Proof of Goldbach conjecture

By Toshihiko ISHIWATA

Dec. 30, 2024

Abstract. This paper is a trial to prove Goldbach conjecture according
to the following process.
1. We find that {the total number of ways to divide an even number n into 2
prime numbers} : [(n) diverges to co with n — co.
2. We find that 1 < I(n) holds true in 4 * 10'® < n from the probability of
I(n) =0.
3. Goldbach conjecture is already confirmed to be true up to n = 4 1018,
4. Goldbach conjecture is true from the above item 2 and 3.

1. Introduction

1.1 When an even number n is divided into 2 odd numbers = and y, we can express
the situation as pair (z,y) like the following (1).

n=z+y=(z,y) (n=6,8,10,12,------ x,y : odd number) (1)
n has n/2 pairs like the following (2).
(177171)7(37”*3)7(53”75)3 """ ,(7175,5),(11—3,3),(7171,1) (2)

We define as follows.
Prime pair : the pair where both = and y are prime numbers
Composite pair : the pair other than the above prime pair
I(n) : the total number of the prime pairs which exist in n/2 pairs shown
by the above (2). (p, q) is regarded as the different pair from (g, p).
(p,q : prime number)

1.2 Goldbach conjecture can be expressed as the following (3) i.e. any even number
(6 <)n can be divided into 2 prime numbers.

1<li(n) (n=6,8,10,12,------ ) (3)

Goldbach conjecture is already confirmed to be true up to n = 4 * 10'8. So we can
try to prove Goldbach conjecture in the following condition.

4%10" < n (4)
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2. Investigation of I(n)

2.1 When an even number n is divided into 2 odd numbers x and y, we can find the pair
of w(n),l(n), Mgz, My, my and mg, in n/2 pairs of (x,y) as shown in the following
(Figure 1).

X Y
w I(n)
(n)
m,=n(n)-l(n)
” m=(n)-I(n)
m,.=n/2-7t(n)

xy

|:| : prime number |:| : composite number

Figure 1 : Various pairs in n/2 pairs of (z,y)

We define as follows.

m(n) : m(n) shows the total number of prime numbers which exist between
1 and n. But we use 7(n) in the above (Figure 1) for the total number
of prime numbers which exist in n/2 odd numbers of (1, 3, 5, -+ -- ,
n—5,n—3,n — 1). Strictly speaking, this value must be 7(n — 1) — 1.
But we can say an—1)—1=mn(n)—1=7(n)
because n is an even number and a large number as shown in (4).

My : the total number of pairs where x is a composite number. 1 is
regarded as a composite number.

my : the total number of pairs where x and y are composite number and
prime number respectively

2.2 We have the following (5) from Prime number theorem.

7(n) n/logn 1

We have lim ) = 0 from the above (5). Then we have the following (6) from
n—oo 1
(Figure 1) and lim m(n) =0

n—oo M

My =n/2 —7(n) = (n/2){1 —27(n)/n} ~ n/2 (n—o00) (6)
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When m,, approaches n/2 with n — oo as shown in the above (6), m, approaches
m(n) with n — oo due to the following reasons.

2.2.1 m, shows the total number of prime numbers which exist in y of m,, as shown
in (Figure 1).
2.2.2 n/2 pieces of y, (1, 3,5, -+ -+ ,n—>5n—3,n—1) have m(n) prime numbers.

Then we can have the following (7) from (Figure 1).

my = 7(n) —Il(n) =w(n){1 = Il(n)/m(n)} ~  =(n) (n—o0) (7)
. l(n) .
Then we have lim ——= = 0 from the above (7). We have the following (8) from
n—oom(n

the above (6) and (7).

wn) ) o«

n/2 —x(n) n/2 (n = o0) ®)

(
We have the following (9) from the above (8) and Prime number theorem.
)

In) ~ {r(m)}* {n/logn}*  2n
S n/2 n/2 (log )2

(n—=o00) (9)

We can find that I(n) has the following property from the above (9).

2.2.3 I(n) repeats increases and decreases with increase of n as shown in the follow-
1ng (Graph 1). But overall [(n) is an increasing function regarding n because

is an increasing function regarding n.
(log n)?

2.2.4 l(n) diverges to oo with n — oo because diverges to co with n — oo.

2n
(logn)?
(loz—nn)Q seems to approximate [(n) sufficiently well as shown in the following
(Graph 1).

2.3

L

Graph 1 : I(n)(blue line)[1] and (2—n)2(red line) from 1 = 6 to n = 2,000

logn



T. ISHIWATA

3. Investigation of zero point of I(n)

3.1 According to Prime number theorem, the probability that randomly selected integer
N is a prime number is 1/log N as shown in (5). If N is an even number, the
probability that N is a prime number is zero. Then we have the following equation.
P, is the probability that N is a prime number when N is an odd number.

