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Abstract

Prior to revisiting cubic equation, we treat quadratic equation. Included herein are reviews
on it, a root-finding algorithm, which is compared with the Newton’s method, a tidbit about
the Euler–Mascheroni constant, and so on.

1 Glossary
a ∈ A: a is a member of the set A .

A := B : A is defined as B.

AB: line segment AB .

ALGOL: Algorithmic Language .

C: the set of complex numbers .

CE: cubic equation .

CF: cubic function .

CI: constant of integration .

CP: characteristic polynomial .

CP: complex projective space .

CQP: complex quadratic polynomial .

D: discriminant .

DE: differential equation .

det or | · |: determinant of a matrix .

ECL: Embeddable Common Lisp .

EMC: Euler–Mascheroni constant .

env: envelope .

FS: Fibonacci sequence .

GIMP: GNU Image Manipulation Program .
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GR or φ: the golden ratio .

Hess: Hessian .

ı: imaginary unit .

IF: inverse function .

iff: if and only if .

In: n× n identity matrix .

IP: inflection point .

LHS: left-hand side .

LMA: local maximum .

LMI: local minimum .

MR: multiple root .

MT: Möbius transformation .

NM: Newton’s method .

O: the origin (0, 0) or (0, 0, 0) .

On: n× n null matrix .

QE: quadratic equation .

QED: quod erat demonstrandum .

QF: quadratic formula .

Qf: quadratic function .

QuE: quartic equation .

R: the set of real numbers .

RHS: right-hand side .

Rn: Euclidean space of dimension n .

SBCL: Steel Bank Common Lisp .

sl(n, R): Lie algebra of special linear group of degree n over R .

SM: symmetric matrix .

SVG: scalable vector graphics .

TL: tangent line .

TM: traceless matrix .

TP: tangent plane .

tr: trace .

TT: Tschirnhaus transformation .

UQF: univariated quadratic function .

VF: Vieta’s formulas .

Wron: Wronskian .
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wrt: with respect to .

Z: the set of integers .

†: conjugate transpose of a matrix .

⇐⇒ : if and only if .

=⇒ : implies .

⊕: direct sum of matrices .

2 Introduction or QE as a propaedeutic to CE
Solving CE has been of some interest [1 − 3]. Operations such as addition, subtraction, multipli-
cation, and so forth are employed for that purpose [4]. In this ‘part 1’, we review QE, which we
regard as a propaedeutic to revisiting CE 1, and emphasise the role of recurrence related to QE. We
twiddle with the following for a while.

ax2 + bx+ c = 0 , a, b, c ∈ R , a ̸= 0. (1)

3 By the way, what does solving QE mean?
We believe this is a ‘deep’ question that is worthy of tackling from a historical point of view. That
said, unfortunately, what we can do for the moment seems making a ‘not-so-deep’ answer. To be
specific, we barely remember an analogy helpful for solving second order DE’s , which essentially
identifies (1) with the DE ax′′(t) + bx′(t) + cx(t) = 0, where the character ′ stands for differen-
tiation wrt t. Thereby, we learn that solving QE plays some role in getting solutions of such DE.
This is our ‘not-so-deep’ answer at hand. Actually, since we have resorted to a certain kind of
analogical reasoning, it is almost clear that we have failed to answer the question categorically. We
thus think we have to literally detour, surveying QE. In other words, we are going to ‘meander’
around QE from various viewpoints in what follows.

3.1 QE in terms of CP

At the outset, CP of a 2× 2 matrix A =

 a b
c d

 is

t2 − (a+ d)t+ ad− bc .

Equating this with 0, one gets a QE wrt t. So we have shown that QE has something to do with
CP. Next, as a special case of A, we consider the matrix

1
Since QE and CE do seem fairly common materials, we don’t rule out the possibility that things described herein
have already been mentioned or studied elsewhere (at least partially), while we are unaware.

3

https://en.wikipedia.org/wiki/List_of_mathematical_abbreviations#W
https://www.symbols.com/symbol/integers
https://en.wikipedia.org/wiki/Conjugate_transpose
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/List_of_logic_symbols#Basic_logic_symbols
https://en.wikipedia.org/wiki/Matrix_addition#Direct_sum
https://en.wikipedia.org/wiki/Algebraic_equation#Quadratic_equations
https://en.wikipedia.org/wiki/Characteristic_equation_(calculus)#Derivation
https://www.cuemath.com/calculus/second-order-differential-equation/
https://en.wikipedia.org/wiki/Characteristic_polynomial#Properties


B =

 a b
c −a

.

2 , 3

Remark 3.1.1. tr(B) = 0; we refer to such a property as ‘ traceless ness ’.

Remark 3.1.2. CP of B is given by B(t) = t2 − a2 − bc.

Incidentally, dividing the LHS of (1) by a 4 , we get the monic polynomial x2+ b
a
x+ c

a
. If we

subject it to TT, it becomes

x2 + d 5 . (2)

Since (2) is similar to B(t) in that it is also the sum of the square of some variable and constant,
we have shown the relevance of TT to ‘tracelessness’, for that matter.

3.2 QE in terms of D
We a priori consider

(
√
ax− t)2 + y − ax2 − bx− c = 0, a, b, c ∈ R.

We expand its LHS to get

t2 − 2
√
axt+ y − bx− c = 0. (3)

Regarding (3) as a QE wrt t, one computes to get D = (−2
√
ax)2−4 ·1 ·(y−bx−c) = 4(ax2+bx

+c− y) 6 . By the way, it is known that D of a polynomial is 0 iff the polynomial has an MR . So
taking this opportunity, we should like to prove the following.

Claim 3.2.1. QE has an MR⇐⇒D of QE equals 0.

Proof.

=⇒ : Since QE under consideration has an MR, letting A denote the MR, we can write it as
a(x−A)2 = 0, where a ̸= 0. We expand the LHS of this equation to get ax2 − 2aAx+ aA2 = 0.
Then, D of this equation is (−2aA)2 − 4 · a · aA2 = 0.

2
By the way, the special linear Lie algebra of order n over a field F, or sl(n, F), consists of all n× n TM’s [5].

3
B is involutory, if a2 + bc = 1.

4
This division is possible, because a ̸= 0.

5See Appendix 12.1 for computational details.
6See Appendix 12.2 for an alternative.
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: After some computation, the LHS of (1) becomes a(x+ b
2a
)2 + 4ac−b2

4a
. Since D= b2 − 4ac ,

which amounts to 0, (1) eventually becomes a(x+ b
2a
)2 = 0, whose MR is − b

2a
7 . QED 8 .

=⇒

As mentioned earlier, D of (3) is 4(ax2 + bx+ c− y), which we equate with 0 to get the UQF

y = ax2 + bx+ c. (4)

The RHS of (4) is equal to the LHS of (1). In this way, QE can be related to D 9 .

By the way, since D of (1) is b2 − 4ac , we should like to raise a question about the relation

b2 = 4ac. (5)

Question 3.2.2. What does (5) mean at all?

This question looks as ‘deep’ as that raised in the beginning of this section. So we ‘meander’
again, mentioning a few viewpoints.

3.2.1 Deriving (5) from 2× 2 matrices

We try to derive (5) from a few 2× 2 matrices.

Example 3.2.1.1. We consider the following SM:

C =

2a b
b 2c

 .

Since detC equals 4ac− b2, one gets (5) by setting detC = 0 10 .

Remark 3.2.1.2. C/2 amounts to
 a b/2

b/2 c

 11 , which reminds us of ‘twos out’ .

Example 3.2.1.3. We consider the following TM:

E 12 =

 b −2a
2c −b

 .

detE = −b2 + 4ac, which we set to be 0 to get (5).

Remark 3.2.1.4. If one rewrites E as F =

 a b
c −a

, keeping the ‘tracelessness’ of E intact,

one might be able to recall sl(2, R) more easily.

7Cf. here .
8As stated in footnote 1, we don’t rule out the possibility that this proof is fairly common.
9Actually, there is another way to do this. Cf. footnote 6.

10In a sense, we have ‘ singular -ised’ C.
11Cf. here .
12Here we use ‘E’ instead of ‘D’ to avoid possible confusion with discriminant. See Glossary.
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3.2.2 Algorithmic derivation of (5)

Let us think somewhat algorithmically:

Step 1: Differentiation. We differentiate both sides of (1) wrt x to get

2ax+ b = 0. (6)

Step 2: Solution. Solving (6) for x yields

x = − b

2a
. (7)

Step 3: Getting the relation under consideration. We eliminate x between (1) and (7) and
compute as follows.

a · (− b
2a
)2 + b · (− b

2a
) + c = 0.

↓ Multiply both sides of the above by 4a.

b2 − 2b2 + 4ac = 0.

↓

b2 = 4ac.

Hence, we get (5).

3.2.3 Deriving (5) from Hess

We consider

h(x, y) =
x3

6
+

y3

6
+ bxy, b ∈ R. (8)

Hess of (8) is

H 13 =

 x b
b y

.

Since detH = xy − b2, substituting e.g., 2a and 2c into x and y, respectively, yields 4ac− b2,

which equals detC.

Remark 3.2.3.1. Also thinkable are (x, y) = (a, 4c), (4a, c), etc.

13We have skipped ‘G’, which will be later used to denote a group. See 10.
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3.2.4 Deriving (5) from Wron

Let j1(x) = ax2 + bx+ c, j2(x) = dx+ e, where a, b, c, d, e ∈ R and a, d ̸= 0. Then, let us con-

sider the matrix J 14 =

 j1(x) j2(x)
j ′
1(x) j ′

2(x)

, where the character ′ stands for differentiation wrt x.

So Wron of j1(x) and j2(x), or Wron(j1(x), j2(x)), is

det J = det

 ax2 + bx+ c dx+ e
2ax+ b d

 = (ax2 + bx+ c)d− (dx+ e)(2ax+ b)

= −adx2 − 2aex− be+ cd. (9)

Since a, d ̸= 0, −ad ̸= 0. So setting det J = 0 gives a QE, and letting (9) amount to the LHS of
(1), we get 

−ad = a, (10)

−2ae = b, (11)

−be+ cd = c. (12)

It follows from (10) that a(d + 1) = 0. Since again, a ̸= 0, we have d = −1, which we substitute
into the LHS of (12) to get −be+ c · (−1) = c. That is,

be = −2c. (13)

Since once again, a ̸= 0, we can divide both sides of (11) by −2a to get e = − b
2a

. Eliminating e

between this and (13) yields b · (− b
2a
) = −2c. One thus gets b2 − 4ac = 0, i.e., (5).

3.2.5 (5) as a necessary and sufficient condition

We consider the equation

ax2 + bxy + cy2 = 1, a, b, c ∈ R, a > 0, c > 0 (14)

and prove the following.

Claim 3.2.5.1. b2 = 4ac holds in (14) ⇐⇒ (14) is the equation of two parallel lines.

Proof. Regarding (14) as a QE wrt y and applying QF to it, one gets

y =
−bx±

√
(b2 − 4ac)x2 + 4c

2c
. (15)

=⇒ : Substituting b2 = 4ac into the RHS of (15), one gets y = − bx
2c
± 1√

c
15 , which are geomet-

rically two parallel lines.

: Since (14) is the equation of two parallel lines, we consider=⇒

14We use ‘J ’ instead of ‘I ’ to avoid possible confusion with In. See Glossary.
15Since c > 0, this equation makes sense. See (14).
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{
αx+ βy + γ = 0,

αδx+ βδy + ϵ = 0,

where α, β, γ, δ, ϵ ∈ R, γδ ̸= ϵ 16 , and their union

(αx+ βy + γ)(αδx+ βδy + ϵ) = 0. (16)

Expanding the LHS of (16) yields α2δx2+2αβδxy+β2δy2+α(ϵ+ γδ)x+β(ϵ+ γδ)y+ γϵ = 0,
which we equate with (14) to get 

a = α2δ, (17)

b = 2αβδ, (18)

c = β2δ, (19)

0 = α(γδ + ϵ), (20)

0 = β(γδ + ϵ), (21)

−1 = γϵ. (22)

Ignoring (20) − (22) and looking at the RHS’s of (17) − (19), one gets the relation (2αβδ)2 =
4 · (α2δ) · (β2δ). Now paying attention to their LHS’s, one gets the relation b2 = 4ac, or (5),
as desired. QED 17 . Now that Claim 3.2.5.1 has been proven, we have shown that (5) can be a
necessary and sufficient condition.

