
The solution path of Riemann hypothesis

Zhiyang Zhang

Nanning,Guangxi,China

438951211@qq.com

Abstract

The Riemann hypothesis was proposed by mathematician Bernhard Riemann

in 1859. The usual view is that Riemann makes a guess that all non trivial ze-

ros are located on the critical line after simply calculating a few zeros, but this

is not the case. Riemann even knew that the probability of counterexamples

occurring was very low at that time, so he shyly put forward such a hypothesis.

This article provides a detailed explanation of the conditions for the existence

of counterexamples in Riemann’s hypothesis from his perspective, and provides

a calculation method for counterexamples.

When you carefully read this paper, you will know that both mainstream meth-

ods currently have flaws. One is to rigorously prove the Riemann hypothesis,

but due to the existence of counterexamples to the Riemann hypothesis, no mat-

ter how hard one tries, they cannot achieve this. Another method is to calculate

counterexamples to the Riemann hypothesis through computers, but this is fu-

tile because the counterexamples are located near infinity. Unlike conventional

mathematical papers, this paper does not focus on a specific field, but rather

uses a cocktail approach to prove my point. Not only does it require knowledge

of analytic number theory, but it also requires joint efforts in multiple fields

such as probability theory and topology.
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1. Current mainstream theories

There is no fixed method to prove the Riemann hypothesis, and a wide range of

mathematical tools are required, starting from the limits in mathematical anal-

ysis, to differentiation, integration, series, differential equations, and then to

residues of complex functions, contour integration, Cauchy Riemann equations,

probability theory, functional analysis, integral transformations, numerical cal-

culations, and various branches of mathematics. The biggest problem currently

is that mathematicians generally believe that the Riemann hypothesis holds,

but it cannot be rigorously proven. By using elliptic integration, it is possible

to calculate that all low order non trivial zeros are located on the critical line,

but there is no way to deal with high-order zeros. An infinitely small and al-

most negligible interference term has put the study of Riemann hypothesis in

a dilemma. Due to the current efforts of mathematicians in this direction, a

significant breakthrough is sure to be achieved in the future, but the difficulty

will be very high.

Therefore, I want to create a new mathematical system through a novel ap-

proach to prove or falsify the Riemann hypothesis. This method is based on

the Riemann hypothesis that there is a counterexample that causes changes in

the image, and then locates the numerical value of the counterexample through

these small changes. Essentially, this is a method of combining numbers and

shapes, which is exactly the original method adopted by Riemann at that time.

It can be seen how profound Riemann’s understanding of complex functions and

analytical extensions is. His brain quickly draws various graphs and accurately

defines the meaning of each value, which is also my area of expertise.

That is to say, in the case where the elliptic integration problem cannot be

solved, I adopted a lateral research method to study the Riemann hypothesis,

but the difficulty was greatly reduced. Essentially, the core issue of Riemann

hypothesis is analytical extension, which greatly reduces the probability of coun-

terexamples occurring.
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2. Three commonly used graphs for studying Riemann hypothesis

Thanks to the current development of computers, we can clearly see the graph

of the Riemann Zeta function. The first step is to list the Riemann Zeta func-

tions.According to the definition of the Riemann Zeta function, within the crit-

ical band

ζ (s) =
1

1− 21−s

∞∑
n=1

(−1)
n+1

ns
(1)

This Riemann Zeta function is analytically extended and is a result of extending

the function from the real field to the complex field. At least you need to have

studied complex functions to understand them. Generally speaking, they will

be introduced in the last chapter. It is to cut the coordinate system from the

real axis, rotate it, and then reassemble it into a new coordinate system. Due

to the rotation of the coordinate system, the definition of a line has changed.

The first figure depicts the variation of the real and imaginary parts of Zeta (s)

along the critical line starting from the real axis

Figure 1:

In the second picture, I marked the real part of Zeta (s) in red and the imaginary

part in blue. When the real part of s is -2 and -4, we can see the first two zeros
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in the lower left corner. Between 0 and 1, I have marked the critical zone and

indicated the intersection of the real and imaginary parts of Zeta. These are

non trivial zero Riemann functions. At higher values, we see more zeros and

two seemingly random functions whose density increases as the imaginary part

of s increases.

Figure 2:

In the third figure, Re (s)=1/2 is the horizontal axis. The real part Re (s)

of Zeta (s) is shown in red, and the imaginary part Im (s) is shown in blue.

The non trivial zero point is the intersection point of the red blueprint on the

horizontal line.
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Figure 3:

3. A brand new method for finding non trivial zeros

In Figure 1, we can see that as t increases, the changes in the real and imaginary

parts of Zeta (s) follow a pattern of constantly drawing circles. When the rate

of change of the real part Re (s) of Zeta (s) with respect to t approaches 0, the

approximate value of the non trivial zero point can be calculated.

