7, 9, 13, 31, 56–58, 69, 77, 78, 80,

151, 193
Generalized Kronecker delta, 9
Generator, 90, 131, 132, 194, 203, 208, 219, 225,

227, 230, 231
Genus, 8, 28, 29, 51, 172, 176, 191
Geodesic

component, 10, 71, 143, 146, 149, 184, 185, 205
coordinates, 42, 43, 164, 189, 238
curvature, 10, 71, 143, 144, 149–151, 169, 171,

175, 183–185, 199, 201, 205, 207
curvature vector, 149, 204
curve, 43, 70, 163, 164, 169, 174, 190, 191, 193,

194, 199–208, 214, 216–218
normal vector, 9, 143, 151
polygon, 175, 191
system, 42, 43, 238
torsion, 10, 70–72, 80, 81, 207, 218
triangle, 174, 206

Geometric
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invariant, 175
property, 178

Geometry, 1, 11, 14, 17, 37, 40, 46, 56, 113, 171
Global property, 14, 15, 50, 172
Gradient operation, 96, 239
Great circle, 148, 173, 199–202, 206

Handle, 28, 176
Helicoid, 23, 24, 51, 188, 229, 231
Helix, 17, 18, 23, 52, 66, 78–80, 195–197, 200, 203,

205, 215–217, 230
Hole, 28, 86
Homeomorphic, 176
Homogeneous

coordinate system, 41, 42, 53
linear equations, 156

Hyperbolic
cosine, 22
paraboloid, 21, 22, 27, 40, 50, 86, 147, 165, 180,

188, 189, 222–224, 226, 229, 230
point, 120–122, 139, 146, 177–180, 182, 185,

191, 192, 210, 212–214, 220
Hyperboloid

of one sheet, 19, 20, 50, 132, 154, 155, 187, 222,
224, 227

of two sheets, 20, 21, 50, 132, 222, 224

Icosahedron, 51
Identity

tensor, 99
transformation, 33

Index
lowering, 43, 98
lowering operator, 98
raising, 43, 49, 98
raising operator, 46, 49, 98, 109
shifting operator, 46, 96, 100

Infinite, 33, 42, 142, 181, 195, 201, 215
Infinitesimal, 8, 33, 93, 101, 103, 136, 166, 201
Inflection point, 63, 142, 183, 211
Injective, 55, 58, 78, 83, 88–90, 104, 130, 140, 226
Inner product, 235, 237, 238, 240
Integral calculus, 11
Integration, 73, 81
Interior

angle, 172–175, 191, 206
point, 58, 91, 104

Intrinsic
derivative, 237, 240
distance, 37, 52, 53
equations, 66, 79
geometry, 16, 40, 46, 117, 138, 188

property, 14–16, 37, 46, 47, 50, 67, 90, 102, 110,
111, 113, 114, 129, 133, 136, 144, 150, 151,
160–162, 170, 175, 183, 185, 188, 204, 207

Invariance, 42, 178, 207
Invariant, 33, 37, 53, 66, 70, 88, 90, 102, 109, 117,

146, 153, 154, 160, 162, 169, 175, 178, 191,
192, 205, 233

Inverse
conformal mapping, 88, 133
function, 29
mapping, 29, 66, 88, 89, 91, 133
of matrix, 98, 99

Involute, 7, 90, 133, 194–196, 215, 228
Isometric, 59

mapping, 37, 53, 66, 88–90, 133, 189, 226, 231
surface, 88, 90, 106, 138, 163, 207, 226, 227,

231
transformation, 59, 102, 117, 162, 207

Isometry, 88, 89, 133, 226, 231

Jacobian, 8, 32, 33, 52, 99, 100, 108, 178
matrix, 8, 32, 35

Kissing circle, 73
Klein bottle, 87, 132
Kronecker delta, 9, 43, 96, 134, 135, 233, 238, 240

Lancret
equation, 65, 79
theorem, 78

Laplacian operator, 7, 239, 240
Length, 8, 9, 16, 26, 28, 30, 37, 38, 52, 53, 56, 57, 60,