3.3 QE in terms of det

We observe that the LHS of (1) equals
∣∣∣∣ √

ax
√
−bx− c√

−bx− c
√
ax

∣∣∣∣ , other possibilities being

∣∣∣∣ √
ax −

√
−bx− c

−
√
−bx− c

√
ax

∣∣∣∣ ,
∣∣∣∣ −

√
ax

√
−bx− c√

−bx− c −
√
ax

∣∣∣∣ , and so forth. So we can say these det’s

are related to QE. Or more simply, we can consider x2 − g 18 , which amounts to e.g.,
∣∣∣∣ x √

g√
g x

∣∣∣∣ ,∣∣∣∣ x −√g
−√g x

∣∣∣∣ , and so on. These remind us of real SM’s. However, we can also consider the matrix

K =

 −x
√
g√

g −x

, (23)

16This condition precludes the occurrence of e.g., the lines x+ 2y + 3 = 0 and 2x+ 4y + 6 = 2(x+ 2y + 3)
= 0, which are essentially the same. Cf. here .

17Like the proof of Claim 3.2.1, this proof might be fairly common. Cf. footnote 1.
18This is a kind of depressed polynomial .
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detK being x2 − g. And what if g < 0 and one puts x = kı, k ∈ R, in (23)? In this case, K can
be rewritten as

L =

 −kı
√
−ℓ√

−ℓ −kı

 =

 −kı
√
ℓı√

ℓı −kı

,

where ℓ > 0. This heralds C 19 , and since L† = −L, L is a skew-Hermitian matrix .

3.4 QE in terms of env

Putting y = 0 in (3), one gets

t2 − 2
√
axt− bx− c = 0. (24)

The equation of env of (24) is (−2
√
ax)2 − 4(−bx− c) = 0 , that is, 4ax2 + 4bx+ 4c = 0. This

is essentially the same as ax2 + bx + c = 0, (1). So (1) is found to virtually match such env, and
we can say QE has something to do with env.

Taking this opportunity, we make env-based classification of the UQF y = ax2 + bx + c as
shown below.

f

C2
C3

(a) (b) (c)

Fig. 1. env-classification of UQF. (a) Circles whose env’s are the lines x = d and x =

e 20 . These lines are related to C1: y = a(x− d)(x− e) 21 , 22. As t changes, the family of
circles Ct : (x− d+e

2
)2 + (y − t)2 = ( e−d

2
)2 moves vertically along env’s. (b) As d gets closer

to e (or vice versa), the circles in (a) shrink to form dots. And two env’s fuse to become the
line x = f . We relate this to C2: y = a(x− f)2 23 . (c) No env exists; this is related to C3
that is devoid of real roots.

19Actually, we will encounter C. See e.g., (32).
20Diameter of each circle is e− d.
21Here we implicitly assume that a, d, e ∈ R.
22This is the factored form .
23This is the vertex form .
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Remark 3.4.1. Since a ̸= 0 24 , we are able to rewrite D = b2 − 4ac as a2{( b
a
)2 − 4 · c

a
}. Let

α and β be the roots of (1). Then, it follows from VF that α + β = − b
a

and αβ = c
a
. So we get

D = a2[{−(α + β)}2 − 4αβ] = a2(α − β)2. Now regarding α and β as d and e in Fig. 1(a),
respectively, we realise that Fig.’s 1(a), 1(b), and 1(c) each correspond to the cases D > 0, D = 0,
and D < 0.

Example 3.4.2. We compute env of the unit circle whose centre moves on the line y = x. The
line being parametrized as (x, y) = (u, u), u ∈ R, we consider the family of circles

Cu : (x− u)2 + (y − u)2 = 1, (25)

which is regarded as a QE wrt u. After some expansion and rearrangement, (25) becomes

2u2 − 2(x+ y)u+ x2 + y2 − 1 = 0. (26)
D
4

25 of (26) amounts to

(x+ y)2 − 2(x2 + y2 − 1) = −(x− y)2 + 2. (27)

Setting the RHS of (27) to be 0, we get the env y = x±
√
2.

3.5 QE in terms of Hess

We consider

m(x, y) =
ax4

12
+

bx3

6
+

cx2

2
+ dx+ e+

y2

2
, a, b, c, d, e ∈ R. (28)

Hess of (28) is

M =

 ax2 + bx+ c 0
0 1

.

Computing detM , one gets the LHS of (1). So we can say QE has something to do with Hess.

3.6 QE in terms of IF
Let us divide both sides of (1) by a 26 . We then get

x2 + γx+ δ = 0, where γ =
b

a
, δ =

c

a
. (29)

(29) is rewritten as −γx = x2 + δ 27 . Swapping x in its LHS with y yields

−γy = x2 + δ. (30)
24See (1).
25On the other hand, we set D = 0 in env-computation of (24).
26Cf. footnote 4.
27The RHS of this equation is a kind of depressed polynomial. Cf. footnote 18.
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The IF of (30) is obtained by swapping x in its RHS with y in its LHS. That is, one considers

−γx = y2 + δ. (31)

Trying to solve the system composed of (30) and (31), we subtract (31) from (30) to get γ(x−y) =
x2 − y2, which we rearrange and factor as (x − y)(x + y − γ) = 0. We thus get y = x and
y = −x + γ. Here we notice that by substituting the former into (31), one can let it ‘revert’ to
(29), a QE wrt x. Hence, we have shown some relationship between IF and QE.

Example 3.6.1. Putting γ = −1 and δ = 1 in (30) and (31), we consider the following system
of equations. {

y = x2 + 1,
x = y2 + 1.

We get the QE x2 − x+ 1 = 0 by replacing y by x in each equation.

3.7 QE in terms of MT
Consider an MT

f(z) =
az + b

cz + d
, z ∈ C, ad− bc ̸= 0, (32)

and its fixed points . Then, it follows from (32) that az+b
cz+d

= z. That is, we consider

cz2 + (d− a)z − b = 0. (33)

If c = 0, (33) becomes (d − a)z − b = 0, a linear equation wrt z 28 , which is not a QE. So we
assume c ̸= 0 to regard (33) as a QE wrt z, thereby showing some relationship between MT and
QE.

Remark 3.7.1. Let us further assume ad− bc = 1 [6]. Then,

D of (33) = (d− a)2 + 4bc = (d− a)2 + 4(ad− 1) = (a+ d)2 − 4.

So it seems natural that the following classification should arise 29 .

|a+ d|


> 2,

= 2,

< 2 [6].

28If a = d, b needs to amount to 0, and the equation becomes 0 = 0, i.e., trivial.
29Cf. here .
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3.8 QE in terms of SING [7]

Consider e.g., the QE x2 − 1 = 0. On solving it, one gets x = ±1. Setting ϕ = x2 − 1 = 0, one
computes dϕ

dx
= d

dx
(x2 − 1) = 2x to get ω = dϕ = 2xdx. Thus, the SING is x = 0. We note that it

is the midpoint between 1 and −1 in R1, which we classify into the category IN and visualise as
follows.

Fig. 2. SING as the midpoint 30

Drawing the lines x = −1, 0, 1 in R2 yields the following:

Fig. 3. Fig. 2 ‘R2-ised’ 31 , 32

Remark 3.8.1. If we treat a Qf y = x2 − 1 instead of the QE, its SING is grouped into NO 33 .

We conclude our ‘various and sundry reviews’ on QE here. For better or worse, it seems that via
such reviews, we have obtained some clues to Question 3.2.2, on which we will elaborate.

4 Possible answers to Question 3.2.2

As stated earlier, we don’t think we are totally clueless about Question 3.2.2 around which we used
to merely ‘meander’; we now try to answer it from a few viewpoints.

30An SVG file was converted to an EPS file, which was included in a usual LATEX manner .
31Terms like ‘R2-ise’, ‘R2-ising’, etc. will sometimes be used for describing similar procedures.
32‘O’ in this figure can be interpreted as the origin (0, 0).
33Cf. [7, 3.3].
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4.1 Answer from a viewpoint of CP

Consider e.g., CP of
 b −a

c 0

, which is t2 − bt+ ac. Its roots are b±
√
b2−4ac
2

, and setting b2 =

ac gives the MR b
2
. Since the roots of the characteristic equation are eigenvalues , our response is

Answer 4.1.1. (5) is related to uniqueness of eigenvalue of a certain matrix.

Remark 4.1.2. CP of
 b a

−c 0

,
 b aı

cı 0

, etc is also t2 − bt+ ac.

4.2 Answer from a viewpoint of integration
Our idea is just integrate b2 − 4ac that comes from (5) wrt b. That is, we consider∫

b2 − 4ac db, (34)

which yields

b3

3
− 4abc+ CI. (35)

Hence,

Answer 4.2.1. (5) is a partial derivative of (35).

Remark 4.2.2. Partial differentiation of e.g., a3

3
+ b3

3
− 4abc wrt b also yields the integrand of

(34). So other possibilities than (35) are also thinkable.

We plot (35), regarding (a, b, c) as coordinates and ignoring its CI, for that matter:

Fig. 4. Visualisation of b3

3
− 4abc = 0 34

34 wxMaxima ver. 24.02.1 is used for this kind of visualisation, and yielded images are sometimes edited for the
sake of simplicity.
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4.3 Answer from a viewpoint of ratio
Inspired by Fig. 2, we imagine the following points and the number line.

A B C D

x

Fig. 5. Four points on the number line 35

In the above Fig., we set AC = BD = b, BC = 2a, AD = 2c. Then, AC·BD
BC·AD

= b·b
2a·2c = b2

4ac
.

Equating this ratio with 1, we get b2

4ac
= 1, that is, b2 = 4ac. Hence,

Answer 4.3.1. (5) is related to a certain ratio.

4.4 Answer from a viewpoint of SING [7]

We consider

ϕ = x3 + y3 + z3 − 12xyz = 0 (36)

to compute
dϕ
dx

= d
dx
(x3 + y3 + z3 − 12xyz) = 3x2 + 3y2 dy

dx
+ 3z2 dz

dx
− 12yz − 12zx dy

dx
− 12xy dz

dx
.

We thus get ω = dϕ = 3x2dx+ 3y2dy + 3z2dz − 12yzdx− 12zxdy − 12xydz =

3(x2 − 4yz)dx+ 3(y2 − 4zx)dy + 3(z2 − 4xy)dz. (37)

Equating (37) with 0, one gets the following 36 .
x2 − 4yz = 0, (38)

y2 − 4zx = 0, (39)

z2 − 4xy = 0. (40)

Replacing x, y, z in (39) by a, b, c, respectively yields b2 − 4ca = 0, which is essentially the same
as (5). Hence,

Answer 4.4.1. (5) is related to SING computation.

Remark 4.4.2. Replacing x, y, z in (38) by b, c, a, respectively also gives (5).

Remark 4.4.3. Replacing x, y, z in (40) by c, a, b, respectively also gives (5).

Like Fig. 4, we plot (36):

35Like Fig. 2, this comes from an SVG file.
36Cf. [7, (21)− (23)].
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Fig. 6. Visualisation of (36)

Taken together, we have answered the question of what (5) means in a few ways in this section.

5 Emphasising the role of recurrence
Inspired by 3.2.2, we deal with algorithms and recurrences in what follows. To be specific, we put
an emphasis on the role of recurrence related to QE.

5.1 Relationship between recurrence and TT
At the outset, we get interested in whether TT we touched upon in 3.1 is related to recurrence; we
consider the following recurrences.

Recurrence 1

a1 = 1, an+1 = xan + 1, for n = 1, 2, 3 . . . . (41)

Recurrence 2

a1 = 1, an+1 = xan − 1, for n = 1, 2, 3 . . . . (42)

Remark 5.1.1. Explicitly, Recurrence 1 is a1 = 1, a2 = x + 1, a3 = x2 + x + 1, a4 =
x3 + x2 + x+ 1 . . ..

Remark 5.1.2. Explicitly, Recurrence 2 is a1 = 1, a2 = x − 1, a3 = x2 − x − 1, a4 =
x3 − x2 − x− 1 . . ..

We generalise (41) and (42) slightly.

a1 = 1, an+1 = xan + bn, for n = 1, 2, 3 . . . , (43)
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where bn is some constant.

Remark 5.1.3. (41) and (42) correspond to the cases where bn in (43) is replaced by 1 and −1,
respectively.

Now we are ready to consider two cases, depending on whether b1 = 0.

Case 1. b1 = 0. Schematically,

1
↓

x+ 0 (= b1)
↓

x2 + b2
↓

x3 + b2x+ b3
↓

x4 + b2x
2 + b3x+ b4
↓
. . ..