ζ (s) =
1

1− 21−s

∞∑
n=1

(−1)
n+1

ns
(2)

=
1

1− 21−r−it

∞∑
n=1

(−1)
n+1

nr+it
(3)

=
1

1− (21−r) (2−it)

∞∑
n=1

(−1)
n+1

n−it

nr
(4)

=
1

1− (21−r)
(
eln 2−it

) ∞∑
n=1

(−1)
n+1

eln n−it

nr
(5)
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=
1

1− (21−r) (e−it·ln 2)

∞∑
n=1

(−1)
n+1

e−it·lnn

nr
(6)

=
1

1− (21−r) [cos (−t · ln 2) + isin (−t · ln 2)]
·

∞∑
n=1

(−1)
n+1

[cos (−t · lnn) + isin (−t · lnn)]
nr

(7)

=
1

[1− (21−r) cos (−t · ln 2)]− i (21−r) sin (−t · ln 2)
·

∞∑
n=1

(−1)
n+1

[cos (−t · lnn) + isin (−t · lnn)]
nr

(8)

=

[
1−

(
21−r

)
cos (−t · ln 2)

]
+ i

(
21−r

)
sin (−t · ln 2)

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
·

∞∑
n=1

(−1)
n+1

[cos (−t · lnn) + isin (−t · lnn)]
nr

(9)

=

[
1−

(
21−r

)
cos (−t · ln 2)

] ∞∑
n=1

(−1)n+1 cos(−t·lnn)
nr

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
−

(
21−r

)
sin (−t · ln 2)

∞∑
n=1

(−1)n+1 sin(−t·lnn)
nr

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
+

i

[
1−

(
21−r

)
cos (−t · ln 2)

] ∞∑
n=1

(−1)n+1 sin(−t·lnn)
nr

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
+
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i

(
21−r

)
sin (−t · ln 2)

∞∑
n=1

(−1)n+1 cos(−t·lnn)
nr

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
(10)

Define

f(r, t) =

[
1−

(
21−r

)
cos (−t · ln 2)

] ∞∑
n=1

(−1)n+1 cos(−t·lnn)
nr

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
−

(
21−r

)
sin (−t · ln 2)

∞∑
n=1

(−1)n+1 sin(−t·lnn)
nr

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
(11)

g(r, t) =

[
1−

(
21−r

)
cos (−t · ln 2)

] ∞∑
n=1

(−1)n+1 sin(−t·lnn)
nr

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
+

(
21−r

)
sin (−t · ln 2)

∞∑
n=1

(−1)n+1 cos(−t·lnn)
nr

[1− (21−r) cos (−t · ln 2)]2 + [(21−r) sin (−t · ln 2)]2
(12)

Then

ζ (s) = f(r, t) + i · g(r, t) (13)

Define

α(r, t) =
(
21−r

)
cos (−t · ln 2) (14)

β(r, t) =
(
21−r

)
sin (−t · ln 2) (15)

χ(r, t) =

∞∑
n=1

(−1)
n+1

cos (−t · lnn)
nr

(16)
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δ(r, t) =

∞∑
n=1

(−1)
n+1

sin (−t · lnn)
nr

(17)

So

f(r, t) =
(1− α(r, t)) · χ(r, t)− β(r, t) · δ(r, t)

(1− α(r, t))
2
+ β2(r, t)

(18)

g(r, t) =
(1− α(r, t)) · δ(r, t) + β(r, t) · χ(r, t)

(1− α(r, t))
2
+ β2(r, t)

(19)

Derive that

∂α(r, t)

∂t
=

∂
[(
21−r

)
cos (−t · ln 2)

]
∂t

(20)

= −
(
21−r

)
sin (−t · ln 2) ∂α (−t · ln 2)

∂t
(21)

= ln 2 ·
(
21−r

)
sin (−t · ln 2) (22)

= ln 2 · β(r, t) (23)

∂β(r, t)

∂t
=

∂
[(
21−r

)
sin (−t · ln 2)

]
∂t

(24)

= − ln 2 ·
(
21−r

)
cos (−t · ln 2) (25)

= − ln 2 · α(r, t) (26)
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∂χ(r, t)

∂t
=

∂
∞∑
n=1

(−1)n+1 cos(−t·lnn)
nr

∂t
=

∞∑
n=1

(−1)
n+1

lnn sin (−t · lnn)
nr

(27)

∂2χ(r, t)

∂t2
=

∂
∞∑
n=1

(−1)n+1 lnn sin(−t·lnn)
nr

∂t
= −

∞∑
n=1

(−1)
n+1

ln2n cos (−t · lnn)
nr

(28)

∂δ(r, t)

