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Abstract

This paper presents a comprehensive derivation of a calculator-
friendly expression for computing the power of one complex number
raised to another, specifically z1 = a + bi raised to z2 = c + di. By
leveraging the fundamental properties and formulae intrinsic to com-
plex numbers, we develop an explicit, practical method that can be
implemented on modern scientific and graphical calculators, such as
the Casio FX-991ES or newer models. The derivation emphasizes the
mathematical rigor required to handle the inherent complexities of ex-
ponentiation in the complex plane, while also providing a user-friendly
format that simplifies direct calculation. This work not only bridges
the gap between theoretical mathematics and practical computation
but also offers a valuable tool for students, educators, and profes-
sionals who frequently engage in complex number arithmetic. With
this approach, the need for advanced computational tools like Maple
or Mathematica for complex exponentiation is significantly reduced.
The derived formula is capable of calculating complex exponents with
precision up to six decimal places, closely matching the accuracy of
these sophisticated tools. Thus, it enhances the efficiency of problem-
solving in various mathematical and engineering applications.
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1 Deriving a calculator-friendly

expression for zz21 :

Suppose any two complex numbers say z1 = a+ bi and z2 = c+ di.
Consider another complex number zp = zz21 , then taking ln on both sides

ln zp = ln zz21
∵ lnxy = y lnx

=⇒ ln zp = z2 ln z1 (1)

Now, writing z1 and z2 in polar form,

z1 = r1(cos θ1 + i sin θ1) and

z2 = r2(cos θ2 + i sin θ2)

But by Euler’s formula,
eiθ = cos θ + i sin θ (2)

z1 and z2 are more compactly written as,

z1 = r1e
iθ1 and

z2 = r2e
iθ2

putting these values of z1 and z2 in equation (1) , we get

ln zp = r2 · eiθ2 × ln (r1 · eiθ1)
Taking ln again on both sides,

ln (ln zp) = ln (r2 · eiθ2 × ln (r1 · eiθ1))
∵ lnxy = lnx+ ln y

=⇒ ln (ln zp) = ln (r2 · eiθ2) + ln (ln (r1 · eiθ1))
ln (ln zp) = ln r2 + ln eiθ2 + ln (ln r1 + ln eiθ1)

ln (ln zp) = ln r2 + iθ2 ln e+ ln (ln r1 + iθ1 ln e)

∵ ln e = 1

ln (ln zp) = ln r2 + iθ2 + ln (ln r1 + iθ1)
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Since, natural logarithm of any complex number z = x+ yi is defined as,

ln z = ln r + iθ , where r = |z| =
√

x2 + y2 and θ = arg z = arctan (
y

x
)

Therefore, ln (ln zp) = ln r2 + iθ2 + ln (ln r1 + iθ1) can be written as,

ln (ln zp) = ln r2 + iθ2 + ln {
√

(ln r1)2 + (θ1)2}+ i arctan (
θ1
ln r1

)

Suppose , ϕ = arctan (
θ1
ln r1

) and R =
√

(ln r1)2 + (θ1)2

=⇒ ln (ln zp) = ln r2 + iθ2 + lnR + iϕ

On re-arranging the above equation we get,

ln (ln zp) = (ln r2 + lnR) + i(θ2 + ϕ)

ln (ln zp) = (ln (R · r2)) + i(θ2 + ϕ)

Taking exp() on both sides, the above expression is simplified as,

exp{(ln (ln zp))} = exp{(ln (R · r2)) + i(θ2 + ϕ))}
∵ exp{lnx} = x

=⇒ ln zp = exp{(ln (R · r2)) + i(θ2 + ϕ))}
Since, exp{a+ b} = exp{a} · exp{b}

=⇒ ln zp = exp{ln (R · r2)} × exp{i(ϕ+ θ2)}
ln zp = Rr2 + ei(ϕ+θ2) ∵ [exp(x) = ex]

Using equation (2), it is then simplified to

=⇒ ln zp = Rr2(cos (ϕ+ θ2) + i sin (ϕ+ θ2))

Taking base ’e’ on both sides,we get

∵ elnx = x
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Therefore we get,

zp = e(Rr2){cos (ϕ+θ2)+i sin (ϕ+θ2)}

Which is further simplified as,

zp = eRr2 cos (ϕ+θ2)+iRr2 sin (ϕ+θ2)

∵ [xy+z = xy · xz]

=⇒ zp = eRr2 cos (ϕ+θ2) · ei(Rr2 sin (ϕ+θ2)

Suppose Rp = eRr2 cos (ϕ+θ2) and θp = Rr2 sin (ϕ+ θ2), then the above expres-
sion implies

zp = Rpe
iθp

Using Euler’s Formula i-e equation (2), we get

zp = Rp(cos θp + i sin θp) (3)

Which is our desired expression in polar form, however the following variables
must be taken into account
Later in the document, we call it formula-specific variables.