Case 2. b1 ̸= 0. Schematically,

1
↓

x+ b1( ̸= 0)
↓

x2 + b1x+ b2
↓

x3 + b1x
2 + b2x+ b3
↓
. . ..

Since we see a train of depressed polynomial s in Case 1, we have shown that TT has something
to do with recurrence.

5.2 From “ϕ” to φ

We once mentioned “ϕ”-curves [8], from which we now derive φ:

x2 + xy + y2 − 1 = 0, a part of “ϕ”-curve [8, (2)]

↓ Rearrangement

x2 + xy + y2 = 1
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↓ Dilation by replacing x, y with x√
2

and y√
2
,

respectively

x2 + xy + y2 = 2

↓ Replacement of y by −1

x2 − x+ 1 = 2

↓ Rearrangement

x2−x−1 = 0. (44)

It is known that the solutions to (44) are φ and − 1
φ

. We thus derived φ from “ϕ” 37 , recalling

the Fibonacci recurrence .

an+2 = an+1 + an. (45)

Remark 5.2.1. The LHS of (44) coincides with a3 in (42).

5.3 Coming across a root-finding algorithm
Speaking of φ, we have

φ =

√√√√
1 +

√
1 +

√
1 +

√
1 +

√
1 + · · · [9]. (46)

38

Inspired by this infinitely nested radical , we get the following idea.

We first twiddle with (1) to get

x2 = − b

a
x− c

a
. (47)
39

Then, we identify (47) with the recurrence

xn+2 = − b

a
xn+1 −

c

a
xn , n = 0, 1, 2, 3 . . . . (48)

Remark 5.3.1. If one puts e.g., a = −1, b = c = 1 in (47), one gets (44).

37See Appendix 12.3 for an alternative.
38See Appendix 12.4 for a somewhat detailed explanation on why this holds.
39Since a ̸= 0, we can divide both sides of ax2 = −bx− c by a and get (47). Cf. (1).
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Remark 5.3.2. If one puts e.g., a = −1, b = c = 1 in (48), one gets the recurrence xn+2 =
xn+1 + xn, which is essentially the same as (45).

We now compute X1, or one root of (1), as follows:

X1 =

√
− c

a
− b

a
·
√

− c
a
− b

a
·
√
· · · .

What about X2, another root of (1)? Since we have X1 +X2 = − b
a
, and X1X2 =

c
a

due to VF ,

we can later get X2 by computing − b
a
−X1, etc. And we present an example:

Example 5.3.3. a = −1, b = 1, and c = 72. One gets X1 =

√
72 +

√
72 +

√
72+ · · ·.

The following algorithm describes the procedures to get X1.

Step 1: Preparation. Set x0 =
√
72 = 8.485 . . . .

Step 2: Computation. Compute
√
72+x0 and get x1 =

√
72+8.485 . . . = 8.971 . . . .

Step 3: Iteration. Likewise, repeat computing xn+1 =
√
72+xn for n = 1, 2, 3 . . . .

We now verify Example 5.3.3 and each step using Clojure 40 , 41 .

Verification 5.3.4.

% echo $0
/usr/bin/tcsh
% tcsh --version
tcsh 6.24.13 (Astron) 2024-06-12 (x86_64-unknown-linux)
options wide,nls,dl,al,kan,sm,rh,nd,color,filec
% more -V
more from util-linux 2.40.2
% more cubic_eq_part_1_v_5_3_4.clj
(defn v_5_3_4[i]
(if(< i 2)(Math/sqrt 72)
(Math/sqrt(+ 72(v_5_3_4(dec i))))))
(doseq[x(range 1 22)]
(prn(v_5_3_4 x)))
% clojure -e ’(clojure-version)’
"1.11.2"

40We perform our computations on 8-core AMD processors of an Ubuntu 24.10 machine with 64 gigabytes of
RAM .

41Terminal output is sometimes edited for the sake of simplicity. For instance, Erlang output in 6.1.1 is not always
the same as the original one.
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% time clojure cubic_eq_part_1_v_5_3_4.clj
8.48528137423857
8.971358948021118
8.998408689764048
8.999911593441574
8.99999508852319
8.999999727140173
8.999999984841121
8.99999999915784
8.999999999953213
8.999999999997401
8.999999999999856
8.999999999999993
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
1.229u 0.127s 0:00.53 252.8% 0+0k 976+0io 0pf+0w

Once the computation reaches ‘9.0’, repetition of the computation
√
72 + 9.0 =

√
72 + 9.0 = . . .

just continues. So we can say the computation has converged to the value 9.0; we have thus
got X1 = 9. Consequently, X2 = 42 − b

a
− X1 = − 1

−1
− 9 = 1 − 9 = −8. Alternatively,

X2 = 43 c
a
· 1
X1

= 72
−1

· 1
9
= −8. In either case, we obtain the values 9 and −8, or the roots of the

QE −x2 + x+ 72 = 0 44 .

We will deal with CE’s in a full-blown manner in ‘part 2’; we let CF’s herald them in what
follows, approximating numerical data we obtained by CF’s, and make a definition.

Definition 5.3.5. The last output in a data set is ‘end point’ (EP) 45 .

Example 5.3.6. EP in Verification 5.3.4 is ‘final 9.0’ that is immediately before 1.229u.

First, we visualise the numerical data we have got as follows.

42We have used VF.
43Ditto.
44We will check these in 6.2.
45Unfortunately, we aren’t sure whether the term EP is widely accepted.
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Fig. 7. Visualisation of numerical outputs in Verification 5.3.4. Convergence is emphasised by
a red line.

Then, we make another definition.

Definition 5.3.7. The line y =EP in the Cartesian plane is ‘convergence line’ (CL) 46 .

Example 5.3.8. CL in Fig. 7 is the red line.

We try to let EP and CL match IP and TL, respectively. See below for a schematic illustration.

46We aren’t sure whether the term CL is widely accepted, either.
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Fig. 8. Schematic approximation of program outputs using a CF 47 , 48 . Outputs and EP are
indicated by black dots and a black star, respectively. Original wxMaxima image was retouch-
ed by using GIMP ver. 2.10.38.

A concrete example is shown below.

Fig. 9. Approximation of numerical data plotted in Fig. 7 by CF1 y = 0.000037(x− 20)3 + 9

But what if we appeal to the (celebrated) NM? Tailoring the recurrence
47Cf. [10, Fig. 4.6(b)] and [11, Fig. 4.16].
48For other CF-related figures, see Fig. 11 and Appendix 12.5.

21

https://sourceforge.net/projects/wxmaxima/


xn+1 = xn −
f(xn)

f ′(xn)
(49)

used in NM to fit Example 5.3.3, we get

xn+1 = xn −
x2
n − xn − 72

2xn − 1
=

x2
n + 72

2xn − 1
. (50)

Verification 5.3.9. We write and run another clojure code which reflects (50):

% more cubic_eq_part_1_v_5_3_9.clj
(defn v_5_3_9[i]
(if(< i 2)(Math/sqrt 72)
(/(+(*(v_5_3_9(dec i))
(v_5_3_9(dec i)))72)
(-(* 2(v_5_3_9(dec i)))1))))
(doseq[x(range 1 22)]
(prn(v_5_3_9 x)))
% time clojure cubic_eq_part_1_v_5_3_9.clj
8.48528137423857
9.016588974845675
9.00001615635598
9.000000000015355
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
40.447u 0.532s 0:39.71 103.1% 0+0k 83336+0io 184pf+0w

Thus, we get X1 = 9 also by NM and likewise visualise the data:
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Fig. 10. Visualisation of numerical outputs in Verification 5.3.9. Convergence is emphasised
by a red line.

We approximate the data by another CF, CF2. See below for a schematic illustration.

Fig. 11. Schematic approximation of program outputs using another CF. Each output is indi-
cated like Fig. 8, LMA being indicated by a black square 49 . Original wxMaxima image was
retouched like Fig. 8.

49Some might recall [10, Fig. 4.6(a)].
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A concrete example is shown below.

Fig. 12. Approximation of numerical data plotted in Fig. 10 by CF2 y = 0.0012(x−1)(x−20)2

+9

We go on to another example.

Example 5.3.10. a = 4, b = −5, and c = −9. One gets X1=

√
9
4
+ 5

4
·
√

9
4
+ 5

4
·
√

9
4
+ · · ·.

Algorithm is as follows.

Step 1: Preparation. Set x0 =
√

9
4
= 3

2
.

Step 2: Computation. Compute
√

9
4
+ 5

4
·x0 and get x1=

√
33
8

= 2.031. . . .

Step 3: Iteration. Likewise, repeat computing xn+1=
√

9
4
+ 5

4
·xn for n = 1, 2, 3 . . . .

These steps are essentially the same as those we have already described, but this time, we write an
SBCL code and run it for verification:

Verification 5.3.11.

% sbcl --version
SBCL 2.2.9.debian
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% more cubic_eq_part_1_v_5_3_11.lsp
(defun v_5_3_11(n)(if(= n 0)(/ 3 2)
(sqrt(+(/ 9 4)(*(/ 5 4)(v_5_3_11(- n 1)))))))
(loop for i from 0 to 20 do
(format t"˜D˜%"(v_5_3_11 i)))
;Cf. http://progopedia.com/example/factorial/22/
% time sbcl --script cubic_eq_part_1_v_5_3_11.lsp
3/2
2.0310097
2.188324
2.2328022
2.2452178
2.2486713
2.249631
2.2498975
2.2499714
2.2499921
2.2499979
2.2499993
2.2499998
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
0.011u 0.031s 0:00.05 80.0% 0+0k 70976+0io 21pf+0w

Like Verifications 5.3.4 and 5.3.9, once the computation reaches ‘2.25’, repetition of the compu-

tation
√

9
4
+ 5

4
· 2.25 =

√
9
4
+ 5

4
· 2.25 = . . . just continues. So we can say the computation has

converged to the value 2.25; we have thus got X1 = 2.25. Therefore, X2 = 50 − b
a
− X1 =

−−5
4
−2.25 = −1. Alternatively, X2 =

51 c
aX1

= −9
4 · 2.25 = −1. In either case, we obtain the values

2.25 and −1, or the roots of the QE 4x2 − 5x− 9 = 0 52 .

We visualise the numerical data we have obtained as follows.

50We have used VF.
51Ditto.
52We will check these in 6.2.
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Fig. 13. Visualisation of numerical outputs in Verification 5.3.11. Convergence is emphasised
by a red line.

Next, we try approximating them by a CF:

Fig. 14. Approximation of numerical data plotted in Fig. 13 by CF3 y = 0.00005(x− 20)3

+2.25

26



Likewise, tailoring (49) to fit Example 5.3.10, one gets

xn+1 = xn −
4x2

n − 5xn − 9

8xn − 5
=

4x2
n + 9

8xn − 5
. (51)

Verification 5.3.12. Likewise, we run the NM-version code.

% more cubic_eq_part_1_v_5_3_12.lsp
(defun v_5_3_12(n)(if(= n 0)(/ 3 2)
(/(+ (* 4(expt (v_5_3_12(- n 1)) 2))9)
(- (* 8 (v_5_3_12(- n 1)))5.0))))
(loop for i from 0 to 20 do(format t"˜D˜%"(v_5_3_12 i)))
% time sbcl --script cubic_eq_part_1_v_5_3_12.lsp
3/2
2.5714285
2.27654
2.2502131
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
0.151u 0.038s 0:00.19 94.7% 0+0k 0+0io 0pf+0w

We thus get X1 = 2.25 also by NM 53 to visualise the data likewise.

53By the way, what if we subject this code to a slight change that doesn’t affect its mathematical content? See
Appendix 12.6.
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Fig. 15. Visualisation of numerical outputs in Verification 5.3.12. Convergence is emphasised
by a red line.

Likewise, we approximate the above data by a CF:

Fig. 16. Approximation of numerical data plotted in Fig. 15 by CF4 y = 0.0009(x− 1)(x−
20)2 + 2.25
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6 Example programs and a question
Here are outputs of a few programs, which we hope are not so off-topic.