(1/2) « 0+ (1/2)* P, =1/log N — P,=2/logN,
(N : randomly selected integer N, : odd number)

Since both k and (n —k) in (k,n — k) are always an odd number, we must consider
the probability that k or (n — k) is a prime number in the world where only odd
numbers exist. Then the probability that (k,n — k) or (n — k, k) is a prime pear is
4/{log klog(n — k)}.

(k=3,5,7,9,...... ,n/2—4,n/2—2n/2 n/2 : odd number)
(k=3,5,7,9,...... ,n/2—=5n/2—-3,n/2-1 n/2 : even number)

Since (1,n — 1) and (n — 1,1) are always a composite pair, k does not include 1.
The probability that (k,n — k) or (n — k, k) is a composite pair is

4
1 — =
log klog(n — k)

Therefore the probability that all of n/2 pairs are a composite pair i.e. {the prob-
ability of I(n) = 0} : a(n) can be expressed as the following (10). Since (1,n — 1)
and (n — 1,1) are always a composite pair, we don’t have to include them in (10).
Then (10) has (n/2 — 2) terms altogether.

{the probability of I(n) = 0} : a(n)

4 4 4

== log 3log(n — 3) - log 5log(n — 5) - log 7log(n — 7) o
- e P {1 - 5
logklog(n — k)" =~ log(n/2 + 4) log(n/2 — 4)
4 ) 4 .
0= gtz D oem2 =2 '~ (ognjaz!  (n/2:oddnumber)
4 4 4
={1- log 3log(n — 3) P - log 5 log(n — 5) P - log 7log(n — 7) P
- e P {1 - 5
logklog(n — k)" =~ log(n/2 + 5)log(n/2 — 5)
- X - i 5
log(n/2 + 3)log(n/2 — 3) log(n/2 + 1)log(n/2 — 1)
(n/2 : even number) (10)
3.2 We have the following (12) from the above (10) and the following (11).
0<1-— 4 _q_ 4 <1-—4
- log klog(n — k) log(n/2 + K)log(n/2 — K) — (logn/2)?

(k=3,5,7,9,...... n/2—4,n/2—2,n/2 n/2 : odd number)
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(k=3,5,7,9,...... ,n/2—5n/2—-3 n/2—-1 n/2 : even number)
(K =0,2,4,6,...... ,n/2—7n/2—-5n/2-3 n/2 : odd number)
(K=1,3,5,7,...... ,n/2—7,n/2—-5n/2—-3 n/2 : even number)

Please refer to [Appendix 1 : Verification of (11)] for verification of the above (11).

0 <a(n) < A(n)

—{1- ﬁ}n/w . W}{aogn/2>/2}2]<n/2—2>/{aogn/2>/2}2
ogn/2 ogn/2)/2
1 2 1
~ = \(n/2-2)/{(logn/2)/2}" _
() = e v (1Y)
We have the following (13) from the above (12).
lim a(n) =0 (13)

n—oo

3.3 The following (Graph 2) shows that a(n) decreases with increase of n.

0.8
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Graph 2 : a(n) from n =6 to n = 60

n 6 8 10 12 14 16 18 20 30 60
a(n) 0.75| 0.4444{ 0.217| 0.1225| 0.07( 0.0386| 0.0207( 0.0117| 0.0008| 3E-06

Table 1 : the values of a(n)

If we calculate a(n) by (10) in n < 60, a(n) has a negative value or fluctuates wildly
with increase of n. This situation seems to be due to the fact that the smaller n
is, the larger the error[%] in approximating 7(n) to n/logn becomes. Then we
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{m(k) =1} {m(n — k) — 1}
{(k+1D/2)H{(n -k +1)/2}

calculated for the above (Graph 2) using [1 — ] instead

4
T orkloetm = 1)
log klog(n — k)
From the above (Graph 2) and (13) we can find that a(n) decreases with increase
of n and converges to 0 with n — oo.

of [1

When [(ng) = 0 holds true we define ng as {zero point of I[(n)}. We defined a(n) as
{the probability of I(n) = 0} in item 3.1. But we can also call a(n) {the probability
of zero point occurrence of I(n)}.

Possible zero point distribution of I(n) is limited to 4 cases which are classified
according to location of zero point as shown in the following (Table 2).