Rp = eRr2 cos (ϕ+θ2) Magnitude of zp

θp = Rr2 sin (ϕ+ θ2) Co-terminal argument of zp

R =
√

(ln r1)2 + (θ1)2

ϕ = arctan (
θ1
ln r1

)

r1 = |z1|
r2 = |z2|

θ1 = arg z1 (Radians)

θ2 = arg z2 (Radians)

To find the principle argument of zp, you have to bring θp to the interval
[−π, π] by adding 2kπ accordingly, where k ∈ Z.
Thus we have established a formula to compute zz21 easily by using our cal-
culators.
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2 Testing our newly established formula:

2.1 Approximation of ii:

ii is in the form of zz21 therefore z1 = i and z2 = i.
Upon the calculation of values of formula-specific variables, we get

θ1 = θ2 =
π

2
r1 = r2 = 1

R =
π

2

ϕ =
π

2

Rp = e
−π
2

θp = 0

Putting all these values into our derived expression, we get

ii = e
−π
2 (cos 0 + i sin 0) = e

−π
2 (1 + 0i) ∵ cos 0 = 1 , sin 0 = 0

ii = e
−π
2 ≈ 0.207879576

Verification using Wolfram—Alpha:

Figure 1: Figure shows the value of ii
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2.2 Approximation of −5(−8+4i):

Let zp = −5(−8+4i) , z1 = −5 and z2 = −8 + 4i.
The values of formula-specific variables related to our derived expression are
given below:

r1 = 5

r2 − 8.944271908

θ1 = 3.141592654

θ2 = 2.677945045

R = 3.529857618

ϕ = 1.097357208

Rp = 8.927596555× 10−12

θp = −18.69498960

Putting all these in our derived expression, we get

zp = 8.821165223× 10−12 + 1.374417823× 10−12i

Verification using Wolfram—Alpha:

Figure 2: Figure shows the value of (−5)−8+4i
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2.3 Approximation of (5− 2i)2+3i:

Given two complex numbers z1 = 5−2i and z2 = 2+3i. So zp = (5−2i)2+3i.
The values of formula-specific variables related to our derived expression are
given below:

r1 =
√
29 = 5.38516480713450

r2 =
√
13 = 3.60555127546399

θ1 = − arctan

(
2

5

)
= −0.380506377112365

θ2 = arctan

(
3

2

)
= 0.982793723247329

ϕ = −0.222267153631908

R = 1.72610990515791

Rp = 90.81413643

θp = 4.289930990

Putting these in our derived expression, we get:

zp = −37.23412131− 82.83011279i

Verification using Wolfram—Alpha:

Figure 3: Figure shows the value of (5− 2i)2+3i
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2.4 Approximation of 2i:

Given that z = 2, the values of variables related to formula are:

r1 = 2.0

θ1 = 0.0

r2 = 1.0

θ2 =
π

2
R = 0.6931471806

ϕ = 0.0

RP = 0.9999999999

θp = 0.6931471806

Putting above values in our formula, we get

2i = 0.7692389012 + 0.6389612762i

Verification using Wolfram—Alpha:

Figure 4: Figure shows approximation of 2i using Wolfram—Alpha.
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2.5 Approximation of (3− 5i)i:

Given that z = 3− 5i, the values of variables related to our formula are:

r1 =
√
34 ≈ 5.830951895

r2 = 1

θ1 = − arctan

(
5

3

)
≈ −1.030376827

θ2 =
π

2
= 1.570796327

R = 2.042175566

ϕ = −0.5288590608

RP = 2.802121551

θp = 1.763180262

Putting all these values into our derived formula, we get:

(3− 5i)i = −0.5357639329 + 2.7504258210i

Verification using Wolfram—Alpha:

Figure 5: Figure shows approximation of (3− 5i)i using Wolfram—Alpha.
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3 Conclusion:

In this paper, we have successfully derived a practical, calculator-
friendly expression for raising one complex number z1 = a + bi to
the power of another complex number z2 = c + di. By leveraging
well-established mathematical principles specific to complex num-
bers, we have formulated a method that can be implemented di-
rectly on modern scientific and graphical calculators, such as the
Casio FX-991ES and its successors. This approach not only simpli-
fies the complex exponentiation process but also significantly re-
duces reliance on advanced computational software like Maple or
Mathematica. Notably, the derived formula can compute complex
exponents with a precision correct to six decimal places, closely
matching the accuracy of results obtained from these sophisticated
tools. This level of precision ensures that our method is both accu-
rate and practical for use in educational, engineering, and scientific
contexts. Ultimately, this work bridges the gap between theoret-
ical complexity and practical computation, empowering users to
perform sophisticated calculations with ease and precision directly
on calculators. The accuracy and convenience of our method pro-
vide a valuable alternative to traditional computational software,
making advanced complex number arithmetic more accessible to a
broader audience.
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