∂t
=

∂
∞∑
n=1

(−1)n+1 sin(−t·lnn)
nr

∂t
= −

∞∑
n=1

(−1)
n+1

lnn cos (−t · lnn)
nr

(29)

∂2δ(r, t)

∂t2
=

−∂
∞∑
n=1

(−1)n+1 lnn cos(−t·lnn)
nr

∂t
= −

∞∑
n=1

(−1)
n+1

ln2n sin (−t · lnn)
nr

(30)

Then

∂f(r, t)

∂t
=

∂ (1−α(r,t))·χ(r,t)−β(r,t)·δ(r,t)
(1−α(r,t))2+β2(r,t)

∂t
(31)

=

[
(1− α(r, t))

2
+ β2(r, t)

]
∂[(1−α(r,t))·χ(r,t)−β(r,t)·δ(r,t)]

∂t[
(1− α(r, t))

2
+ β2(r, t)

]2 −

[(1− α(r, t)) · χ(r, t)− β(r, t) · δ(r, t)] ∂[(1−α(r,t))2+β2(r,t)]
∂t[

(1− α(r, t))
2
+ β2(r, t)

]2 (32)

=

[
(1− α(r, t))

2
+ β2(r, t)

] [
(1− α(r, t))∂χ(r,t)∂t + χ(r, t)∂(1−α(r,t))

∂t

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 +
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[
(1− α(r, t))

2
+ β2(r, t)

] [
−β(r, t)∂δ(r,t)∂t − δ(r, t)∂β(r,t)∂t

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 −

[(1− α(r, t)) · χ(r, t)− β(r, t) · δ(r, t)]
[
2 · (1− α(r, t)) · ∂(1−α(r,t))

∂t

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 −

[(1− α(r, t)) · χ(r, t)− β(r, t) · δ(r, t)]
[
2 · β(r, t) · ∂(β(r,t))

∂t

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 (33)

=
(2− 2 · α(r, t))

[
(1− α(r, t))∂χ(r,t)∂t − ln 2 · χ(r, t)β(r, t)

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 +

(2− 2 · α(r, t))
[
−β(r, t)∂δ(r,t)∂t + ln 2 · δ(r, t)α(r, t)

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 +

[(1− α(r, t)) · χ(r, t)− β(r, t) · δ(r, t)] (2 · ln 2 · β(r, t))[
(1− α(r, t))

2
+ β2(r, t)

]2 (34)

∂g(r, t)

∂t
=

∂ (1−α(r,t))·δ(r,t)+β(r,t)·χ(r,t)
(1−α(r,t))2+β2(r,t)

∂t
(35)

=

[
(1− α(r, t))

2
+ β2(r, t)

]
∂[(1−α(r,t))·δ(r,t)+β(r,t)·χ(r,t)]

∂t[
(1− α(r, t))

2
+ β2(r, t)

]2 −

[(1− α(r, t)) · δ(r, t) + β(r, t) · χ(r, t)] ∂[(1−α(r,t))2+β2(r,t)]
∂t[

(1− α(r, t))
2
+ β2(r, t)

]2 (36)
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=

[
(1− α(r, t))

2
+ β2(r, t)

] [
(1− α(r, t))∂δ(r,t)∂t + δ(r, t)∂(1−α(r,t))

∂t

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 +

[
(1− α(r, t))

2
+ β2(r, t)

] [
+β(r, t)∂χ(r,t)∂t + χ(r, t)∂β(r,t)∂t

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 −

[(1− α(r, t)) · δ(r, t) + β(r, t) · χ(r, t)]
[
2 · (1− α(r, t)) · ∂(1−α(r,t))

∂t

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 −

[(1− α(r, t)) · δ(r, t) + β(r, t) · χ(r, t)]
[
2 · β(r, t) · ∂(β(r,t))

∂t

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 (37)

=
(2− 2 · α(r, t))

[
(1− α(r, t))∂δ(r,t)∂t − ln 2 · δ(r, t)β(r, t)

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 +

(2− 2 · α(r, t))
[
β(r, t)∂χ(r,t)∂t − ln 2 · χ(r, t)α(r, t)

]
[
(1− α(r, t))

2
+ β2(r, t)

]2 +

[(1− α(r, t)) · δ(r, t) + β(r, t) · χ(r, t)] (2 · ln 2 · β(r, t))[
(1− α(r, t))

2
+ β2(r, t)

]2 (38)

We can calculate the non trivial zero point of Zeta (s) by using equation 34 to

make its value equal to 0.
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4. Verify the accuracy of the new method through computer valida-

tion

When r=0.5, we calculated the zeros of the Riemann Zeta function using a new

method and compared them with actual values

Table 1:

Serial number new method actual values

1 14.36456 14.134725

2 20.86740 21.022039

3 25.2085 25.0108

4 30.15182 30.42487

5 33.25629 32.93506

6 37.53119 37.58617

7 40.8232 40.9187

8 43.55 43.32307

9 47.66915 48.00515

10 50.01409 49.77383

11 53.07871 52.97032

12 56.3267 56.44624

13 60.13283 59.34704

Through this verification method, I have at least proven that the numerous

equations listed above are accurate.