64, 65, 78, 88, 90, 95, 101, 102, 106, 111,
113, 134–136, 142, 169, 173, 195, 199–202,
226, 229

Limit, 28, 58, 64, 74, 75, 81, 130, 201
Line

element, 8, 38, 41, 42, 64, 65, 101
of curvature, 71, 194, 200, 207–209, 218, 219,

225, 230
Linear

algebra, 36, 109
combination, 62, 64, 85, 92, 93, 98, 126
equations, 156, 157
transformation, 33, 41

Linearly
dependent vectors, 193, 214
independent vectors, 38, 84, 91, 95, 134, 158

Local
isometry, 37, 53, 90, 133, 163, 227, 231
property, 14, 15, 50
shape of surface, 120, 122, 177, 178, 180, 181,

191, 192
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Lorentz transformations, 42

Mapping, 29, 33, 34, 37, 55, 83, 84, 88–91, 106, 129,
130, 133, 140, 196, 216, 226, 227, 231

Matrix notation, 116, 169
Mean curvature, 8, 108, 123, 126, 131, 137, 140,

154, 155, 157, 164, 168, 169, 182, 186, 187,
189–192, 213, 219, 221, 229, 231, 232

Meridians, 17, 50, 172, 200, 208, 218
of longitude, 17, 201

Metric tensor, 7, 8, 13, 15, 37–39, 41, 43–45, 47–49,
53, 60, 62, 76, 88, 89, 93–103, 105, 107,
108, 110–113, 116, 117, 119, 122, 123, 125,
126, 128, 134–140, 145, 147, 149, 150, 158–
160, 162, 163, 167, 181, 185, 188, 192, 204,
208, 225, 230, 233, 235, 237–240

Meusnier theorem, 144, 145, 148, 149, 184, 185
Minimal surface, 130, 169, 209, 221, 228, 229, 231,

232
Minkowski space, 39, 42, 113
Mixed

derivative, 236, 237
tensor, 9, 36, 43, 96, 97, 99, 108, 125, 135, 137,

159, 160, 168, 190, 235, 238, 240
Mobius strip, 14, 15, 87, 132, 223, 230
Monge patch, 86, 100, 102, 104, 109, 113, 117, 127,

131, 132, 135–138, 140, 161, 169, 188, 190,
204, 217, 219

Monkey saddle, 25, 50, 165
Moving

frame, 144, 158, 183
trihedron, 63

Mutually
orthogonal, 34, 38, 53, 78, 124
perpendicular, 50, 60, 62–64

nabla operator, 7, 239, 240
Natural

equations, 66, 79
parameter, 7, 9, 13, 56, 57, 67, 71, 73, 75, 77–

79, 164, 194, 197, 198, 205
parameterization, 56, 57, 67, 77, 142

Navel point, 181
Negative

curvature, 40, 66, 131, 146, 151, 162–165, 174,
180, 189, 190, 206, 210, 218

orthogonal transformation, 33, 52
Non-

asymptotic direction, 148
Cartesian, 27
degenerate, 222
Euclidean space, 82
geodesic coordinates, 42

linear differential equation, 204
negative, 66, 68, 79, 156
orientable surface, 87, 132
periodic, 59
planar curve, 79, 174, 175
polyhedral surface, 27, 51
positive, 163, 187, 210, 223, 230
regular point, 63
straight line, 211
umbilical point, 71, 147, 153, 154, 157, 158,

208, 209, 212, 218
Normal

component, 10, 125, 129, 143, 145, 146, 149,
183, 184, 210

curvature, 10, 117, 143–149, 152–154, 161, 180–
186, 210, 211, 213

indicatrix, 216
line to surface, 85, 86, 132, 225
plane, 64, 78, 79, 143, 198, 231
section, 141, 144, 146, 148, 149, 152–154, 156,

161, 181, 182, 186
vector to surface, 8, 38, 45, 50, 52, 71, 76, 84–

87, 92–94, 96, 111, 114, 117, 120, 122, 124–
127, 129, 130, 132–135, 138, 139, 141, 144,
146, 148, 151, 152, 154, 155, 158, 161, 162,
169, 170, 178, 184, 188, 190, 192, 199, 205,
211, 217

