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Abstract. This paper is a trial to prove Goldbach conjecture according
to the following process.

1. We find that {the total number of ways to divide an even number n into 2

prime numbers} : l(n) diverges to ∞ with n → ∞.
2. We find that 1 ≤ l(n) holds true in 4 ∗ 1018 < n from the probability of

l(n) = 0.

3. Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018.
4. Goldbach conjecture is true from the above item 2 and 3.

1. Introduction

1.1 When an even number n is divided into 2 odd numbers x and y, we can express

the situation as pair (x, y) like the following (1).

n = x+ y = (x, y) (n = 6, 8, 10, 12, · · · · · · x, y : odd number) (1)

n has n/2 pairs like the following (2).

(1, n− 1), (3, n− 3), (5, n− 5), · · · · · · , (n− 5, 5), (n− 3, 3), (n− 1, 1) (2)

We define as follows.

Prime pair : the pair where both x and y are prime numbers

Composite pair : the pair other than the above prime pair

l(n) : the total number of the prime pairs which exist in n/2 pairs shown

by the above (2). (p, q) is regarded as the different pair from (q, p).

(p, q : prime number)

1.2 Goldbach conjecture can be expressed as the following (3) i.e. any even number

(6 ≤)n can be divided into 2 prime numbers.

1 ≤ l(n) (n = 6, 8, 10, 12, · · · · · · ) (3)

Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018. So we can

try to prove Goldbach conjecture in the following condition.

4 ∗ 1018 < n (4)
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2. Investigation of l(n)

2.1 When an even number n is divided into 2 odd numbers x and y, we can find the pair

of π(n), l(n),mxx,mx,my and mxy in n/2 pairs of (x, y) as shown in the following

(Figure 1).

x y

 : prime number  : composite number

l(n)

my=π(n)-l(n)

mx=π(n)-l(n)

mxy

π(n)

mxx=n/2-π(n)

n/2

Figure 1：Various pairs in n/2 pairs of (x, y)

We define as follows.

π(n) : π(n) shows the total number of prime numbers which exist between

1 and n. But we use π(n) in the above (Figure 1) for the total number

of prime numbers which exist in n/2 odd numbers of (1, 3, 5, · · · · · · ,
n− 5, n− 3, n− 1). Strictly speaking, this value must be π(n− 1)− 1.

But we can say π(n− 1)− 1 = π(n)− 1 ≓ π(n)

because n is an even number and a large number as shown in (4).

mxx : the total number of pairs where x is a composite number. 1 is

regarded as a composite number.

mx : the total number of pairs where x and y are composite number and

prime number respectively

2.2 We have the following (5) from Prime number theorem.

π(n)

n
∼ n/ log n

n
=

1

log n
(n → ∞) (5)

We have lim
n→∞

π(n)

n
= 0 from the above (5). Then we have the following (6) from

(Figure 1) and lim
n→∞

π(n)

n
= 0

mxx = n/2− π(n) = (n/2){1− 2π(n)/n} ∼ n/2 (n → ∞) (6)
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When mxx approaches n/2 with n → ∞ as shown in the above (6), mx approaches

π(n) with n → ∞ due to the following reasons.

2.2.1 mx shows the total number of prime numbers which exist in y of mxx as shown

in (Figure 1).

2.2.2 n/2 pieces of y, (1, 3, 5, · · · · · · , n− 5, n− 3, n− 1) have π(n) prime numbers.

Then we can have the following (7) from (Figure 1).

mx = π(n)− l(n) = π(n){1− l(n)/π(n)} ∼ π(n) (n → ∞) (7)

Then we have lim
n→∞

l(n)

π(n)
= 0 from the above (7). We have the following (8) from

the above (6) and (7).

π(n)− l(n)

n/2− π(n)
∼ π(n)

n/2
(n → ∞) (8)

We have the following (9) from the above (8) and Prime number theorem.

l(n) ∼ {π(n)}2

n/2
∼ {n/ log n}2

n/2
=

2n

(log n)2
(n → ∞) (9)

We can find that l(n) has the following property from the above (9).

2.2.3 l(n) repeats increases and decreases with increase of n as shown in the follow-

ing (Graph 1). But overall l(n) is an increasing function regarding n because
2n

(log n)2
is an increasing function regarding n.

2.2.4 l(n) diverges to ∞ with n → ∞ because
2n

(log n)2
diverges to ∞ with n → ∞.

2.3
2n

(log n)2 seems to approximate l(n) sufficiently well as shown in the following

(Graph 1).
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Graph 1：l(n)(blue line)[1] and
2n

(log n)2 (red line) from n = 6 to n = 2, 000
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3. Investigation of zero point of l(n)

3.1 According to Prime number theorem, the probability that randomly selected integer

N is a prime number is 1/ logN as shown in (5). If N is an even number, the

probability that N is a prime number is zero. Then we have the following equation.

Po is the probability that N is a prime number when N is an odd number.