5. Definition of Zhiyang Zhang Curve

We refer to points that satisfy both of the following equations as Zhiyang Zhang

Points, and according to the concept of analytical extension, these points do not

exist in isolation. If these points are connected, a curve is formed, which is the

curve I defined Zhiyang Zhang Curve.
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∂f(r, t)

∂t
= 0 (39)

∂g(r, t)

∂t
= 0 (40)

Since the Riemann Zeta function is symmetric about the real number axis,

we can at least find one curve. I calculated the points that satisfy these two

equations through computer simulation.

Table 2:

r t Equation (39) Equation (40)

0 2.05 -0.0244723773521 -0.0183082464082

0.05 2.1 -0.0234532115277 -0.0215708095147

0.1 2.16 -0.0129192207387 -0.0200245766013

0.15 2.2 -0.00362507715564 -0.00630811225035

0.2 2.25 0.00760573284656 0.00395336509812

0.25 2.3 0.0175231361095 0.0130844288407

0.3 2.35 0.025776012234 0.0202165497956

0.35 2.4 0.0324964874361 0.0251175544476

0.4 2.4 0.0308770136999 0.0331308500535

0.45 2.45 0.0363998574285 0.0341847819754

0.5 2.5 0.041104680597 0.034128844934

We can create a curve from the point above
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Table 3:

r t Equation (39) Equation (40)

0 8.56 0.114956944351 -0.743107557819

0.05 8.58 0.108399965635 -0.4843935291

0.1 8.61 0.0995857484577 -0.336137621415

0.15 8.63 0.0958068814812 -0.208160770345

0.2 8.64 0.0935868098532 -0.0864169060773

0.25 8.65 0.0908247762845 0.00518429688431

0.3 8.68 0.0883531508267 -0.0049399530501

0.35 8.7 0.0324964874361 0.0251175544476

0.4 8.72 0.0861805886247 0.0138432641493

0.45 8.73 0.0838248292633 0.0571088881507

0.5 8.74 0.0813780353427 0.0983923405983

6. The relationship between Riemann hypothesis counterexamples

and Zhiyang Zhang Curve

This chapter is the soul of the entire paper, and if you can fully understand

it, you will feel very wonderful. If the curve symmetric about the real axis is

referred to as the first type of Zhiyang Zhang Curve, then the remaining curves

can be referred to as the second type of Zhiyang Zhang Curve. Many math-

ematicians wonder why I proposed such a curve in the previous chapter and

directly drew it. Let me tell you, because I saw a turning point in Figure 1,

which requires the appearance of a Zhiyang Zhang Curve. In general, the ap-

pearance of any Zhiyang Zhang Curve will lead to a clear signal in the image,

which indicates the birth of a counterexample to the Riemann hypothesis.

My conclusion is that the existence or absence of the second type of Zhiyang

Zhang Curve is a sufficient and necessary condition for the existence of coun-

terexamples to the Riemann hypothesis.

The following study investigates the probability of the occurrence of counterex-
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amples to the Riemann hypothesis. Due to the relative independence of equa-

tions (39) and (40), although they both have countless solutions, the probability

of accurately locating the two solutions at a point is very low. Essentially, the

core issue of Riemann hypothesis is analytical extension, which greatly reduces

the probability of counterexamples occurring. When two equations with infinite

solutions have at least one solution that happens to be the same, a counterex-

ample will appear. Since numbers are infinite, the probability of two numbers

being exactly the same is almost zero, but you can try infinitely, so it cannot

be proven that this possibility does not exist.

Here, I have great respect for Riemann, who can predict that the probability

of a counterexample occurring is extremely low. This paper has made it clear

that any attempt to prove the Riemann hypothesis cannot avoid the possibility

of this counterexample occurring, and existing numerical calculation methods

have become meaningless. Because you cannot find counterexamples within a

limited number.