Octahedron, 28
One-side surface, 14
One-to-one, 36, 84, 88, 91, 130
Ordinary

derivative, 60, 233
differential equation, 118

Orientable surface, 27, 28, 51, 87, 132, 141, 175, 176
Oriented

curve, 56, 88
surface, 87, 132, 159

Origin of coordinates, 50, 52, 53, 129, 130, 155, 165,
196, 201–203, 222, 223, 229, 230

Orthogonal, 35, 38, 43, 44, 62, 64, 71, 90, 93–95,
105, 106, 126, 134, 142, 143, 146, 149, 150,
152–154, 156, 157, 164, 184, 194, 205, 209,
211, 213, 219, 229, 232

coordinate curves, 151, 164, 185, 187, 204, 206
coordinate system, 44, 45, 63, 93
trajectory, 59, 194, 208, 225
transformation, 33, 41, 52

Orthonormal, 63, 91, 95, 134, 141, 158, 184, 186
basis vectors, 63, 91, 95

Osculating
circle, 68, 73–75, 81, 142, 148, 184
paraboloid, 181
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plane, 64, 69, 74, 78, 79, 81, 149, 193, 194, 198,
199, 205, 211, 214, 217, 219, 223, 225, 228,
230

sphere, 73, 75, 81, 82
Outer product, 238, 240

Parabolic
cylinder, 21, 23, 50, 147, 180, 223, 225
point, 120–122, 139, 146, 147, 177–180, 185,

191, 192, 210, 212, 230
Parallel, 51, 52, 57, 63, 64, 68, 76, 78, 79, 81, 82, 85,

91, 120, 126, 141, 142, 155, 172, 180, 188,
193, 195, 197, 200, 205, 207, 209, 214–216,
228

propagation, 75, 76, 82, 207
Parallelepiped, 51
Parallelism, 75, 76, 82
Parallelogram, 106
Parallels, 17, 50, 177, 208, 218

of latitude, 17
Parameters plane, 34, 35, 86, 104
Parametric

curve, 35
line, 35

Partial
derivative, 7, 8, 29, 42, 44, 46, 47, 54, 97, 100,

102, 104, 109, 113, 117, 124–127, 135, 139,
140, 161, 163, 169–171, 204, 205, 234, 238

differential equation, 118
Patch, 10, 28, 35, 52, 85, 86, 88, 89, 103, 131, 132,

136, 151, 166, 174, 190, 206, 209, 218
Perimeter, 173
Periodic, 58, 59, 77, 216
Permutation tensor, 9, 48, 62, 63, 94, 106, 107, 166,

167, 208, 233, 238, 240
Perpendicular, 17, 19, 62, 64, 85, 96, 115, 122, 147,

149, 177, 209
Plane

curve, 17, 22, 26, 31, 59, 69, 73, 77–79, 86, 161,
188, 193–196, 208, 214–216

surface, 37, 50, 137, 147, 153, 182, 200–202,
221, 229

Polar coordinates, 10, 34, 78, 136
Pole, 42, 88, 89, 172, 201, 238
Polygon, 27, 29, 173–175, 191
Polygonal

arc, 28, 30, 135
decomposition, 27, 29, 51, 175
plane fragment, 28, 136

Polyhedron, 8, 27, 28, 51
Polynomial equation, 186
Positive

curvature, 40, 131, 146, 151, 162, 164, 165, 174,
180, 189, 210

definite, 32, 37, 52, 53, 98, 113, 117, 138, 146,
157, 160, 178, 180, 182, 213

orthogonal transformation, 33, 52
Principal

curvature, 10, 71, 152–159, 161, 163, 168, 177,
186, 187, 191, 209, 212, 218, 219, 229, 232

direction, 71, 122, 139, 153–158, 186–188, 207–
209, 212, 213, 218, 219, 221

normal line, 63, 64, 78, 86, 195, 196, 215
normal vector, 8, 38, 60, 61, 63, 64, 66, 71, 74,