(1/2) ∗ 0 + (1/2) ∗ Po = 1/ logN −→ Po = 2/ logNo

(N : randomly selected integer No : odd number)

Since both k and (n− k) in (k, n− k) are always an odd number, we must consider

the probability that k or (n − k) is a prime number in the world where only odd

numbers exist. Then the probability that (k, n− k) or (n− k, k) is a prime pear is

4/{log k log(n− k)}.
(k = 3, 5, 7, 9, . . . . . . , n/2− 4, n/2− 2, n/2 n/2 : odd number)

(k = 3, 5, 7, 9, . . . . . . , n/2− 5, n/2− 3, n/2− 1 n/2 : even number)

Since (1, n − 1) and (n − 1, 1) are always a composite pair, k does not include 1.

The probability that (k, n− k) or (n− k, k) is a composite pair is

1− 4

log k log(n− k)

Therefore the probability that all of n/2 pairs are a composite pair i.e. {the prob-

ability of l(n) = 0} : a(n) can be expressed as the following (10). Since (1, n − 1)

and (n− 1, 1) are always a composite pair, we don’t have to include them in (10).

Then (10) has (n/2− 2) terms altogether.

{the probability of l(n) = 0} : a(n)

= {1− 4

log 3 log(n− 3)
}2{1− 4

log 5 log(n− 5)
}2{1− 4

log 7 log(n− 7)
}2 . . . . . .

{1− 4

log k log(n− k)
}2 . . . . . . {1− 4

log(n/2 + 4) log(n/2− 4)
}2

{1− 4

log(n/2 + 2) log(n/2− 2)
}2{1− 4

(log n/2)2
} (n/2 : odd number)

= {1− 4

log 3 log(n− 3)
}2{1− 4

log 5 log(n− 5)
}2{1− 4

log 7 log(n− 7)
}2 . . . . . .

{1− 4

log k log(n− k)
}2 . . . . . . {1− 4

log(n/2 + 5) log(n/2− 5)
}2

{1− 4

log(n/2 + 3) log(n/2− 3)
}2{1− 4

log(n/2 + 1) log(n/2− 1)
}2

(n/2 : even number) (10)

3.2 We have the following (12) from the above (10) and the following (11).

0 ≤ 1− 4

log k log(n− k)
= 1− 4

log(n/2 +K) log(n/2−K)
≤ 1− 4

(log n/2)2
(11)

(k = 3, 5, 7, 9, . . . . . . , n/2− 4, n/2− 2, n/2 n/2 : odd number)
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(k = 3, 5, 7, 9, . . . . . . , n/2− 5, n/2− 3, n/2− 1 n/2 : even number)

(K = 0, 2, 4, 6, . . . . . . , n/2− 7, n/2− 5, n/2− 3 n/2 : odd number)

(K = 1, 3, 5, 7, . . . . . . , n/2− 7, n/2− 5, n/2− 3 n/2 : even number)

Please refer to [Appendix 1 : Verification of (11)] for verification of the above (11).

0 ≤ a(n) ≤ A(n)

= {1− 4

(log n/2)2
}n/2−2 = [{1− 1

{(log n/2)/2}2
}{(log n/2)/2}2

](n/2−2)/{(log n/2)/2}2

∼ (
1

e
)(n/2−2)/{(log n/2)/2}2 ≓ 1

e(n/2)/{(log n/2)/2}2 (n → ∞) (12)

We have the following (13) from the above (12).

lim
n→∞

a(n) = 0 (13)

3.3 The following (Graph 2) shows that a(n) decreases with increase of n.
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Graph 2 : a(n) from n = 6 to n = 60

n 6 8 10 12 14 16 18 20 30 60

a(n) 0.75 0.4444 0.217 0.1225 0.07 0.0386 0.0207 0.0117 0.0008 3E-06

Table 1 : the values of a(n)

If we calculate a(n) by (10) in n < 60, a(n) has a negative value or fluctuates wildly

with increase of n. This situation seems to be due to the fact that the smaller n

is, the larger the error[%] in approximating π(n) to n/ log n becomes. Then we
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calculated for the above (Graph 2) using [1 − {π(k)− 1}{π(n− k)− 1}
{(k + 1)/2)}{(n− k + 1)/2}

] instead

of [1− 4

log k log(n− k)
].

From the above (Graph 2) and (13) we can find that a(n) decreases with increase

of n and converges to 0 with n → ∞.

3.4 When l(n0) = 0 holds true we define n0 as {zero point of l(n)}. We defined a(n) as

{the probability of l(n) = 0} in item 3.1. But we can also call a(n) {the probability
of zero point occurrence of l(n)}.
Possible zero point distribution of l(n) is limited to 4 cases which are classified

according to location of zero point as shown in the following (Table 2).

n≦4*1018 4*1018<n

Case 1 ● ● item 3.4.2 NO

Case 2 ● X item 3.4.2 NO

Case 3 X ● item 3.4.1 NO

Case 4 X X nothing YES

● : zero points exist. X : no zero points exist.