7. A simple function for determining the existence of counterexam-

ples to Riemann hypothesis

Since the Zhiyang Zhang Curve is a curve, we can choose a relatively simple point

to calculate, such as s=0+it, that is, when the real part is 0, the function will be-

come relatively simple.Substitute s=0+it into equations (14)(15)(16)(17)(27)(29),

simplify and obtain

α(0, t) =
(
21−0

)
cos (−t · ln 2) = 2 cos (−t · ln 2) (41)

β(0, t) =
(
21−0

)
sin (−t · ln 2) = 2 sin (−t · ln 2) (42)

χ(0, t) =

∞∑
n=1

(−1)
n+1

cos (−t · lnn)
n0

=

∞∑
n=1

(−1)
n+1

cos (−t · lnn) (43)
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δ(0, t) =

∞∑
n=1

(−1)
n+1

sin (−t · lnn)
n0

=

∞∑
n=1

(−1)
n+1

sin (−t · lnn) (44)

∂χ(0, t)

∂t
=

∞∑
n=1

(−1)
n+1

lnn sin (−t · lnn)
n0

=

∞∑
n=1

(−1)
n+1

lnn sin (−t · lnn)

(45)

∂δ(0, t)

∂t
= −

∞∑
n=1

(−1)
n+1

lnn cos (−t · lnn)
n0

= −
∞∑
n=1

(−1)
n+1

lnn cos (−t · lnn)

(46)

Define

F (0, t) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂χ(0, t)

∂t
− ln 2 · χ(0, t)β(0, t)

]
+

(2− 2 · α(0, t))
[
−β(0, t)

∂δ(0, t)

∂t
+ ln 2 · δ(0, t)α(0, t)

]
+

[(1− α(0, t)) · χ(0, t)− β(0, t) · δ(0, t)] (2 · ln 2 · β(0, t)) (47)

G(0, t) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂δ(0, t)

∂t
− ln 2 · δ(0, t)β(0, t)

]
+

(2− 2 · α(0, t))
[
β(0, t)

∂χ(0, t)

∂t
− ln 2 · χ(0, t)α(0, t)

]
+

[(1− α(0, t)) · δ(0, t) + β(0, t) · χ(0, t)] (2 · ln 2 · β(0, t)) (48)

F (0, t) = 0 (49)
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G(0, t) = 0 (50)

If equation (49) has a solution, then equation (39) also has a solution. If equation

(50) has a solution, then equation (40) also has a solution.Below, we will solve

the problem of the existence of counterexamples to Riemann hypothesis through

the definition of calculus or the method of proof by contradiction. Therefore,

we need to define a quantity to study. Define

H(0, t) = F (0, t)F (0, t) +G(0, t)G(0, t) (51)

H(0, t) = 0 (52)

8. Mathematical induction method for solving equations

Although equation (51) is already simple enough, we still need enough patience

for a mathematical problem that has existed for over 160 years.Redefine equa-

tions (43), (44), (45), and (46)

χ(0, t,m) =

m∑
n=1

(−1)
n+1

cos (−t · lnn) (53)

δ(0, t,m) =

m∑
n=1

(−1)
n+1

sin (−t · lnn) (54)

∂χ(0, t,m)

∂t
=

m∑
n=1

(−1)
n+1

lnn sin (−t · lnn) (55)

∂δ(0, t,m)

∂t
= −

m∑
n=1

(−1)
n+1

lnn cos (−t · lnn) (56)
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So equations (47) and (48) will become

F (0, t,m) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂χ(0, t,m)

∂t
− ln 2 · χ(0, t,m)β(0, t)

]
+

(2− 2 · α(0, t))
[
−β(0, t)

∂δ(0, t,m)

∂t
+ ln 2 · δ(0, t,m)α(0, t)

]
+

[(1− α(0, t)) · χ(0, t,m)− β(0, t) · δ(0, t,m)] (2 · ln 2 · β(0, t)) (57)

G(0, t,m) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂δ(0, t,m)

∂t
− 2 ln 2 · δ(0, t,m)β(0, t)

]
+

(2− 2 · α(0, t))
[
β(0, t)

∂χ(0, t,m)

∂t
− ln 2 · χ(0, t,m)α(0, t)

]
+

[(1− α(0, t)) · δ(0, t,m) + β(0, t) · χ(0, t,m)] (2 · ln 2 · β(0, t)) (58)

So the problem we are studying will become

H(0, t,m) = F (0, t,m)F (0, t,m) +G(0, t,m)G(0, t,m) (59)

H(0, t,m) = 0 (60)

Next, we will investigate whether there is a solution to equation (60) for different

natural numbers m, and extend it to the infinite case. The earliest known proof

of using mathematical induction appeared in Francesco Maurolico’s Arithmeti-

corum libri duo (1575).The principle of this method is to first prove that the

proposition holds at a certain starting point, and then prove that the process

from one value to the next is valid. When both points have been proven, any

value can be derived by repeatedly using this method.
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9. When m=1, the solution of the equation

χ(0, t, 1) =

1∑
n=1

(−1)
n+1

cos (−t · lnn) = 1 (61)

δ(0, t, 1) =

1∑
n=1

(−1)
n+1

sin (−t · lnn) = 0 (62)

∂χ(0, t, 1)

∂t
=

1∑
n=1

(−1)
n+1

lnn sin (−t · lnn) = 0 (63)