75, 78, 79, 124, 141, 142, 144, 146, 148,
151, 154, 183, 196, 197, 199, 205, 216

radius of curvature, 8, 154, 186
Product rule of differentiation, 68, 107, 115, 143,

233
Profile curve, 17, 18
Projection, 19, 35, 88, 89, 143, 149, 198
Pseudo-

radius, 10, 26, 162
sphere, 10, 26, 27, 50, 162, 189

Quadratic
equation, 9, 120, 152, 153, 156, 157, 182, 186,

187, 222
surface, 19–21, 156, 222, 229

Quadric cone, 222–224

Radius, 19, 31, 39, 50, 51, 53, 66, 68, 74, 75, 78, 82,
87, 142, 148, 161, 162, 166, 169, 170, 172,
173, 176, 181

of curvature, 9, 66, 68, 74, 75, 80, 142, 183, 198
of torsion, 9, 70, 75, 80, 198

Rank
-0 tensor, 49, 167, 190
-1 tensor, 97, 222, 234
-2 tensor, 48, 97, 106, 222, 235
-4 tensor, 46
of matrix, 35, 36
of tensor, 36, 54, 233

Reciprocal systems, 96
Reciprocity relation, 96
Rectangular, 60, 61

coordinate system, 12, 34, 39, 41, 70, 72, 78,
79, 107, 125, 133, 155, 222, 234, 238

plane sheet, 88
Rectifying plane, 64, 78, 79
Reference frame, 114, 226
Reflection, 33, 80
Reflective, 226
Regular

curve, 37, 58, 65, 76, 77, 84–86, 171, 193, 199
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mapping, 58, 87, 88, 104
point, 36, 38, 52, 58, 60, 84, 91, 113, 124, 134,

171, 174, 193, 206, 211
surface, 35, 52, 58, 77, 83–86, 91, 131, 223

Relative
permutation tensor, 9, 48
torsion, 70

Riccati equation, 73
Ricci curvature

scalar, 8, 49, 54, 168, 188
tensor, 9, 48, 49, 54

Riemann
-Christoffel curvature tensor, 9, 39, 40, 46–49,

54, 66, 88, 109, 110, 137, 159, 160, 166,
167, 170, 188, 221, 227, 237

sphere, 88
Riemannian

curvature, 40, 155, 159, 167
geometry, 40, 53
space, 40, 42, 48, 75, 76, 83, 97, 134, 199

Right handed system, 62–64, 94
Rigid motion transformation, 66, 117, 119, 222
Rodrigues curvature formula, 158, 187, 188, 209
Rotation, 18, 33, 66, 222, 223, 227
Ruled surface, 23, 221, 223, 225, 230
Rules

of differentiation, 233, 234, 236, 237, 239
of transformation, 95, 99, 107

Ruling, 90, 223, 225–228, 230

Scalar, 29, 32, 57, 61, 62, 73, 135, 222, 239, 240
triple product, 71

Schur theorem, 40
Scroll, 223
Secant line, 58, 64, 74
Second

curvature, 64
derivative, 8, 68, 69, 74, 80
fundamental form, 8, 13, 15, 16, 50, 67, 80, 108,

114–120, 123–127, 137–140, 144–147, 152,
156, 157, 159, 160, 164, 168–170, 177, 181,
184, 186, 190, 191, 209, 210, 214, 219, 226,
231

fundamental quadratic form, 114
groundform, 106
order covariant derivative, 236, 237
order differential, 115, 138
order differential equation, 204

Segment, 26, 28, 37, 55, 56, 59, 102, 113, 135, 136,
174, 195, 201–203

Self-conjugate direction, 212, 214
Semi-circular, 172, 201
Semicolon notation, 7

Similarity transformations, 109
Simple surface, 85–87, 132, 199, 221
Simply connected, 37, 76, 86, 132, 171, 174
Sine of angle, 106
Singular point, 36, 52, 91
Smooth, 30, 52, 58, 68, 70, 73, 77, 84, 85, 139, 156,