Location of zero point | contradiction | Can this case exist
n=4*1018 | 4*108<, with asreal i(n) ?
Case 1 (] [ J item 3.4.2 NO
Case 2 ([ X item 3.4.2 NO
Case 3 X ([ J item 3.4.1 NO
Case 4 X X nothing YES
@ : zero points exist. X : no zero points exist.

Table 2 : 4 cases of zero point distribution of I(n)

Distribution of zero point of I(n) is affected by the following facts.

3.4.1 a(n) decreases with increase of n and converges to 0 with n — oo as shown in
item 3.3. Therefore the larger n is, the smaller the probability of zero point
occurrence of {(n) is.

3.4.2 Zero point of [(n) does not exist in n < 4108 as shown in item 1.2. Goldbach
conjecture can be expressed as [(n) does not have any zero point in 6 < n.

Case 1 and Case 2 cannot exist because they contradict item 3.4.2.
Case 3 cannot exist because it contradicts item 3.4.1 as shown in the following item
3.5.

From (12) we have the following (14) which shows that a(4 * 10'8) is extremely
small. A(n) is defined in (12).

1 1 15
18 18\ _. _ __—4.5%10
a(4%107) < A(4%107°) = o(2+101) /{log(3+1078)/2}2 — (2+101%)/44d _ ©

_ (64.5)—1015 _ (102.0)—1015 — 10—2:0%10" (14)

We can calculate the probability of zero point occurrence of I(n) near n = 6 as
follows.

m(3) -1

m}z =1-(1/2)>=0.75 (15)

a(6) =1—{

In Case 3 zero points exist only in 4 10'8 < n. Case 3 contradicts a(n) as follows.
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3.5.1 The situation where a zero point can exist in a(n) < 10720<10" contradicts
the situation where a zero point cannot exist at a(n) = 0.75. Because the
larger a(n) is, the more likely a zero point will appear. In other words, Case 3
shows the situation that is completely opposite to the situation expected from

a(n).

3.5.2 Since 0.75 is extremely larger than the probability of 10~2:9%10" that zero
points already exist, a new zero point must exist near n = 6. But in Case 3
no zero points exist in n < 4 % 10'8.

By the way Case 2 and Case 4 are consistent with a(n). The following (Figure 2)
shows the contradiction between Case 3 and a(n).

a(n)
A(n)

0.75

1E-2*10"
a(4*10')

a(n)

No zero points exist in Case 3.

Am)

Zero points exist in Case 3.

6

4*10"8

Figure 2 : the contradiction between Case 3 and a(n)

n

3.6 Case 4 is consistent with item 3.4.1 and 3.4.2. Because it is reasonable from item
3.4.1 and 3.4.2 that no zero points exist in 4 * 10'® < n. Among 4 cases of zero
point distribution of (n) shown in (Table 2), only Case 4 can exist. Therefore Case
4 shows the real I(n). We have the following (16) from Case 4 because Case 4 does

not have any zero point in 4 * 108 < n.

4. Conclusion

1 <l1(n)

(4% 10'® < n)

Goldbach conjecture is true from the following item 4.1 and 4.2.

4.1 Goldbach conjecture is already confirmed to be true up to n = 4 % 10'8.

4.2 Goldbach conjecture is true in 4 x 1018 < n from the above (16).

(16)
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Appendix 1. : Verification of (11)

We have the following (11) in the text.

4 4 4
0<1- log klog(n — k) =1- log(n/2 + K)log(n/2 — K) 1= (logn/2)? (11)
(k=3,5,7,9,...... n/2—4,n/2—2,n/2 n/2 : odd number)
(k=3,5,7,9,...... ,n/2—=5mn/2—-3,n/2—-1 n/2 : even number)
(K =0,2,4,6,...... ,n/2—T7n/2—-5mn/2—3 n/2 : odd number)
(K =1,3,5,7,...... ,n/2—7n/2—-5n/2—3 n/2 : even number)

In order for the above (11) to hold true, it is sufficient for the following (17) to hold true.
log(n/2 4+ K)log(n/2 — K) < (logn/2)* (17)

Here we define the following (18) as shown in the following (Figure 3).

logn/2=A log(n/2—K)=A—-B log(n/24+ K)=A+C  (18)
log x
A+C
C
A
B
log x
A-B
K K
x
0 n/2-K n/2 n/2+K

Figure 3 : Relationship among A, B, C and K

Since log x is a monotonically increasing and districtly concave function regarding z,
the following (19) holds true.

0<C<B (1<K) 0=C=B (K=0) (19)
The above (17) holds true from the following (20). > is satisfied by the above (19).

(logn/2)* —log(n/2 + K)log(n/2 — K)
=A? - (A+C)A-B)=AB-C)+BC >0 (20)
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