6.1 Recurrence-related programs
6.1.1 Fermat numbers

We compute the recurrence

F0 = 3 , Fn = (Fn−1 − 1)2 + 1, n = 1, 2, 3 . . .

using ECL and Erlang :

% ecl --version
ECL 21.2.1
% more ferm.lsp
(do((n 1(incf n)))((>= n 9))
(defun fer(n)(if(< n 2)3
(+(*(-(fer(- n 1))1)(-(fer(- n 1))1))1)))
(format t "˜2d˜%"(fer n)))
(format t "˜%")
(quit)
% ecl --load ferm.lsp
3
5
17
257
65537
4294967297
18446744073709551617
340282366920938463463374607431768211457

% more ferm.erl
-module(ferm).
-export([fermat/1]).
fermat(0)->3;
fermat(N) when N>0->(fermat(N-1)-1)*(fermat(N-1)-1)+1.
% erl
Erlang/OTP 25 [erts-13.2.2.9] [source] [64-bit] [smp:16:16]
[ds:16:16:10] [async-threads:1] [jit:ns]
Eshell V13.2.2.9 (abort with ˆG)
1> c(ferm).
{ok,ferm}
2> io:write([ferm:fermat(X)||X<-lists:seq(0,7)]).
[3,5,17,257,65537,4294967297,18446744073709551617,
340282366920938463463374607431768211457]
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6.1.2 FS

We compute the recurrence

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n = 2, 3, 4 . . .

using FriCAS and Julia :

% fricas -nox
openServer result 0

FriCAS Computer Algebra System
Version: FriCAS 1.3.11 built with gcl 2.6.14

Timestamp: Sun Jul 28 23:21:21 UTC 2024

(1) -> a(0)==0;a(1)==1;a(n)==a(n-1)+a(n-2)
Type: Void

(2) -> for n in 0..15 repeat output(a(n))
Compiling function a with type Integer -> NonNegativeInteger
Compiling function a as a recurrence relation.
0
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610

Type: Void

% more fib.jl
fib(n)= n<2 ? n : fib(n-1)+fib(n-2);
for i = 0:15
println(fib(i))
end
#=
Cf. https://rosettacode.org/wiki/Comments#Julia
https://rosettacode.org/wiki/Fibonacci\_sequence\#Recursive\_43
=#
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% julia -v
julia version 1.11.1
% julia fib.jl
0
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610

6.2 QE-related programs
We separately write the roots obtained by QF as r+ = −b+

√
b2−4ac
2a

, (52)

r− = −b−
√
b2−4ac
2a

(53)

to notice that (52) + (53) gives r+ + r− = − b
a
. That is,

r− = −r+ − b

a
. (54)

We check the roots of the QE’s we have dealt with using (52)− (54). First, we use AXIOM :

% axiom -nox
AXIOM Computer Algebra System

Version: Axiom (May 2016)
Timestamp: Sunday July 28, 2024 at 23:45:19

(1) -> -1

(1) - 1
Type: Integer

(2) -> 1

(2) 1
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Type: PositiveInteger
(3) -> 72

(3) 72
Type: PositiveInteger

(4) -> )read ce_part_1_pos_root.input
(-%%(2)+sqrt(%%(2)ˆ2-4*%%(1)*%%(3)))/(2*%%(1))--Cf. (52).

(4) - 8
Type: AlgebraicNumber

(5) -> )read ce_part_1_neg_root.input
-%%(4)-(%%(2)/%%(1))--Cf. (54).

(5) 9
Type: AlgebraicNumber

Thus, we have confirmed that the roots of the QE −x2 + x+ 72 = 0 are −8 and 9 54 . Likewise,

(1) -> 4

(1) 4
Type: PositiveInteger

(2) -> -5

(2) - 5
Type: Integer

(3) -> -9

(3) - 9
Type: Integer

(4) -> )read ce_part_1_pos_root.input
(-%%(2)+sqrt(%%(2)ˆ2-4*%%(1)*%%(3)))/(2*%%(1))--Cf. (52).

9
(4) -

4
Type: AlgebraicNumber

(5) -> )read ce_part_1_neg_root.input
-%%(4)-(%%(2)/%%(1))--Cf. (54).

54See Example 5.3.3, Verification 5.3.4, and Verification 5.3.9.
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(5) - 1
Type: AlgebraicNumber

This time, we have confirmed that the roots of the QE 4x2 − 5x− 9 = 0 are 9
4

and −1 55 .
Next, we use SWI-Prolog .

% swipl --version
SWI-Prolog version 9.0.4 for x86_64-linux
% more ce_part_1_qe_1.pl
:- write(’We compute the ’’positive root’’ (PR) and ’’negative
root’’ (NR) of Axˆ2+Bx+C=0.’),nl.
:- write(’Let A=-1, B=1, C=72.’),nl.
r+(A,B,C,PR):-PR is (-B+sqrt(B**2-4*A*C))/(2*A).
/* Cf. (52). */
r-(A,B,C,NR):-NR is (-B-sqrt(B**2-4*A*C))/(2*A).
/* Cf. (53). */
:- write(’Type ’’r+(-1,1,72,PR).’’’),write(’. ’),
write(’Next, ’’r-(-1,1,72,NR).’’’),write(’. ’),nl.
/*
Cf.
https://en.wikibooks.org/wiki/Computer_Programming/Hello_world#Prolog
https://stackoverflow.com/questions/40821641/writing-functions-in-prolog

*/
% swipl -f ce_part_1_qe_1.pl
We compute the ’positive root’ (PR) and ’negative root’ (NR) of
Axˆ2+Bx+C=0.
Let A=-1, B=1, C=72.
Type ’r+(-1,1,72,PR).’. Next, ’r-(-1,1,72,NR).’.
?- r+(-1,1,72,PR).
PR = -8.0.
?- r-(-1,1,72,PR).
PR = 9.0.

Again, we have confirmed that the roots of the QE −x2+x+72 = 0 are −8 and 9 56 . Likewise,

% more ce_part_1_qe_2.pl
:- write(’We compute the ’’positive root’’ (PR) and ’’negative
root’’ (NR) of Axˆ2+Bx+C=0.’),nl.
:- write(’Let A=4, B=-5, C=-9.’),nl.
r+(A,B,C,PR):-PR is (-B+sqrt(B**2-4*A*C))/(2*A).
/* Cf. (52). */
r-(A,B,C,NR):-NR is (-B-sqrt(B**2-4*A*C))/(2*A).

55See Example 5.3.10, Verification 5.3.11, and Verification 5.3.12.
56Cf. footnote 54.
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/* Cf. (53). */
:- write(’Type ’’r+(4,-5,-9,PR).’’’),write(’. ’),
write(’Next, ’’r-(4,-5,-9,NR).’’’),nl.
% swipl -f ce_part_1_qe_2.pl
We compute the ’positive root’ (PR) and ’negative root’ (NR) of
Axˆ2+Bx+C=0.
Let A=4, B=-5, C=-9.
Type ’r+(4,-5,-9,PR).’. Next, ’r-(4,-5,-9,NR).’
?- r+(4,-5,-9,PR).
PR = 2.25.
?- r-(4,-5,-9,PR).
PR = -1.0.

Again, we have confirmed that the roots of the QE 4x2 − 5x− 9 = 0 are 9
4

and −1 57 .

6.3 Question coming from 6.1.2: does (44) have something to do with quasi-
symmetric QuE (QSQuE) ?

Here 6.1.2 reminds us of (45). And since it is closely related to (44), the above question has arisen.
We try to answer the question: Since x = 0 is not a root of (44), we assume x ̸= 0 to divide both
sides of (44) by x to get

x− 1

x
= 1. (55)

Then, take

x4 + 4x3 + x2 − 4x+ 1 = 0, (56)

for example. Likewise, we can assume x ̸= 0, and thus x2 ̸= 0. This enables us to divide both
sides of (56) by x2 to get x2 + 4x+ 1− 4

x
+ 1

x2 = 0. After some manipulation, this becomes

(x− 1

x
)2 + 4(x− 1

x
) + 3 = 0. (57)

Then, using (55), we rewrite (57) as t2 + 4t + 3 = 0, whose roots are −1 and −3. We thus deal
with x− 1

x
= −1, −3, i.e., x2 + x− 1 = 0 and x2 + 3x− 1 = 0. Applying QF to these QE’s, one

gets x = −1±
√
5

2
, −3±

√
13

2
, solutions of (56) 58 . Hence,

Answer 6.3.1. (44) can play a role in solving (56), a QSQuE.

57Cf. footnote 55.
58By the way, −1−

√
5

2 , one of the solutions, amounts to − φ .
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7 On n× n ‘trace matrix’ (Tn)

Inspired by (45), we consider the following.

 an+1

an−1

 =

 1 1
0 1

 an
an−1

.

We observe that the above 2 × 2 matrix is a kind of ‘special trace matrix’ ST2 [12, 5], since its
tr and det are 2 and 1, respectively. Taking this opportunity, we should like to extend STn to Tn,
i.e., n × n ‘trace matrix’ by dropping the requirement that det of the matrix under consideration
be 1 [12, Def. 5.1] (on purpose). In other words, we are constrained only by

tr(Tn) = n. (58)

Example 7.1. N =

 1 1
2 1

 is a kind of T2, since it is a 2× 2 matrix, tr(N) = 2, which sat-

isfies (58), and det(N) = −1 ( ̸= 1).

Notation 7.2. Like STn,R [12, Notation 5.6], we can write Tn,R instead of Tn, when we wish to
emphasise the fact that each entry of Tn is a real number .

Example 7.3. P 59 =

 1 0 0
0 2 0
0 0 0

 is a kind of T3,R, since it is a 3× 3 matrix, and tr(P ) and

det(P ) are 3 and 0 ( ̸= 1), respectively.

Notation 7.4. Like STn,C [12, Notation 5.8], we can write Tn,C instead of Tn, when we wish to
emphasise the fact that each entry of Tn is a complex number .

Example 7.5. Q =

 1− ı 3 + ı −ı
ı 1 + 2ı −2ı

2− ı ı 1− ı

 is a kind of T3,C, since it is a 3× 3 matrix, and

tr(Q) and det(Q) are 3 and −5− 13ı ( ̸= 1), respectively.

We now prove a theorem.

THEOREM 7.6. Direct sum of ‘special trace matrices’ is a ‘special trace matrix’, again.

Proof. Let us consider the m×m matrix R which is the direct sum of n ‘special trace subma-
trices’, i.e., S1, · · · , Si, · · · , Sn. Explicitly,

59We use ‘P ’ instead of ‘O ’ to avoid possible confusion with On. See Glossary.
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R =
n⊕

i=1

Si =



S1

. . . 0
Si

0 . . .

Sn


,

s1 columns} }
s1 rows

}si columns}
si rows

sn columns{
sn rows

{

where 0 stands for entries that are 0’s. We immediately see that tr(R) = tr(S1) + · · ·+ tr(Si) +
· · · + tr(Sn). Si’s being ‘trace submatrices’, we have tr(S1) = s1, · · · , tr(Si) = si ,· · · , and
tr(Sn) = sn . So tr(R) = s1 + · · · + si + · · · + sn , which amounts to m. And since det(R) =
det(S1)× · · · × det(Si)× · · · × det(Sn) , we have det(R) = 1× · · · × 1× · · · × 1 = 1. QED.

Example 7.7. Consider ST2’s
 3 −4

1 −1

 and
 −1 −1

4 3

. Then, their direct sum is
3 −4 0 0
1 −1 0 0
0 0 −1 −1
0 0 4 3

. This is a kind of ST4, since it is a 4× 4 matrix, and its tr and det are 4

and 1, respectively.

We further prove the following.

COROLLARY 7.8. Direct sum of ‘trace matrices’ is a ‘trace matrix’, unless tr of such a direct
sum amounts to 1.

Proof. ‘Forget’ arguments about det(R) = 1 in Proof of THEOREM 7.6. QED.

Example 7.9. Consider T2’s
 3 −1

1 −1

 and
 0 1

1 2

. Then, their direct sum is
3 −1 0 0
1 −1 0 0
0 0 0 1
0 0 1 2

. This is a kind of T4, since it is a 4× 4 matrix, and its tr and det are 4 and 2

( ̸= 1), respectively.

Remark 7.10. In other words, such a direct sum can be a ‘special trace matrix’.

36

https://en.wikipedia.org/wiki/Block_matrix#Block_diagonal_matrices
https://en.wikipedia.org/wiki/Block_matrix#Block_diagonal_matrices


Example 7.11. Consider T2’s
 3 −5

1 −1

 and
 0 −1

1
2

2

. Then, their direct sum is
3 −5 0 0
1 −1 0 0
0 0 0 −1
0 0 1

2
2

. This is a kind of ST4, since it is a 4× 4 matrix, and its tr and det are 4 and

1, respectively.

We also prove the following.

LEMMA 7.12. Let U 60 =

 1 0
0 x

and V = U⊕xU⊕x2U⊕· · ·⊕xn−1U⊕xnU. Next, let

V be a kind of T2n+2 . Then, one root of the equation tr(V ) = 2n+ 2 is 1.