∂δ(0, t, 1)

∂t
= −

1∑
n=1

(−1)
n+1

lnn cos (−t · lnn) = 0 (64)

So

F (0, t, 1) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂χ(0, t, 1)

∂t
− ln 2 · χ(0, t, 1)β(0, t)

]
+

(2− 2 · α(0, t))
[
−β(0, t)

∂δ(0, t, 1)

∂t
+ ln 2 · δ(0, t, 1)α(0, t)

]
+

[(1− α(0, t)) · χ(0, t, 1)− β(0, t) · δ(0, t, 1)] (2 · ln 2 · β(0, t)) (65)

Substitute equations (41) and (42) to obtain

F (0, t, 1) = 2 (1− α(0, t)) (66)

Similarly

G(0, t, 1) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂δ(0, t, 1)

∂t
− ln 2 · δ(0, t, 1)β(0, t)

]
+
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(2− 2 · α(0, t))
[
β(0, t)

∂χ(0, t, 1)

∂t
− ln 2 · χ(0, t, 1)α(0, t)

]
+

[(1− α(0, t)) · δ(0, t, 1) + β(0, t) · χ(0, t, 1)] (2 · ln 2 · β(0, t)) (67)

Substitute equations (41) and (42) to obtain

G(0, t, 1) = 2 (1− α(0, t)− α(0, t) ln 2 + 4 ln 2 + β(0, t) ln 2) (68)

For equation (66)

F (0, t, 1) = 2 (1− α(0, t)) = 2 (1− 2 cos (−t · ln 2)) = 0 (69)

cos (−t · ln 2) = 1

2
(70)

Then

− t · ln 2 = 2nπ +
π

3
, (n ∈ R) (71)

t =
2nπ

ln2
− π

3ln2
, (n ∈ R) (72)

For equation (68)

G(0, t, 1) = 2 (1− α(0, t)− α(0, t) ln 2 + 4 ln 2 + β(0, t) ln 2) > 0 (73)

By setting the value of equation (72) to 0, a large number of t values can be

calculated. But the value of equation (73) is always greater than 0, so we cannot

find a t. Therefore, it is impossible to make a point of intersection. Although

this attempt failed, it still provides us with a lot of guidance for our next step

of work
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10. When m=2, the solution of the equation

When m=2, we still calculate a simple trigonometric function in the end, which

seems insignificant for us to solve problems such as the Riemann hypothesis.The

work ahead is still quite complex.

χ(0, t, 2) =

2∑
n=1

(−1)
n+1

cos (−t · lnn) = 1− cos (−t · ln 2) (74)

δ(0, t, 2) =

2∑
n=1

(−1)
n+1

sin (−t · lnn) = − sin (−t · ln 2) (75)

∂χ(0, t, 2)

∂t
=

2∑
n=1

(−1)
n+1

lnn sin (−t · lnn) = − ln 2 · sin (−t · ln 2) (76)

∂δ(0, t, 2)

∂t
= −

2∑
n=1

(−1)
n+1

lnn cos (−t · lnn) = ln 2 · cos (−t · ln 2) (77)

Define

u = cos (−t · ln 2) (78)

v = sin (−t · ln 2) (79)

Substitute equation (41)(42)(74)(75)(76)(77) into equation (57)(58) to obtain

F (0, t, 2) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂χ(0, t, 2)

∂t
− ln 2 · χ(0, t, 2)β(0, t)

]
+

(2− 2 · α(0, t))
[
−β(0, t)

∂δ(0, t, 2)

∂t
+ ln 2 · δ(0, t, 2)α(0, t)

]
+
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[(1− α(0, t)) · χ(0, t, 2)− β(0, t) · δ(0, t, 2)] (2 · ln 2 · β(0, t)) (80)

= (2− 4u) [− ln 2 · (1− 2u)v − 2 ln 2 · (1− u)v]+

(2− 4u) [−2 ln 2 · uv − 2 ln 2 · uv]+

[(1− 2u) · (1− u) + 2v · v] (4 · ln 2 · v) (81)

= (2− 4u))(4 · ln 2 · uv − 3 · ln 2 · v − 4 · ln 2 · uv)+

(1 + 2uu− 3u+ 2vv))(4 · ln 2 · v)

= (2 ln 2 · v)(4uu− 1 + 4vv) (82)

Because

uu+ vv = 1 (83)

Therefore

F (0, t, 2) = 6 · ln 2 · v (84)

F (0, t, 2) = 0 (85)
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Resolve as

v = 0 (86)

G(0, t, 2) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂δ(0, t, 2)

∂t
− ln 2 · δ(0, t, 2)β(0, t)

]
+

(2− 2 · α(0, t))
[
β(0, t)

∂χ(0, t, 2)

