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Abstracts 

Understanding the spatial curvature of our universe is a very important topic in 

astrophysics. The FLRW metric that determines the evolution of the universe is 

based on the Cosmological Principle (the universe is homogeneous and isotropic on 

very large scales) and on Weyl's Postulate (the universe behaves like a perfect fluid 

whose components move as temporal geodesics without intersecting each other). 

This metric is specified in two equations, the Friedmann equations, in which the 

curvature term Ωk plays an essential role in its resolution. Determining the value of 

this term with respect to the energy density term Ωρ may mean solving or not solving 

the equations in many cases. We do not have the solution to this important question, 

but we have begun to solve it. We have found an equation that relates, in the FLRW 

metric, the spatial curvature with the energy density and we have found that the 

spatial curvature is proportional to the energy density with a proportionality factor 

very similar to that which relates in Einstein's equations, the Einstein tensor with 

the energy-momentum tensor, that is, the curvature with the energy. This has 

important consequences, the first is that, in a universe with matter, the spatial 

curvature will never be zero, the second is that, for the density of matter in today's 
universe, the spatial curvature is very small.  
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1. - The cosmic spacetime  

We are going to study a uniform and isotropic spacetime from a physical point of 

view, this is equivalent from a geometric point of view to being invariant under 

translations and rotations. 

According to Professor Fulvio Meliá in reference [1], we define “cosmic spacetime” 

as the set of points (t, r, Ø Φ) that satisfy the FLRW metric, that is, that satisfy the 

equation: 

ds2 = c2dt2 – a(t)2(
𝑑𝑟2

1−𝑘𝑟2
 + r2dΩ2) 

We define each of the "3D hypersurfaces" of cosmic spacetime as the set of points 

that have the same temporal coordinate. Thus, cosmic spacetime will have a 

different hypersurface for each time t. As we have defined them, these hypersurfaces 
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do not intersect, that is, they have no common points and the set of all of them 

constitutes cosmic spacetime. 

It is in these 3D hypersurfaces where we are going to calculate the spatial curvature 

that constitute the object of this report.

 

2.- Calculation of the spatial curvature of each of the 3D hypersurfaces of 

cosmic spacetime 

First, we are going to calculate the curvature scalar of a 3D hypersurface of our 
homogeneous and isotropic cosmic spacetime with a matter density ρm. 

 

2.1- Birkhoff–Jebsen theorem  

We make a brief comment on this theorem of mathematics applied to the theory of 

generalized relativity [2]. First, we summarize Professor Fulvio Melia in reference 

[3] to explain it.  

“If we have a spherical universe of mass-energy density ρ and radius r and within it 

a concentric sphere of radius rs smaller than r, it is true that the acceleration due to 

gravity at any point on the surface of the sphere of relative radius rs to an observer 

at its origin, depends solely on the mass-energy relation contained within this 
sphere”. 

Thus, according to this, to calculate the curvature of the gravitational field of a point 

located at a distance "rs" from the geometric center that we are considering in our 

continuous universe, it is only necessary to consider its interaction with the points 

that are at a radius smaller than "rs", therefore, the mass "m" to be considered will 
only be that contained in the sphere of radius "rs". 

In general relativity Birkhoff´s theorem states that any spherically symmetric 

solution of the vacuum field equations must be statically and asymptotically flat. 

This means, that the outer solution (that is, the spacetime outside a gravitational, 
non-rotating, spherical body) must be the Schwarzschild metric. 

 

2.2- Calculating the spatial curvature constant 

Let's consider our 3D hypersurface and a sphere of radius r inside, the Birkhoff–

Jebsen theorem assures us that if we want to calculate the curvature at a point on its 

surface, we must consider only the interaction with the gravitational mass found 

inside, the gravitational mass inside for the sphere external point that we are 

considering behaves as a point mass of equal magnitude to that of the mass of the 

sphere and located at its central point. In this case we are already in the 

Schwarzschild model, and we can use its equations to calculate the corresponding 
curvature.  
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For all this, we can treat the problem of calculating the curvature scalar of each of 

the 3D hypersurfaces of our cosmic spacetime as a problem to be solved by the 

Schwarzschild model and calculate the curvature scalar from that model. In this 

model, spacetime is reduced to a 2D surface and so Gaussian curvatures are easily 
calculated; the scalar curvature in this case is twice the Gaussian curvature.   