Proof. A straightforward calculation. Writing the equation under consideration explicitly
yields 1+x+x(1+x)+ · · ·+xn−1(1+x)+xn(1+x) = 2n+2. So one gets the equation W (x) =
xn+1+2xn + · · ·+ 2x︸ ︷︷ ︸

n terms

+1−2n−2 = 0. Then, we observe W (1) = 1n+1+2 · 1n + · · ·+ 2 · 1︸ ︷︷ ︸
n terms

+1

−2n− 2 = 1+ 2n+ 1− 2n− 2 = 0. Hence, one root of the equation tr(V ) = 2n+ 2 is 1. QED.

Example 7.13. The case n = 1. Explicitly, X =

 1 0
0 x

⊕ x

 1 0
0 x

 =


1 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x2

.

Since tr(X) = 2 · 1 + 2 = 4, we have 1 + x + x + x2 = 4. Solving the resultant equation
x2 + 2x− 3 = 0, one gets the roots 1 and −3.

8 Going into C
We gradually take C into consideration, as suggested around the end of 3.3 61 , 62 . In the beginning,
since we have mentioned a TM in 3.1, we take the following TM as example.

Y =

 0 −1
1 0

 .

60Here we use ‘U’ instead of ‘T ’ to avoid possible confusion with T2, T4, etc.
61Strictly speaking, we have implicitly mentioned C in Fig. 1(c), where UQF has no real roots, since such UQF can

be written as y = a(x− α)(x− β), where α, β ∈ C .
62Actually, we have already caught a glimpse of C in Notation 7.4 and Example 7.5, in which we touched upon

complex number s.
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CP of Y is λ2+1. Setting λ2+1 = 0, we get the roots ±ı. In this way, starting from a real matrix,
or Y , one is smoothly led to the realm of C (hopefully).

Now let us proceed to a bit more complicated example, which is another TM. We consider

Z =


1 ı −1 −ı
ı −1 −ı 1
−1 −ı 1 ı
−ı −1 ı −1

.

Then,

|Z − λI4 | =

∣∣∣∣∣∣∣∣
1− λ ı −1 −ı
ı −1− λ −ı 1
−1 −ı 1− λ ı
−ı −1 ı −1− λ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
0 λı λ2 − 2λ −λı
0 −λ −λı 0
−1 −ı 1− λ ı
0 −2 λı −λ

∣∣∣∣∣∣∣∣
63

= (−1)1+1 × 0×

∣∣∣∣∣∣
−λ −λı 0
−ı 1− λ ı
−2 λı −λ

∣∣∣∣∣∣+ (−1)2+1 × 0×

∣∣∣∣∣∣
λı λ2 − 2λ −λı
−ı 1− λ ı
−2 λı −λ

∣∣∣∣∣∣
+(−1)3+1×(−1)×

∣∣∣∣∣∣
λı λ2 − 2λ −λı
−λ −λı 0
−2 λı −λ

∣∣∣∣∣∣+(−1)4+1×0×

∣∣∣∣∣∣
λı λ2 − 2λ −λı
−λ −λı 0
−ı 1− λ ı

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
λı λ2 − 2λ −λı
−λ −λı 0
−2 λı −λ

∣∣∣∣∣∣
= −{λı · (−λı) · (−λ) + (λ2 − 2λ) · 0 · (−2) + (−λı) · (−λ) · λı64

−(−λı) · (−λı) · (−2)− (λ2 − 2λ) · (−λ) · (−λ)− λı · 0 · λı}

= −(−λ3 − λ3 − 2λ2 − λ4 + 2λ3) = λ4 + 2λ2 = λ2(λ2 + 2).

63 We have performed some elementary row operations to increase ‘0 entries’, which will make our computation
(slightly) easier.

64Here we use the rule of Sarrus .
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One thus gets λ2(λ2 + 2), CP of Z. Setting λ2(λ2 + 2) = 0, we get the MR 0 ( multiplicity 2 )
and ±

√
2ı. This time, making use of a 4× 4 TM, we treated a QuE, which can be regarded as the

product of two QE’s, i.e., λ2 = 0 and λ2 + 2 = 0. And its roots were shown to include purely
imaginary number s.

Now let α ± βı, where α, β ∈ R, be the roots of a certain QE. Then, α + βı is symmetric
to α − βı wrt real axis in the complex plane . What about the symmetry wrt imaginary (ℑ)
axis ? Consider e.g., the CQP x2 − 2δıx − γ2 − δ2, where γ, δ ∈ R. Since QF is applicable
to the QE whose coefficients are complex numbers , we get the roots of the CQP equation, i.e.,
− (−2δı)±

√
(−2δı)2−4 ·1 · (−γ2−δ2)

2
= δı ± γ to note solving a certain CQP equation yields solutions

symmetric wrt the ℑ-axis. As a result of this, we get aware of the possibility that α + β ı is to
α − β ı what γ + δ ı is to −γ + δ ı, which makes both axes look (more and more) impressive; we
thus get ‘acquainted’ with the complex plane (and C).

8.1 On ‘C-isation’
Now that we have got some familiarity with C, we should like to try to ‘C-ise’ (4). Specifically,
by replacing x and/or y in (4) with x+ ıy, one considers the following.

Case 1. Replacing x in (4) by x+ ıy, one gets y = a(x+ ıy)2 + b(x+ ıy) + c.

Case 2. Replacing y in (4) by x+ ıy, one gets x+ ıy = ax2 + bx+ c.

Case 3. Replacing both x and y in (4) by x+ ıy, one gets x+ ıy = a(x+ ıy)2+ b(x+ ıy)+ c.

In what follows, we make case-by-case treatments.

8.1.1 x −→ x+ ıy

After some computation, one gets

ax2 + bx+ c− ay2 − y + ıy(2ax+ b) = 0. (59)

It follows from (59) that ax2 + bx+ c− ay2 − y = 0, (60)

y(2ax+ b) = 0. (61)

Remark 8.1.1.1. Putting y = 0 in (60) results in (1).

Remark 8.1.1.2. Doing so in (61) gives 0 = 0, which is trivial.
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8.1.2 y −→ x+ ıy

Likewise, one gets

ax2 + (b− 1)x+ c− ıy = 0. (62)

It follows from (62) that

 ax2 + (b− 1)x+ c = 0, (63)

y = 0. (64)

Remark 8.1.2.1. We notice in (63) 65 that (b−1)2−4ac can be a ‘new’ kind of D we obtained
via ‘C-isation’.

Remark 8.1.2.2. Setting 2ax+ b = 1 in (61) yields (64).

8.1.3 x, y −→ x+ ıy

Likewise, one gets

ax2 + (b− 1)x+ c− ay2 + ıy(2ax+ b− 1) = 0. (65)

It follows from (65) that

{
ax2 + (b− 1)x+ c− ay2 = 0, (66)

y(2ax+ b− 1) = 0. (67)

Remark 8.1.3.1. Putting y = 0 in (66) yields (63).

Remark 8.1.3.2. Replacing 2ax+ b− 1 by 1 in (67) yields (64).

8.2 On ‘P-isation’
We try to ‘higher-dimensionalise’ (4) via a procedure which we tentatively call ‘P-isation’ 66 .
Specifically, one replaces the variables x and y in (4) by x

z
and y

z
, respectively, to get

y/z = a(x/z)2 + b(x/z) + c.

65Putting y = 0 in (66) yields this.
66Some might recall projective space .
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That is, we consider

yz = ax2 + bzx+ cz2 (68)

to take up three-dimensional space (3D space).

Remark 8.2.1. Setting z = 0 in (68) yields ax2 = 0. Assuming ̸= 0, we solve it to get x = 0,
the y-axis.

Remark 8.2.2. Replacing z in (68) by 1, one gets y = ax2 + bx+ c. One thus ‘retrieves’ (4).

Example 8.2.3. ‘P-ising’ y = x2 +3x+2 yields y/z = (x/z)2 +3(x/z)+ 2. That is, one gets
the equation yz = x2 + 3zx+ 2z2 via ‘P-isation’.

8.3 On ‘CP-isation’
Inspired by CPn , here we first ‘C-ise’ and then ‘P-ise’ something, which we tentatively call ‘CP-
isation’.

Example 8.3.1. ‘P-ising’ (60) and (61), which have already been ‘C-ised’, yields

 a(x
z
)2 + b(x

z
) + c− a(y

z
)2 − a(y

z
) = 0,

y
z
· (2a · x

z
+ b) = 0.

Clearing denominators of the above, one gets

 ax2 + bzx+ cz2 − ay2 − ayz = 0, (69)

y(2ax+ bz) = 0. (70)

Remark 8.3.2. Setting z = 0 in (69) and (70) yields ax2 − ay2 = 0 and 2axy = 0. Assuming

a, 2a ̸= 0, we divide both sides of them by a and 2a, respectively to get

 x2 − y2 = 0, (71)

xy = 0. (72)

In either case, we have got the two lines intersecting perpendicularly as visualised below.
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Fig. 17. (71) and (72) visualised.

Remark 8.3.3. Some might recall pencil and/or [8, Fig. 9].

Remark 8.3.4. Putting a = 1 in ax2 − ay2 = 0 in Remark 8.3.2 gives x2 − y2 = 0. This is also
the ‘z = 1 section’ of Whitney’s umbrella x2 − y2z = 0 , since replacing z in the ‘umbrella’ by 1
gives x2 − y2 = 0, too.

Remark 8.3.5. Putting z = 1 in (70) makes it ‘revert’ to (61) 67 .

8.4 On ‘PC-isation’
Now a natural question arises:

Question 8.4.1. Can we perform ‘CP-isation’ the other way around?

In other words,

Question 8.4.2. Is what we tentatively call ‘PC-isation’ feasible?

To address these questions, we first ‘P-ise’ (4) to get (68). Next, the following ways to ‘C-ise’
(68) are thinkable.

67Cf. Remark 8.2.2.
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• x −→ x+ ıy, y −→ x+ ıy, z −→ x+ ıy;

• x, y −→ x+ ıy, y, z −→ x+ ıy, z, x −→ x+ ıy;

• x, y, z −→ x+ ıy.

In what follows, we make case-by-case treatments.

8.4.1 x −→ x+ ıy

First, we replace x in (68) by x+ ıy , a kind of ‘C-isation’ 68 . After some computation, we get

a(x2 − y2) + bzx+ cz2 − yz + ı(2axy + bzy) = 0. (73)

It follows from (73) that

 a(x2 − y2) + bzx+ cz2 − yz, (74)

y(2ax+ bz) = 0. (75)

Remark 8.4.1.1. Putting z = 0 in (74) gives ax2 − ay2 = 0 in Remark 8.3.2.

Remark 8.4.1.2. (75) is the same as (70).

8.4.2 y −→ x+ ıy

Likewise, we get

ax2 + bzx+ cz2 − zx− ıyz = 0. (76)

It follows from (76) that

 ax2 + (b− 1)zx+ cz2 = 0, (77)

yz = 0. (78)

Remark 8.4.2.1. Putting z = 1 in (77) gives (63).

68Cf. Case 1 in 8.1.
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Remark 8.4.2.2. Putting z = 1 in (78) gives (64).

8.4.3 z −→ x+ ıy

Likewise, we get

(a+ b+ c)x2 − xy − cy2 + ıy{(b+ 2c)x− y} = 0. (79)

It follows from (79) that


(a+ b+ c)x2 − xy − cy2 = 0, (80)

y{(b+ 2c)x− y} = 0. (81)

Here we wonder if (80) and (81) are concurrent lines geometrically, and try visualising a few
examples:

Example 8.4.3.1. a = 1, b = 3, c = 2.

Fig. 18. Four lines that are concurrent at O

Remark 8.4.3.2. Some might recall pencil 69.

Example 8.4.3.3. a = 2, b = 1, c = −1.

69Cf. Remark 8.3.3.
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Fig. 19. Two lines that are concurrent at O

Example 8.4.3.4. a = 3, b = 0, c = 0.

Fig. 20. Three lines that are concurrent at O

Multiplying the LHS of (80) by 4c, we get

4(a+ b+ c)cx2 − 4cxy − 4c2y2,

which we factor into

[{
√

1 + 4(a+ b+ c)c+ 1}x+ 2cy][{
√
1 + 4(a+ b+ c)c− 1}x− 2cy]. (82)

We now consider two cases:

Case 1. c ̸= 0. Equating (82) to 0, we get y = −
√

1+4(a+b+c)c+1

2c
x,

√
1+4(a+b+c)c−1

2c
x.
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Case 2. c = 0. Putting c = 0 into (80), one solves (a + b)x2 − xy = 0 to get y = (a + b)x,
x = 0.