∂t
− ln 2 · χ(0, t, 2)α(0, t)

]
+

[(1− α(0, t)) · δ(0, t, 2) + β(0, t) · χ(0, t, 2)] (2 · ln 2 · β(0, t)) (87)

= (2− 4u) [ln 2(1− 2u)u+ 2 ln 2 · vv]+

((2− 4u) [−2 ln 2 · vv − 2 ln 2 · u(1− u)]+

[−(1− 2u)v + 2v · (1− u)] (4 · ln 2 · v) (88)

= (2− 4u)(−3 · ln 2 · u) + v(4 · ln 2 · v) (89)

= 2 ln 2 · (8uu− 3u+ 2vv) (90)

= 2 ln 2 · (6uu− 3u+ 2) > 0 (91)

Equation (92) seems to have no solution.Therefore, it is also impossible to make

a point of intersection.
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11. When m=3, the solution of the equation

When m=1 or m=2, observing equations (61)(62)(63)(64) and (74)(75)(76)(77),

there is only one angle variable in the trigonometric function. Therefore, their

solution is periodic, very definite in position, without the characteristics of Rie-

mann hypothesis, which appears random, and it is possible to find a situation

where two solutions are consistent. When m ≥ 3, the situation becomes com-

pletely different.

χ(0, t, 3) =

3∑
n=1

(−1)
n+1

cos (−t · lnn)

= 1− cos (−t · ln 2) + cos (−t · ln 3) (92)

δ(0, t, 3) =

3∑
n=1

(−1)
n+1

sin (−t · lnn)

= − sin (−t · ln 2) + sin (−t · ln 3) (93)

∂χ(0, t, 3)

∂t
=

3∑
n=1

(−1)
n+1

lnn sin (−t · lnn)

= − ln 2 · sin (−t · ln 2) + ln 3 · sin (−t · ln 3) (94)

∂δ(0, t, 3)

∂t
= −

3∑
n=1

(−1)
n+1

lnn cos (−t · lnn)

= ln 2 · cos (−t · ln 2)− ln 3 · cos (−t · ln 3) (95)
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Define

o = cos (−t · ln 3) (96)

p = sin (−t · ln 3) (97)

So

α(0, t) = 2 cos (−t · ln 2) = 2u (98)

β(0, t) = 2 sin (−t · ln 2) = 2v (99)

χ(0, t, 3) = 1− u+ o (100)

δ(0, t, 3) = −v + p (101)

∂χ(0, t, 3)

∂t
= − ln 2 · v + ln 3 · p (102)

∂δ(0, t, 3)

∂t
= ln 2 · u− ln 3 · o (103)

Substitute equation (98)(99)(100)(101)(102)(103) into equation (57)(58) to ob-

tain

F (0, t, 3) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂χ(0, t, 3)

∂t
− ln 2 · χ(0, t, 3)β(0, t)

]
+
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(2− 2 · α(0, t))
[
−β(0, t)

∂δ(0, t, 3)

∂t
+ ln 2 · δ(0, t, 3)α(0, t)

]
+

[(1− α(0, t)) · χ(0, t, 3)− β(0, t) · δ(0, t, 3)] (2 · ln 2 · β(0, t)) (104)

= (2− 4 · u) [(1− 2u)(− ln 2 · v + ln 3 · p)− ln 2 · (1− u+ o) · 2v]+

(2− 4 · u) [−2v(ln 2 · u− ln 3 · o) + ln 2 · (−v + p)(2u)]+

[(1− 2u) · (1− u+ o)− 2v · (−v + p)] [2 · ln 2 · (2v)] (105)

G(0, t, 3) = (2− 2 · α(0, t))
[
(1− α(0, t))

∂δ(0, t, 3)

∂t
− 2 ln 2 · δ(0, t, 3)β(0, t)

]
+

(2− 2 · α(0, t))
[
β(0, t)

∂χ(0, t, 3)

∂t
− ln 2 · χ(0, t, 3)α(0, t)

]
+

[(1− α(0, t)) · δ(0, t, 3) + β(0, t) · χ(0, t, 3)] (2 · ln 2 · β(0, t)) (106)

= (2− 4 · u) [(1− 2u)(− ln 2 · v + ln 3 · p)− 2 ln 2 · (−v + p)(−2v)]+

(2− 4 · u) [−2v(− ln 2 · v + ln 3 · p)− ln 2 · (1− u+ o)(1− 2u)]+
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[(1− 2u) · (−v + p) + 2v · (1− u+ o)] [2 · ln 2 · (2v)] (107)

Through (106)(107), we can learn that

F (0, t, 3) = 0 (108)

G(0, t, 3) = 0 (109)

The equation (108) and (109) have countless solutions, but it is currently im-

possible to calculate whether they have the same solution. Because this math-

ematical tool has not yet been created.