Location of zero point Contradiction
with

Can this case exist

as real l(n)  ?

Table 2 : 4 cases of zero point distribution of l(n)

Distribution of zero point of l(n) is affected by the following facts.

3.4.1 a(n) decreases with increase of n and converges to 0 with n → ∞ as shown in

item 3.3. Therefore the larger n is, the smaller the probability of zero point

occurrence of l(n) is.

3.4.2 Zero point of l(n) does not exist in n ≤ 4∗1018 as shown in item 1.2. Goldbach

conjecture can be expressed as l(n) does not have any zero point in 6 ≤ n.

Case 1 and Case 2 cannot exist because they contradict item 3.4.2.

Case 3 cannot exist because it contradicts item 3.4.1 as shown in the following item

3.5.

3.5 From (12) we have the following (14) which shows that a(4 ∗ 1018) is extremely

small. A(n) is defined in (12).

a(4 ∗ 1018) < A(4 ∗ 1018) ≓ 1

e(2∗1018)/{log(2∗1018)/2}2 =
1

e(2∗1018)/444
= e−4.5∗1015

= (e4.5)−1015 = (102.0)−1015 = 10−2.0∗1015 (14)

We can calculate the probability of zero point occurrence of l(n) near n = 6 as

follows.

a(6) = 1− { π(3)− 1

(3 + 1)/2
}2 = 1− (1/2)2 = 0.75 (15)

In Case 3 zero points exist only in 4 ∗ 1018 < n. Case 3 contradicts a(n) as follows.
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3.5.1 The situation where a zero point can exist in a(n) < 10−2.0∗1015 contradicts

the situation where a zero point cannot exist at a(n) = 0.75. Because the

larger a(n) is, the more likely a zero point will appear. In other words, Case 3

shows the situation that is completely opposite to the situation expected from

a(n).

3.5.2 Since 0.75 is extremely larger than the probability of 10−2.0∗1015 that zero

points already exist, a new zero point must exist near n = 6. But in Case 3

no zero points exist in n ≤ 4 ∗ 1018.

By the way Case 2 and Case 4 are consistent with a(n). The following (Figure 2)

shows the contradiction between Case 3 and a(n).

a(n)

4*1018
n

a(n)

6

1E-2*1015 A(n)

A(n)

a(4*1018)

No zero points exist in Case 3. Zero points exist in Case 3.

0

0.75

Figure 2 : the contradiction between Case 3 and a(n)

3.6 Case 4 is consistent with item 3.4.1 and 3.4.2. Because it is reasonable from item

3.4.1 and 3.4.2 that no zero points exist in 4 ∗ 1018 < n. Among 4 cases of zero

point distribution of l(n) shown in (Table 2), only Case 4 can exist. Therefore Case

4 shows the real l(n). We have the following (16) from Case 4 because Case 4 does

not have any zero point in 4 ∗ 1018 < n.

1 ≤ l(n) (4 ∗ 1018 < n) (16)

4. Conclusion

Goldbach conjecture is true from the following item 4.1 and 4.2.

4.1 Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018.

4.2 Goldbach conjecture is true in 4 ∗ 1018 < n from the above (16).
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Appendix 1. : Verification of (11)

We have the following (11) in the text.

0 ≤ 1− 4

log k log(n− k)
= 1− 4

log(n/2 +K) log(n/2−K)
≤ 1− 4

(log n/2)2
(11)

(k = 3, 5, 7, 9, . . . . . . , n/2− 4, n/2− 2, n/2 n/2 : odd number)

(k = 3, 5, 7, 9, . . . . . . , n/2− 5, n/2− 3, n/2− 1 n/2 : even number)

(K = 0, 2, 4, 6, . . . . . . , n/2− 7, n/2− 5, n/2− 3 n/2 : odd number)

(K = 1, 3, 5, 7, . . . . . . , n/2− 7, n/2− 5, n/2− 3 n/2 : even number)

In order for the above (11) to hold true, it is sufficient for the following (17) to hold true.

log(n/2 +K) log(n/2−K) ≤ (log n/2)2 (17)

Here we define the following (18) as shown in the following (Figure 3).

log n/2 = A log(n/2−K) = A−B log(n/2 +K) = A+ C (18)

log x

x
n/2+K0

log x

n/2-K n/2

A

A-B

A+C
C

B

K K

Figure 3 : Relationship among A,B, C and K

Since log x is a monotonically increasing and districtly concave function regarding x,

the following (19) holds true.

0 < C < B (1 ≤ K) 0 = C = B (K = 0) (19)

The above (17) holds true from the following (20). ≥ is satisfied by the above (19).

(log n/2)2 − log(n/2 +K) log(n/2−K)

= A2 − (A+ C)(A−B) = A(B − C) +BC ≥ 0 (20)
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