We then solve (81) to get y = 0, (b+ 2c)x, and the following.

Table Classification of (80) and (81)

c ̸= 0 c = 0

b ̸= 0 y = −
√

1+4(a+b+c)c+1

2c
x,

√
1+4(a+b+c)c−1

2c
x, (b+ 2c)x, 0 y = 0, bx, (a+ b)x, x = 0

b = 0 y = −
√

1+4(a+c)c+1

2c
x,

√
1+4(a+c)c−1

2c
x, 2cx, 0 y = 0, ax, x = 0

Remark 8.4.3.5. It follows from the above table that we obtain at most four lines that pass O
from this kind of ‘PC-isation’.

8.4.4 x, y −→ x+ ıy

Likewise, we get

a(x2 − y2) + (b− 1)zx+ cz2 + ıy{2ax+ (b− 1)z} = 0. (83)

It follows from (83) that

{
a(x2 − y2) + (b− 1)zx+ cz2 = 0, (84)

y{2ax+ (b− 1)z} = 0. (85)

Remark 8.4.4.1. Putting z = 0 in (84) gives ax2 − ay2 = 0 in Remark 8.3.2.

Remark 8.4.4.2. Putting z = 0 in (85) gives 2axy = 0 in Remark 8.3.2.

8.4.5 y, z −→ x+ ıy

Likewise, we get

(a+ b+ c− 1)x2 + (1− c)y2 + ıxy{b+ 2(c− 1)} = 0. (86)

It follows from (86) that

 (a+ b+ c− 1)x2 + (1− c)y2 = 0, (87)

xy{b+ 2(c− 1)} = 0. (88)

Remark 8.4.5.1. Putting a+ b+ c− 1 = 1 and 1− c = −1 in (87) yields (71).

Remark 8.4.5.2. Putting b+ 2(c− 1) = 1 in (88) yields (72).

46



8.4.6 z, x −→ x+ ıy

Likewise, we get

(a+ b+ c)(x2 − y2)− xy + ıy{2(a+ b+ c)x− y} = 0. (89)

It follows from (89) that

 (a+ b+ c)x2 − xy − (a+ b+ c)y2 = 0, (90)

y{2(a+ b+ c)x− y} = 0. (91)

Remark 8.4.6.1. Replacing (a+ b+ c)y2 in (90) by cy2 yields (80).

Remark 8.4.6.2. Replacing 2(a+ b+ c) in (91) by b+ 2c yields (81).

8.4.7 x, y, z −→ x+ ıy

Likewise, we get

(a+ b+ c− 1)(x2 − y2) + ıy{2(a+ b+ c− 1)x} = 0. (92)

It follows from (92) that  (a+ b+ c− 1)(x2 − y2) = 0, (93)

(a+ b+ c− 1)xy = 0. (94)

Remark 8.4.7.1. Putting a+ b+ c− 1 = 1in (93) gives (71).

Remark 8.4.7.2. Putting a+ b+ c− 1 = 1in (94) gives (72).

Taken together, our response to Question 8.4.2 (or 8.4.1) is

Answer 8.4.3. Yes (at least formally).

Having answered question(s), we now wish to turn our attention to ‘trinions’ (tr’s) [13] and raise
questions about them.

9 tr-related question 1: what if we apply tr’s to QE?
Actually, we will try to answer this question in Discussion.
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9.1 Preliminaries
tr := a+bi+cj, a, b, c ∈ R [13, Def. 2.1.4]. Assuming

√
b2 + c2 ̸= 0, one makes some computation

to write

tr = a+
√
b2 + c2 · ( bi√

b2+c2
+ cj√

b2+c2
) = a+ u(αi+ βj),

where u =
√
b2 + c2, and α2 + β2 = 1. Rewriting{

α = cos θ,
β = sin θ, 0 ≤ θ < 2π

yields

tr = a+ u(i cos θ + j sin θ). (95)

We further rewrite this as tr = a+ uv(θ) and make a definition.

Definition 9.1.1. a+ uv(θ) is angular form of tr’s.

Example 9.1.2. 1 + i in angular form is 1 + v(0).

Example 9.1.3. 2 + i+
√
3j in angular form is 2 + 2v(π

3
).

Claim 9.1.4.
v(θ1)v(θ2) = 0. (96)

Proof. A straightforward calculation. Specifically, (i cos θ1 + j sin θ1) · (i cos θ2 + j sin θ2) =
i2 cos θ1 cos θ2+ij cos θ1 sin θ2+ji sin θ1 cos θ2+j2 sin θ1 sin θ2 = 0·cos θ1 cos θ2+0·cos θ1 sin θ2+
0 · sin θ1 cos θ2 + 0 · sin θ1 sin θ2 = 0 70 . QED.

Remark 9.1.5. If one replaces θ1, θ2 in (96) by θ, one gets v(θ)2 = 0, that is, v(θ) = 0 for any
θ. In this case, tr becomes a+ u · 0 = a, or Sc(tr) 71 .

9.2 Applying tr’s to QE
We consider the following cases, depending on the properties of the roots of (1):

Case 1. Both roots are real.

Case 2. Both roots are complex.

Case 3. Roots are MR.

In what follows, we present examples corresponding to each case.

70For computation of this, see [13, Table 1].
71See [13, 2.1].
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9.2.1 The case both roots are real

Example 9.2.1.1. x2 − 4x+ 3 = 0. Its roots are 1 and 3. Writing x as

x = a+ bi+ cj, (97)

we compute

x2 = a2 + 2abi+ 2acj . (98)72

We substitute (97) and (98) into the LHS of this example. After some manipulation, one gets

a2 − 4a+ 3 + 2b(a− 2)i+ 2c(a− 2)j = 0. (99)

We thus have


a2 − 4a+ 3 = 0, (100)

2b(a− 2) = 0, (101)

2c(a− 2) = 0. (102)

If a = 2, (101) and (102) hold, irrespective of b, c. But (100) doesn’t, since 22−4·2+3 = −1 ̸= 0.
So a ̸= 2, and we necessarily have b = c = 0, which means Vec(tr) 73 vanishes, whereas Sc(tr)
remains. In other words, we are induced to ‘forget’ Tr

74 and left with R. Now that (101) and
(102) are trivial, we just solve (100) to get the roots 1 and 3, as desired.

9.2.2 The case both roots are complex

Example 9.2.2.1. x2 + 2x + 5 = 0. Its roots are −1 ± 2ı. In a manner similar to the previous
subsubsection, one gets a2 + 2a+ 5 + 2b(a+ 1)i+ 2c(a+ 1)j = 0 and thus has


a2 + 2a+ 5 = 0 , (103)

2b(a+ 1) = 0 , (104)

2c(a+ 1) = 0. (105)

Likewise, if a = −1, (104) and (105) hold, irrespective of b, c. But (103) doesn’t, since (−1)2 +
2 · (−1)+ 5 = 4 ̸= 0. So a ̸= −1, and we have b = c = 0, which means we are induced to ‘forget’
Tr again. (104) and (105) being trivial, we just solve (103) to get the roots −1 ± 2ı, as desired.
Roots that have been obtained in terms of tr’s have so far coincided with those computed in a usual
manner, which might give us some relief. But will this situation really continue?

72For computation of this, see [13, Table 1].
73See [13, 2.1].
74Ditto.
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9.2.3 The case roots are multiple.

Example 9.2.3.1. x2 + 2x + 1 = 0. Its root is −1 only. Likewise, one gets a2 + 2a + 1 + 2b(a +
1)i+ 2c(a+ 1)j = 0 and thus has 

a2 + 2a+ 1 = 0 , (106)

2b(a+ 1) = 0 , (107)

2c(a+ 1) = 0. (108)

If a = −1, (107) and (108) hold, irrespective of b, c. This time, (106) does, too, since (−1)2 +
2 · (−1) + 1 = 0. Since −1 is the sole root, a = −1, and b, c are arbitrary. That is, we get the
root −1 + bi + cj, b, c ∈ R. In other words, the QE under consideration has been shown to have
infinitely many solutions, since b, c are arbitrary real numbers. This seems rather unusual, and we
further get interested in whether tr’s form a group in a normal sense, raising the following question.

10 tr-related question 2: what about group formation under
addition or multiplication?

It is known that for a nonempty set together with a binary operation to be called a group G, it needs
to meet the following axioms [14]:

1. Closure

2. Identity element

3. Associativity

4. Inverse element

75

In what follows, we check whether tr’s meet these axioms in a step-by-step manner.

10.1 Checking whether they form a group under addition
10.1.1 Closure

Axiom is that for all a, b in G, the result of the operation a · b is also in G ; we consider two
elements in Tr, i.e., 

tr1 = a1 + b1i+ c1j, a1, b1, c1 ∈ R, (109)

tr2 = a2 + b2i+ c2j, a2, b2, c2 ∈ R. (110)

Then, we have
75This is sometimes omitted. See e.g., here and [15].
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tr1 + tr2 = a1 + b1i+ c1j + a2 + b2i+ c2j = (a1 + a2) + (b1 + b2)i+ (b2 + c2)j,

which we rewrite as

tr3 = a3 + b3i+ c3j, a3, b3, c3 ∈ R. (111)

So tr3, the sum of tr1 and tr2, is an element of Tr, again, which means that this axiom holds.

10.1.2 Identity element

Axiom is that there is an element e in G such that for all elements a in G, one has e ·a= a ·e= a;
first, we write  trid = arid + bridi+ cridj, arid, brid, crid ∈ R, (112)

tr = ar + bri+ crj, ar, br, cr ∈ R. (113)

Then, we compute trid+tr = arid+bridi+cridj+ar+bri+crj = arid+ar+(brid+br)i+(crid+cr)j.
For trid to be actually an identity element trID, this needs to amount to tr. That is, we have

arid + ar = ar, (114)

brid + br = br, (115)

crid + cr = cr. (116)

It follows from (114)− (116) that arid = brid = crid = 0. Likewise, computing tr + trid, we get
ar + arid = ar, (117)

br + brid = br, (118)

cr + crid = cr. (119)

It follows from (117)− (119) that arid = brid = crid = 0, again. Taken together, trID = 0+ 0 · i+
0 · j = 0 is the identity element, and thus, this axiom is satisfied.

10.1.3 Associativity

Axiom is that for all a, b and c in G, one has (a ·b) ·c = a ·(b ·c) ; using (109)−(111), we compute

(tr1 + tr2) + tr3 = (a1 + b1i+ c1j + a2 + b2i+ c2j) + a3 + b3i+ c3j = a1 + b1i+ c1j + a2 +
b2i+ c2j + a3 + b3i+ c3j.

On the other hand,

tr1 + (tr2 + tr3) = a1 + b1i+ c1j + (a2 + b2i+ c2j + a3 + b3i+ c3j) = a1 + b1i+ c1j + a2 +
b2i+ c2j + a3 + b3i+ c3j.

We observe we have (tr1 + tr2) + tr3 = tr1 + (tr2 + tr3), and thus this axiom is met.
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10.1.4 Inverse element

Axiom is that for each a in G, there exists an element b in G such that a·b = b·a = e, where e is the
identity element. As shown in 10.1.2, trID = 0 is the identity element. So for triv = ariv + brivi+
crivj, where ariv, briv, criv ∈ R, to be an inverse element, tr+triv = ar+bri+crj+ariv+brivi+crivj
needs to amount to 0. That is, we have


ar + ariv = 0, (120)

br + briv = 0, (121)

cr + criv = 0. (122)

It follows from (120) − (122) that ariv = −ar, briv = −br, and criv = −cr. Likewise, computing
triv + tr, we get ariv + ar = briv + br = criv + cr = 0. Thus, ariv = −ar, briv = −br, and
criv = −cr, again. So triv = −ar − bri− crj is the inverse element trIV.

Taken together, Tr meets the aforementioned four axioms. Hence, they form a group under
addition.

10.2 Checking whether they form a group under multiplication
Paying attention to the relation 1

tr
= t̄r

a2
, where t̄r = a− bi− cj [13, (5) or (6)], we assume a ̸= 0

in what follows 76.

10.2.1 Closure

We substitute [13, (1)] for showing that this axiom holds 77.

10.2.2 Identity element

Again, axiom is that there exists an element e in G such that for all elements a in G, one has
e · a = a · e = a. 78 Using (112) and (113), we compute

trid · tr = (arid + bridi+ cridj) · (ar + bri+ crj)

= arid · (ar + bri+ crj) + bridi · (ar + bri+ crj) + cridj · (ar + bri+ crj)

= aridar+aridbri+aridcrj+ bridiar+ bridibri+ bridicrj+ cridjar+ cridjbri+ cridjcrj

= aridar + (aridbr + bridar)i+ (aridcr + cridar)j.