According to [4], we have found an equation that relates the Gaussian curvature 

Kgauss of the spacetime of the Schwarzschild model, with the cosmological 

parameters mass M and universal gravitation constant G. We are going to use this 
equation to solve our problem. This equation is the following:  

Kgauss= -GM/c2r3 

Since in our case it is a sphere, its mass will be given by  

M = 4πr3ρ/3 

Kgauss = -4πG ρ/3c2  

having reduced the calculation to a two-dimensional problem, the curvature scalar 

R will be given by twice the Gaussian curvature and, in our case, it will also have the 
opposite sign. Thus:  

R/ρ = 8πG/3c2, = 0,62.10-26   

This curvature obtained here R. which is the same at each point of each one of 3D 

hypersurfaces and proportional to the energy density, ρ(Kg/m3), we will 

demonstrate in the discussion what the "spatial curvature K" is. 

 
Thus, the “spatial curvature K” at the points of each 3D hypersurface is the same 
and is proportional to the density of matter. 
 

K = (8πG/3c2) ρ = 0,62.10-26 ρ 
 

 

2.3- Discussion 

Identification of the curvatures found, R = K: 

We have found a curvature scalar R, which results from the relativistic gravitational 

interaction between the points that form the cosmic fluid. This curvature has the 

same value at each point of each 3D hypersurface corresponding to an instant of 

time in cosmic space-time. Moreover, this curvature depends only on the universal 

gravitational constant and the gravitational energy density. It is therefore very 

reasonable to identify this curvature with the -spatial curvature K- that determines 

the value of the parameter “k” in the Friedmann equation. According to the equation 

found we see that the proportionality factor between K and ρ is very similar to the 

proportionality factor that Einstein finds between the Einstein tensor and the 
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energy-momentum tensor, that is, between curvature and energy, which further 

confirms our choice as the “spatial curvature”. 

Through the Friedmann equation, we can relate K with the curvature parameter “k” 

that appears in it, [5]: 

H2 = (a´/a)2 = (8πGρ/3) – kc2/a2   

k = K/[K}. Where k = +1, -1, 0, according to the sign and value of K. If K is positive 

then k=+1, if K is negative then k=-1 and if K is zero, then k = 0. 

 

Some consequences of the equation: 

The first thing we can see is that zero spatial curvature is only possible if the energy 

density is zero. So, it does not seem that our universe has zero spatial curvature. 

What we do know is that the curvature term appearing in the Friedmann equation 

is very small, according to experimental data [4]. Ωk = 0,001±0,002, [6], this term Ωk 

= kc2/(Ha)2 is a function of k, the expansion parameter a(t), and the Hubble constant 

H, the small measured value of which has led some scientists to consider the 

possibility that Ωk = 0, being therefore k= 0. From what is stated here, our equation 

denies this hypothesis since k = 0 implies K = 0 and that is only possible if ρ = 0, 
which is not the case in our universe. 

Furthermore, our equation will condition the possible physical existence of one of 

the most studied universes, the Milne universe. This is a universe with zero energy 

density ρ = 0 and curvature k = -1. It represents an expanding universe without 

matter. Our equation will condition its possible physical existence by the following. 

According to our equation, a universe with zero energy density implies a spatial 

curvature equal to zero K = 0 and therefore k = 0, therefore the Milne universe, with 

ρ = 0 and k = -1 would not be possible. 

 

Calculation of the value of spatial curvature: 

 There are several experimental data available concerning the energy density due to 

mass ρm in our universe, [6], according to these data the value is ρm = 0,3.10-26 kg/m3. 

Substituting this value into our equation we can calculate the current spatial 

curvature of our universe: 

K = (8πG/3c2) ρ = (0,62.10-26) (0,3.10-26) = 0,19.10-52 m-2 

this is therefore an extremely small value. 

The curvature equation we have obtained allows us to calculate the curvature scalar 

of each 3D surface of cosmic space-time. It should not be confused with the space-

time curvature scalar of the FLRW metric, as this confusion can lead to serious 

errors. 
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3. – Conclusions 

We have found a simple equation that relates, in the FLRW metric, a curvature scalar 

to the energy density. In the context of this metric, we have identified this curvature 

scalar with the spatial curvature K of each of the 3D hypersurfaces into which cosmic 

spacetime is divided. In this equation found, the spatial curvature is proportional to 

the energy density, with a proportionality constant equal to one third of the 

proportionality constant existing between the Einstein tensor and the energy-

momentum tensor. Knowing the value of the energy density, we have calculated that 

the value of the current spatial curvature is extremely small. We have also come to 

the conclusion that a spatial curvature equal to zero is not possible in our universe 

because according to our equation, it only occurs if the energy density is equal to 

zero. Therefore, the Milne universe with ρ=0, and k=-1 is not physically possible. Our 

equation is valid in any FLRW metric universe. 
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