158, 163, 176, 184–186, 194, 203, 209, 212–
214, 219, 220, 223, 239

Space
basis vector, 8, 12, 13, 60, 234, 238
metric tensor, 8, 13, 94, 97, 99, 112, 138, 235,

238
Span, 64, 84, 132, 143
Sphere, 17, 27, 29, 31, 39, 51–53, 75, 87, 88, 129–

131, 136, 148, 149, 153–155, 161–163, 165,
166, 169, 172, 173, 175–177, 181, 182, 184,
187–189, 192, 196, 198, 199, 201, 202, 206,
209, 217, 218

mapping, 129, 130, 140
Spherical

coordinate system, 135, 136
curvature, 75, 81
curve, 198, 216
image, 130, 140, 163, 209, 216, 219
indicatrix, 7, 10, 129, 196–198, 216
triangle, 172, 173, 190
umbilical, 131, 182, 188

Spherical coordinates, 9
Square, 28
Stereographic mapping, 88, 89, 133
Straight line, 17, 18, 28, 34, 37, 51, 52, 55, 58, 59,

63, 66, 67, 78, 85, 193, 199–207, 211, 213,
214, 216–218, 220, 223, 226, 227

Stretching, 86, 88, 161
Sufficiently

close, 203
differentiable, 30, 33, 104, 188
smooth, 30, 51, 58, 81, 83, 86, 104, 118, 120,

144, 146, 147, 155, 157, 159, 161, 163, 170,
184, 187, 192, 204, 208, 209, 211–214, 218,
225, 227, 234

Sum rule of differentiation, 233
Summation convention, 13, 43, 123, 129
Surface

basis vector, 8, 9, 12, 35, 38, 46, 54, 84, 85, 94–
98, 115, 124, 126, 127, 133–135, 138, 139,
151, 167, 185, 234, 236, 237, 240

coordinate system, 95, 99, 107, 108, 134, 135
coordinates, 9, 12, 13, 31, 33, 35, 36, 38, 56, 57,

85, 86, 91, 94, 97, 98, 100, 102, 104, 109,
111, 113, 116, 117, 120, 124–126, 133, 139,
140, 159, 161–163, 166, 168, 169, 171, 205,
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234, 236, 239, 240
metric tensor, 7, 13, 48, 53, 93, 96–101, 107,

110, 125, 128, 134, 135, 139, 149, 150, 160,
163, 167, 188, 204, 235, 237–240

of revolution, 17, 18, 23, 26, 50, 51, 161, 188,
200, 208, 217, 218, 227, 231

Symbolic notation, 60, 72
Symmetric, 17, 43, 47, 48, 54, 80, 88, 97, 99, 102,

106, 108, 109, 119, 128, 129, 226, 231, 234,
236

Symmetry, 17, 19, 37, 52, 107, 177, 214, 222, 227,
236

System of
coordinates, 8, 12, 16, 17, 32–34, 36, 38, 39,

41–45, 53, 60–63, 66, 67, 78, 79, 81, 83, 91,
94, 95, 97, 99, 100, 107, 108, 112, 113, 125,
133–135, 141, 155, 160, 164, 204, 205, 222,
233, 238

differential equations, 73
linear equations, 156

Tangent
indicatrix, 197, 216
line, 58, 63, 64, 74, 78, 81, 90, 146, 194–196,

214, 215, 223, 227
plane, 36, 83–85, 88, 90, 93, 120, 131–133, 142,

143, 147, 149, 152, 155, 164, 165, 177, 178,
180, 189, 191–193, 205, 211, 219, 223, 225,
228, 230, 231, 234

space, 9, 84, 85, 93, 94, 126, 132, 143, 149, 185,
202, 213

surface, 9, 90, 133, 165, 194, 195, 215, 223, 225,
227, 228, 230, 231

unit vector to curve, 60, 63, 71, 77, 141, 194,
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Triply orthogonal system, 208
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Unit sphere, 53, 88, 89, 129, 130, 196
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speed, 56
tensor, 97
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