For trid to be an identity element, this needs to amount to tr. That is,

76Incidentally, every nonzero quaternion has an inverse wrt the Hamilton product.
77 Replacing a1a2, a1b2+a2b1, and a1c2+a2c1 therein by e.g., d, e, and f , respectively yields tr1 ·tr2 = d+ei+fj,

where d, e, f ∈ R. Thus, tr1 · tr2 ∈ Tr.
78See 10.1.2.
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
aridar = ar, (123)

aridbr + bridar = br, (124)

aridcr + cridar = cr. (125)

It follows from (123) that (arid − 1)ar = 0. Since ar is arbitrary, arid = 1. Substituting this into
(124) and (125), one gets bridar = cridar = 0. Again, since ar is arbitrary, brid = crid = 0.

We also check whether a · e = e holds. Likewise, we equate tr · trid with tr. Since tr’s are
commutative under multiplication 79 , we have tr · trid = trid · tr. So we can say we have virtually
done checking in our preceding arguments. That is, in either case, arid = 1, and brid = crid = 0;
trid = 1 + 0 · i+ 0 · j = 1 is the identity element trID. Hence, this axiom is satisfied.

10.2.3 Associativity

This axiom is met [12, 7.1].

10.2.4 Inverse element

Again, axiom is that for each a in G, there exists an element b in G such that a · b = b · a = e,
where e is the identity element. 80 As mentioned earlier,

1

tr
=

a− bi− cj

a2
. (126)

Multiplication of (126) by tr on the left side yields

tr · 1
tr
= tr · a−bi−cj

a2
,

whose RHS amounts to

(a+ bi+ cj) · a−bi−cj
a2

= (a+bi+cj)·(a−bi−cj)
a2

= 81 a2

a2
= 1,

i.e., trID.
On the other hand, multiplication of (126) by tr on the right side yields

1
tr
· tr = a−bi−cj

a2
· tr,

whose RHS amounts to
a−bi−cj

a2
· (a+ bi+ cj) = (a−bi−cj)·(a+bi+cj)

a2
= 82 a2

a2
= 1,

i.e., trID. One thus can say 1
tr

∈ Tr
83 is an inverse element trIV. Hence, Tr meets the aforemen-

tioned four axioms to form a group under multiplication, if a ̸= 0 84 .
79See [13, 3.1].
80See 10.1.4
81See [13, (3)].
82See [13, (4)].
83If one rewrites (126) as e.g., 1

tr
= d+ ei+ fj, where d, e, f ∈ R, one easily sees it is an element of Tr. Cf. [13,

Def. 2.1.4].
84We might discuss the case a = 0 elsewhere.
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11 Discussion
Since we have already mentioned CF’s 85 , at the outset, we should like to consider the following.

f(x) = ax3 + bx+ c, a, b, c ∈ R, a ̸= 0. (127)

This can be thought of as

g(x) = ax3 + dx2 + ex+ f, a, d, e, f ∈ R, a ̸= 0

subjected to TT 86. Then, we have

f ′(x) = 3ax2 + b, f ′′(x) = 6ax,

where the character ′ stands for differentiation wrt x. Setting f ′′(x) = 0, we get x = 0, IP of f(x),
since a ̸= 0 87. Putting x = 0 in f(x) and f ′(x), one further gets

f(0) = c, f ′(0) = b,

which amount to some coefficients in the RHS of (127). Recalling that the RHS of (127) was
regarded as something subjected to TT, we now understand the relationship between TT and IP 88.

As for Fig. 1, it seems interesting to point out that env is a solution of Clairaut’s equation and
can be a parabola like those seen in (a)−(c). We also suggest the possibility that (a) has something
to do with strip [16, FIG. 21(b)]. As for Fig. 2, if we are allowed to interpret the points −1 and 1
plotted on R1 as the set {−1, 1}, it is a group that is usually denoted Z2 [14]. As for φ, we raise a
question similar to Question 3.2.2.

Question 11.1. What does computing φ mean at all?

We try to answer this question. We a priori consider

x

y
− y

x
= 1 (128)

to replace its y’s by 1’s. Then, we get

x

1
− 1

x
= 1. (129)

Multiplying both sides of the above by x, we get x2 − 1 = x, i.e., (44). This makes us aware that
we have already been involved in computing φ and 1 − φ, the roots of (44), while making such
replacement.

By the way, multiplying both sides of (128) by xy, one gets x2 − y2 = xy 89 . Regarding this
as a QE wrt y, one solves it to get

85See e.g., Figs. 8 and 11.
86Cf. 3.1.
87See (127).
88By the way, we showed the relevance of TT to ‘tracelessness’ in 3.1.
89One can derive this from (80) by setting a+ b+ c = 1 and c = 1. It is also derivable from (90) by setting a+ b+
c = 1.
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y = −x±
√
5|x|

2
90 .

Since x ̸= 0 in (129), we deal with the following cases.

Case 1. x > 0. So y = −x±
√
5x

2
.

Case 2. x < 0. So y = −x±
√
5(−x)
2

= −x∓
√
5x

2
.

Since these cases are mathematically the same, it suffices to consider Case 1 only. Next, we
separately rewrite y = −x±

√
5x

2
as

y = −x+
√
5x

2
= x · −1+

√
5

2
= (φ− 1)x, (130)

and

y = −x−
√
5x

2
= −x · 1+

√
5

2
= −φx. (131)

Thus, we have obtained φ. By the way, we have derived (129) from putting y = 1 in (128). What
does this mean geometrically? We visualise (128) and y = 1:

Fig. 21. Visualisation of (128) and the line y = 1. Original wxMaxima image was
retouched by GIMP ver. 2.10.38 and Pinta ver. 2.1.2.

In the above figure, the characters φ and 1− φ denote the solutions to (44). Hence,

90Here we have used QF.
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Answer 11.2. Adding a line to the graph of x
y
− y

x
= 1.

This is a rather ‘geometric’ answer.
Incidentally, since (φ− 1) · (−φ) = −(φ2 − φ) = −1, and (x, y) = (0, 0) is a solution to the

system of equations (130) − (131), some might be ready to say that they intersect vertically at O.
But actually, those lines are ‘punctured’ at O as shown in Fig. 21. Moreover, it is clear from (128)
that (x, y) ̸= (0, 0). So it seems hard to think they do so in a normal sense.

Remark 11.3. That said, one can imagine that they do so by ignoring such a ‘puncture’, if one
is (unnecessarily) imaginative 91 .

What about the following question, then?

Question 11.4. What if we imagine

x

1
+

1

x
(132)

instead of the LHS of (129)?

We try to answer this in terms of EMC. If one puts x =EMC in (132), one gets

EMC

1
+

1

EMC
. (133)

The value of (133) is known to be 2.3096 . . . . What about its (ir)rationality? If it is a rational,
then, using p, q ∈ Z, one can write

EMC

1
+

1

EMC
=

p

q
, q ̸= 0.

That is, we deal with qEMC2 − pEMC+ q = 0, which leads us to consider

qx2 − px+ q = 0,

a QE wrt x whose root is EMC. Since this is an algebraic equation, its roots include rational
numbers and irrational numbers . Hence,

Answer 11.5. We might get faced with the (ir)rationality of EMC.

This is the ‘tidbit’ implicated in Abstract. Now let us get back to the matter of φ and raise a
question.

Question 11.6. Can CF play a role similar to (128) in Fig. 21?

In order to answer this question, we draw the following:

91Some might recall vector field corresponding to a differential form on the punctured plane .
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Fig. 22. Visualisation of the CF y = x3 − x and the line y = x+ 1

In Fig. 22, one can easily ‘see’ 1− φ and φ (plus −1) on the x-axis. Hence,

Answer 11.7. Yes.

Again, addition of a line revealed ‘latent’ ϕ and 1 − ϕ 92 . In addition to dealing with QE, this
might also serve as a propaedeutic to revisiting CE, since a CE appeared and was solved in Fig.
22.

As for verifications performed in 5.3, since our chief interest consisted in math underlying
NM and our method, we introduced only mathematical difference to two kinds of codes used in
our verifications — the difference between the equations to which we appealed 93 —, expecting
that allowing for such difference would sharpen the contrast between them. In other words, other
parameters like initial value and iteration number were basically identical.

Incidentally, it is known that convergence in NM hinges upon the choice of the initial value
x0 [17]. So we wish to turn our attention to ‘initial value problem’, by which we mean we are
interested in how the difference in x0 can affect convergence. We start from an example related to
(47) and (48).

Example 11.8. a = 1, b = −1, c = −6, x0 =
√
6.

N.B. The following Clojure computation is carried out in conformity to Steps 1− 3 in 5.3.

% more cubic_eq_part_1_discuss_1.clj
(defn discuss_1[i]
(if(< i 2)(Math/sqrt 6)
(Math/sqrt(+ 6(discuss_1(dec i))))))
(doseq [x (range 1 26)]
(prn(discuss_1 x)))
% time clojure cubic_eq_part_1_discuss_1.clj
2.449489742783178
2.9068006025152773

92Cf. Fig. 21.
93Compare e.g., Step 3 of Example 5.3.3 with (50).
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2.984426343958798
2.9974032668226007
2.9995671799148957
2.999927862451845
2.9999879770512154
2.9999979961745336
2.9999996660290704
2.999999944338178
2.9999999907230297
2.999999998453838
2.999999999742306
2.999999999957051
2.9999999999928417
2.9999999999988067
2.999999999999801
2.9999999999999667
2.9999999999999942
2.999999999999999
3.0
3.0
3.0
3.0
3.0
1.288u 0.114s 0:00.54 257.4% 0+0k 0+0io 0pf+0w

Double-checking is done by ECL:

% more cubic_eq_part_1_discuss_2.lsp
(do((n 1 (incf n)))((>= n 26))
(defun discuss_2(n)(if(< n 2)(sqrt 6)
(sqrt (+ (discuss_2(- n 1)) 6))))
(format t "˜2d˜%" (discuss_2 n)))
(quit)
% time ecl --load cubic_eq_part_1_discuss_2.lsp
2.4494898
2.9068005
2.9844263
2.9974034
2.9995673
2.9999278
2.9999878
2.9999979
2.9999998
3.0
3.0
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3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
0.066u 0.006s 0:00.05 120.0% 0+0k 6840+0io 22pf+0w

Hence, we have confirmed that the recurrence converges to 3. In this example, the recurrence
started from

√
6. What if it starts from, say 6? Here is another one:

Example 11.9. a = 1, b = −1, c = −6, x0 = 6.

% more cubic_eq_part_1_discuss_3.clj
(defn discuss_3 [i]
(if(< i 2)6
(Math/sqrt(+ 6(discuss_3 (dec i))))))
(doseq [x (range 1 26)]
(prn(discuss_3 x)))
% time clojure cubic_eq_part_1_discuss_3.clj
6
3.4641016151377544
3.076378002641703
3.0127027736970176
3.0021163824370665
3.0003527096721587
3.000058784369426
3.000009797378906
3.00000163289604
3.000000272149328
3.000000045358221
3.0000000075597035
3.000000001259951
3.0000000002099916
3.0000000000349987
3.000000000005833
3.000000000000972
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3.000000000000162
3.000000000000027
3.0000000000000044
3.0000000000000004
3.0
3.0
3.0
3.0
1.276u 0.130s 0:00.54 259.2% 0+0k 0+0io 0pf+0w

This is double-checked in a similar fashion.

% more cubic_eq_part_1_discuss_4.lsp
(do((n 1 (incf n)))((>= n 26))
(defun discuss_4(n)(if(< n 2)6
(sqrt (+ (discuss_4(- n 1)) 6))))
(format t "˜2d˜%" (discuss_4 n)))
(quit)
% time ecl --load cubic_eq_part_1_discuss_4.lsp
6
3.4641016
3.076378
3.0127027
3.0021164
3.0003526
3.000059
3.0000098
3.0000017
3.0000002
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
0.059u 0.011s 0:00.04 150.0% 0+0k 0+0io 0pf+0w

60



Thus, we have confirmed the recurrence converges to 3. Taken together, x0 doesn’t matter at least
in these examples.