If equation (108) and (109) are difficult, you cannot see the structure of the

solution. So let me give a simpler example

sin (−t · ln 2) = 0 (110)

sin (−t · ln 3) = 0 (111)

Equations (110) and (111) have countless solutions, and we know that t=0

is their common solution. But do these two equations have other common

solutions? Currently, algebra has not studied this direction, so I will present

a new algebraic structure later to investigate the structure and properties of

solutions in infinite number fields.
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12. General conclusion

After all, the Riemann hypothesis studies infinite series, so I still need this

chapter to make the theory more comprehensive and to verify the accuracy of

the formulas listed earlier.

F (0, t,m) = 0 (112)

G(0, t,m) = 0 (113)

F (0, t,m+ 1) = 0 (114)

G(0, t,m+ 1) = 0 (115)

If equations (112)and (113) have a common solution, can we infer that equations

(114) and (115) also have a common solution?

χ(0, t,m+ 1)− χ(0, t,m) = (−1)
m
cos [−t · ln(m+ 1)] (116)

δ(0, t,m+ 1)− δ(0, t,m) = (−1)
m
sin [−t · ln(m+ 1)] (117)

∂χ(0, t,m+ 1)

∂t
− ∂χ(0, t,m)

∂t
= (−1)

m
ln(m+ 1) sin [−t · ln(m+ 1)] (118)

∂δ(0, t,m+ 1)

∂t
− ∂δ(0, t,m)

∂t
= −(−1)

m
ln(m+ 1) cos [−t · ln(m+ 1)] (119)
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Define

j = (−1)
m
cos [−t · ln(m+ 1)] (120)

k = (−1)
m
sin [−t · ln(m+ 1)] (121)

So

χ(0, t,m+ 1)− χ(0, t,m) = j (122)

δ(0, t,m+ 1)− δ(0, t,m) = k (123)

∂χ(0, t,m+ 1)

∂t
− ∂χ(0, t,m)

∂t
= k · ln(m+ 1) (124)

∂δ(0, t,m+ 1)

∂t
− ∂δ(0, t,m)

∂t
= −j · ln(m+ 1) (125)

F (0, t,m+ 1)− F (0, t,m)

= (2− 4 · u) [(1− 2u) · k · ln(m+ 1)− ln 2 · j · 2v]+

(2− 4 · u) [−2v · (−j) · ln(m+ 1) + ln 2 · k · 2u]+

[(1− 2u) · j − 2v · k] (2 · ln 2 · 2v) (126)

30



G(0, t,m+ 1)−G(0, t,m)

= (2− 4 · u) [(1− 2u)(−j) · ln(m+ 1)− 2 ln 2 · k(−2v)]+

(2− 4 · u) [−2vk · ln(m+ 1)− ln 2 · j(1− 2u)]+

[(1− 2u) · k + 2v · j] (2 · ln 2 · 2v) (127)

There is currently no mathematical tool to prove the most crucial step of math-

ematical induction.Whether there is a connection between these functions and

how they are derived requires the creation of a new algebra.

13. Introduction to Zhiyang Zhang Algebra

To establish a new discipline, it is necessary to determine the research object,

its purpose, and the methods to be used.What we need to study now is how to

handle the solutions of some trigonometric functions to determine their mecha-

nisms.

The main difference between rational and irrational numbers lies in their def-

initions, properties, and ranges. Rational numbers are numbers that can be

expressed as the ratio of two integers, including integers, positive numbers, neg-

ative numbers, and fractions. Rational numbers can be written as finite decimals

or infinite cyclic decimals. Unreasonable numbers cannot be expressed as the

ratio of two integers, they are infinite non cyclic decimals. Rational numbers

are countable within the range of real numbers, and their operations (addi-

tion, subtraction, multiplication, division) can be performed like integers. The

set of rational numbers is an extension of the set of integers, encompassing all
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numbers that can be expressed in fractional form. Unreasonable numbers are

uncountable within the range of real numbers. They cannot be expressed as the

ratio of two integers, but are a part of real numbers. The existence of irrational

numbers expands the range of real numbers and provides richer mathematical

structures.

We have always known many irrational numbers, but we have not studied their

relationship and believe that they are completely unrelated to each other. But

in order to address the challenges presented in this paper, you need to accu-

rately state the relationship between π and lnn, which is the first direction of

our research.

And our second direction of research is to create a study on the distribution

and properties of infinite numbers in equation solutions. If calculus solves the

problems of limits and infinitesimal through the method of infinitesimal ele-

ments, then this new algebra studies the properties of infinite elements. Of

course, we need to provide a strict definition and use some new mathematical

symbols to fully describe this mathematical phenomenon, while also ensuring

the completeness of the theory.
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