Here we recall FS and its ‘numbness’. But what is that ‘numbness’? The sequence is either

[0, 1], 1, 2, 3, 5, 8, · · ·

or

[1, 1], 2, 3, 5, 8, 13, · · · ,

where ‘initial values’ are emphasised by brackets. Since whether the ‘initial value’ is [0, 1] doesn’t
matter in the long run, in a sense, FS seems ‘callous’ to that kind of condition. And we dare to call
such a property ‘Fibonacci numbness’.

Remark 11.10. By contrast, roughly speaking, chaotic systems exhibit a great sensitivity to
initial conditions.

But does such ‘Fibonacci numbness’ prevail? Specifically, what about the recurrence other than
(45)? We take

an+2 = 2an+1 − 4an (134)

for example.

Remark 11.11. (134) can be regarded as a part of

 an+1

an+2

=

 0 1
−4 2

  an
an+1

.
94

First, we run ‘[0,1]’ Ruby code.

% which ruby
/usr/bin/ruby
% ruby -v
ruby 3.3.4 (2024-07-09 revision be1089c8ec) [x86_64-linux-gnu]
% more qe_starting_from_0_1.rb
#!/usr/bin/ruby
def qe_starting_from_0_1(n)
f1,f2=0,1
while f1<=n
puts f1
f1,f2=f2,-4*f1+2*f2
end end
puts qe_starting_from_0_1(4444)

94This 2× 2 matrix is a kind of T2. Cf. Example 7.1.
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% ruby qe_starting_from_0_1.rb
0
1
2
0
-8
-16
0
64
128
0
-512
-1024
0
4096

Remark 11.12. These values coincide with a part of this sequence .

Next, ‘[1, 1]’ code is run.

% more qe_starting_from_1_1.rb
#!/usr/bin/ruby
def qe_starting_from_1_1(n)
f1,f2=1,1
while f1<=n
puts f1
f1,f2=f2,-4*f1+2*f2
end end
puts qe_starting_from_1_1(4444)
% ruby qe_starting_from_1_1.rb
1
1
-2
-8
-8
16
64
64
-128
-512
-512
1024
4096
4096
-8192
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-32768
-32768

Remark 11.13. These values coincide with a part of this sequence .

That the difference between [0, 1] and [1, 1] gave rise to a non-negligible difference in values is
noteworthy; the recurrence (134) seems ‘not-so-numb’ to the difference in ‘initial values’ unlike
(45).

Talking of closed form , one seems to prefer a closed-form expression to a recurrence [18].
But are closed-forms always superior to recurrences? Recalling 6.1.2, we compare a closed-form
expression with a recurrence, both of which are written in ALGOL and yield FS.

First, we run closed-form version.

% a68g -v
Algol 68 Genie 3.1.2
Copyright 2001-2023 Marcel van der Veer <algol68g@xs4all.nl>.
% more fib-cl.a68
PROC closed fibonacci = (INT n)INT:(

REAL sqrt 5=sqrt(5);
REAL p=(1+sqrt 5)/2;

CO
p is GR.
CO

REAL q=1-p;
ENTIER((p**n-q**n)/sqrt 5));

FOR i FROM 0 TO 16 WHILE
print(whole(closed fibonacci(i),0));

# WHILE # i /= 16 DO
print(", ")

OD;
print(new line)
% a68g -heap=2048M fib-cl.a68
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 89, 143, 232, 377, 610, 986

In the above program, we appealed to the closed-form expression ϕn−(1−ϕ)n√
5

; the values 54, 143,

232, and 986 should be 55, 144, 233, and 987, respectively 95 .

95See e.g., here .
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We now run recurrence-version:

% more fib-rec.a68
PROC rec fibonacci= (INT n)INT:

( n < 2 | n | rec fibonacci(n-1) + rec fibonacci(n-2));
FOR i FROM 0 TO 16 WHILE
print(whole(rec fibonacci(i),0));

# WHILE # i /= 16 DO
print(", ")

OD;
print(new line)
CO
Cf.https://rosettacode.org/wiki/Fibonacci_sequence#Recursive_3
CO
% a68g -heap=2048M fib-rec.a68
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

This time, one gets correct values . By the way, R can also yield such values as shown below.

% more fibo.R
fibo<-function(n){
if(n<2)n else Recall(n-1)+Recall(n-2)}
print.table(lapply(0:16,fibo))
# Cf.
# https://rosettacode.org/wiki/Fibonacci_sequence#R
# https://rosettacode.org/wiki/Comments#R
% Rscript --version
Rscript (R) version 4.4.1 (2024-06-14)
% Rscript fibo.R
[1] 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377
610 987

So it seems use of a closed-form expression can cause a practical problem. Ironically, FS betrayed
some subtlety math and computer programming entail.

We move on to tr’s to discuss matrix representation of i and j [13, Table 1]. They can be
represented as

 0 1 0
0 0 0
0 0 0

 and

 0 0 1
0 0 0
0 0 0

,
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respectively, since i2 = ij = O3, etc. hold 96 .

Remark 11.14. Let θ =

 0 1 0
0 0 1
0 0 0

 . Then, θ2 =

 0 0 1
0 0 0
0 0 0

= j. Moreover, we have

(θi)
2 = 0. So in addition to Claim 9.1.4 and Remark 9.1.5, these might make one recall Grass-

mann number .

Now it is time we answered ‘tr-related question 1’ 97 .

Answer 11.15. There can be infinitely many solutions, which are seen in Example 9.2.3.1.

And it is natural that the following question should ensue.

Question 11.16. Do such solutions pose a (serious) drawback of Tr?

Answer 11.17. Yes. They are problematic especially in terms of the uniqueness of QE solu-
tions.

Though we are somewhat embarrassed at this answer, circumstances are not so futile. Thinkable
reasons include

1. We recall that every Lie group gives rise to a Lie algebra, which is the tangent space at the
identity . We apply this to our case. Then, regarding bi+ cj as (b, c), where b, c ∈ R (like a
point in R2 = C), we can imagine a TP;

2. Equations like Diophantine equations can have infinitely many solutions ;

etc.

By regarding a TP in Reason 1 as a three-dimensional object like this , we can ‘higher-dimensionalise’
the complex plane, which we mentioned in e.g., 8. Taking this opportunity, we should like to apply
this ‘higher-dimensionalisation’ to Fig.’s 8 and 11 as follows.

N.B. ‘O’s’ in the following figures are interpreted as the origins (0, 0, 0).

96Cf. [12, footnote 28].
97See 9.
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Fig. 23. ‘3D-isation’ of Fig. 8. Original figure, which was drawn by Pinta ver. 2.1.2, has been
slightly retouched by GIMP ver. 2.10.38.

Fig. 24. ‘3D-isation’ of Fig. 11. This figure was prepared like Fig. 23.
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In either case, starting from a root-finding algorithm for QE’s, one ends up with CF yielding
trajectory -like stuff in 3D space. So the transition from QE to CE which will be dealt with in a
full-fledged fashion in the sequel is smooth (again hopefully). Furthermore, consider e.g.,

f(x) −→ xf(x) + some constant. (135)

Then, starting from f(x) = 0, we get the ‘sequence’

0
↓
a
↓

ax+ b (136)
↓

ax2 + bx+ c (137)
↓

ax3 + bx2 + cx+ d (138)
↓
· · ·

So we can imagine that if things go neatly and/or sequentially like (136)−(138) dictated by (135),
we are to deal with the CE ax3 + bx2 + cx+ d = 0 elsewhere.

In summary, we hope questions, answers, etc. described herein will serve as a propaedeutic
to revisiting CE, since many of the deepest questions in mathematics still involve questions about
cubics [19].

Finally, we can also imagine fibre bundle [20, Figure 3.2]-like structure by ‘3D-ising’ e.g., Fig.
3, but wonder if it is premature to put forward the notion of ‘fibre algebra/group’. . ..

Acknowledgment. We should like to thank the developers of ALGOL, AXIOM, Clojure ,
ECL, Erlang , FriCAS , GIMP, Inkscape , Julia , Pinta , R , Ruby , SBCL, SVG, SWI-Prolog ,
and wxMaxima for their indirect help, which enabled us to carry out visualisations and some com-
putations.
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12 Appendix

12.1 How (2) is computed
Replacing x in the polynomial x2+ b

a
x+ c

a
by x− b

2a
, one computes (x− b

2a
)2+ b

a
· (x− b

2a
)+ c

a
=

x2 − b
a
x+ b2

4a2
+ b

a
x− b2

2a2
+ c

a
= x2 + 4ac−b2

4a2
, which is rewritten as x2 + d.
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12.2 Another way to get D of (3)
First, we differentiate both sides of (3) wrt t to get 2t − 2

√
ax = 0, from which it follows that

t =
√
ax. Next, we substitute this into the LHS of (3) to get (

√
ax)2 − 2

√
ax ·

√
ax+ y − bx− c.

After some computation, this becomes y − ax2 − bx − c. Multiplication of this by −4 yields
4(ax2 + bx+ c− y), or D of (3).

Remark 12.2.1. Elimination of t in this fashion is not seen in 3.2.

12.3 Another way of φ derivation
We a priori consider

x5 = 1, (139)

which is factored as

(x− 1)(x4 + x3 + x2 + x+ 1) = 0.

So one root of (139) is 1; other roots are obtained by solving the QuE

x4 + x3 + x2 + x+ 1 = 0. (140)

Since it is clear that x = 0 is not a root of (140), we can divide both sides of it by x2( ̸= 0) to get

x2 + x+ 1 +
1

x
+

1

x2
= 0.

After some manipulation, the above becomes

(x+
1

x
)2 + (x+

1

x
)− 1 = 0.

Setting x+ 1
x
= t, we rewrite the above as the QE

t2 + t− 1 = 0,

which we solve to get the roots 
t+ = −1+

√
5

2
= φ− 1, (141)

t− = −1−
√
5

2
= −φ. (142)

Adding 1 to the relation (141) (or multiplying the relation (142) by −1), one gets φ. Hence, we
have derived φ from (139).

Remark 12.3.1. The fifth roots of unity in the complex plane might help us understand (139)
(rather) geometrically.
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12.4 Why (46) holds
We rewrite (46) as

A =

√
1 +

√
1 +

√
1 +

√
1 +

√
1 + · · · ,

where A is some unknown. Then, squaring both sides, one gets

A2 = 1 +

√
1 +

√
1 +

√
1 +

√
1 + · · · ,

which can be further rewritten as A2 = 1 + A. Solving this for A yields A = 1±
√
5

2
. However,

since it is clear from the RHS of (46) that A is a positive real number, we drop 1−
√
5

2
. So we get

A = 1+
√
5

2
= φ. Hence, we have

φ =

√
1 +

√
1 +

√
1 +

√
1 +

√
1 + · · · .

Remark 12.4.1. If we set x1=
3

√
b+ a

3
√
b+ a 3

√
b+ · · ·, we get x3

1 = b+ a
3
√

b+ a 3
√
b+ · · ·

in a similar fashion. So x3
1 − b = ax1, which means that x1 is a root of the CE x3 − ax− b = 0.

Remark 12.4.2. The above CE, which can be regarded as an equation subjected to TT , might
also serve as a propaedeutic to revisiting CE.

12.5 Other CF-related stuff
We add the following 98 to Fig.’s 8 and 11.

98These figures were prepared like Fig.’s 23 and 24.
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Remark 12.5.1. These might help one understand approximations used in those Fig.’s 99 .

12.6 Slight modification in an SBCL code and its outcome
We slightly modify the SBCL code used in Verification 5.3.12 and observe how things change:

% more cubic_eq_part_1_v_5_3_12m.lsp
(defun v_5_3_12m(n)(if(= n 0)(/ 3 2)
(/(+ (* 4(* (v_5_3_12m(- n 1))(v_5_3_12m(- n 1))))9)
(- (* 8 (v_5_3_12m(- n 1)))5.0))))
(loop for i from 0 to 20 do(format t "˜D˜%"(v_5_3_12m i)))
% time sbcl --script cubic_eq_part_1_v_5_3_12m.lsp
3/2
2.5714285
2.27654
2.2502131
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
219.463u 0.208s 3:39.74 99.9% 0+0k 0+0io 0pf+0w

One repeatedly sees convergence to get X1 = 2.25. This is not surprising, since aˆ2 (‘ˆ’ is
‘expt’ in the original code) is mathematically the same as a× a (‘×’ is ‘*’ in the modified code).
However, we observe the last lines of each output, i.e., 0.151u. . . and 219.463u. . ., are rather
different. So a change that does not affect mathematical content can cause a (significant) change.
This phenomenon itself might be well-known 100 , but it seems of some interest.

99
Cf. [10, Fig. 4.6(a), (c)].

100Cf. footnote 1.
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