
Group Theory: Problems and Solutions (Part 1)

Harry Willow

Abstract. There is nothing new about group theory in this paper. It presents group

theory problems at undergraduate level and their solutions. In presenting the solu-

tions, we avoid using advanced theorems from group theory but we tried to discuss

the solutions using elementary facts in group theory.

Let G be a simple group of order 60. Assume, by way of contradiction that

G has no subgroup of index 5.

(1) If Q is a Sylow 2-subgroup of G, show that Q is maximal.

(2) Conclude that Q is a self-normalizing, so G has 15 Sylow 2-subgroups.

(3) Show that there must exist two distinct Sylow 2-subgroups Q1 and Q2
which intersect nontrivially.

(4) If X = Q1 ∩ Q2, get a contradiction by observing that the centralizer of
X contains both Q1 and Q2.

(1)

Let P be a subgroup of G such that Q ≤ P . Since |Q| divides |P | and |P |
divides |G|,

|P | ∈ {4, 12, 20, 60}.
Suppose P ̸= Q. Then |P | ≠ 4. If |P | = 12, then |G : P | = 5, a contradiction
since G has no subgroup of index 5. So |P | ̸= 12. If |P | = 20, then
|G : P | = 3. Since |G| does not divide |G : P |!, P must contain a nontrivial
normal subgroup of G, a contradiction since G is simple. To conclude

|P | = 60 and thus P = G.

(2)

Note that Q ≤ NG(Q) ≤ G. Since Q is maximal by part (1), NG(Q) = Q
or NG(Q) = G. If NG(Q) = G, then Q is normal in G, a contradiction
since G is simple. Thus NG(Q) = Q. Since Q is a Sylow 2-subgroup of G,
n2(G) = |G|/|NG(Q)| = 15.

(3)

Since G is simple, n5(G) = 6. So there are 6 · 4 elements of order 5 in
G. By part (2), n2(G) = 15. Suppose any 2 distinct Sylow 2-subgroups

intersect trivially. Then there are 15 · (22 − 1) nonidentity elements in
Sylow 2-subgroups of G besides the other 24 elements of order 5 in G, a

contradiction since they do not fit into G. Thus there exist two distinct Sylow

2-subgroups Q1 and Q2 with Q1 ∩Q2 ̸= 1.

(4)

Since |Q1| = 4, Q1 is abelian. Thus CG(Q1) ≥ Q1. Since Q1 ≥ X,
CG(X) ≥ CG(Q1). Thus CG(X) ≥ Q1 and hence |CG(X)| ≥ 4. Suppose
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|CG(X)| = 4. Then, since CG(X) ≥ Q1 and |CG(X)| = |Q1|, CG(X) = Q1.
By the same token, CG(X) = Q2. Thus Q1 = CG(X) = Q2, a contradiction
since Q1 and Q2 are distinct. Thus

(1) |CG(X)| > 4.
Moreover |Q1| divides |CG(X)|. So
(2) 4 divides |CG(X)|.
Moreover, by Lagrange’s theorem,

(3) |CG(X)| divides 60.
By (1), (2), (3),

|CG(X)| ∈ {12, 20, 60}.
If |CG(X)| = 20, then |G : CG(X)| = 3. Since |G| does not divide
|G : CG(X)|!, CG(X) must contain a nontrivial normal subgroup of G, a
contradiction since G is simple. If |CG(X)| = 60, then CG(X) = G and so X
is a normal subgroup of G, a contradiction since G is simple. If |CG(X)| = 12,
then |G : CG(X)| = 5, a contradiction since G has no subgroup of index 5.

Let G be an abelian group and suppose G has elements of orders m and n.

Prove that G has an element whose order is the least common multiple of m

and n.

Let a and b be elements of G of orders m and n, respectively. Note

that there are divisors q of m and r of n with (q, r) = 1 and [m, n] = qr . Let

c = m/q and d = n/r .

If g is an element of a group and |g| = n, then gk , k ̸= 0, has order
n/(n, k) where (n, k) is the greatest common divisor of n and k .

So |ac | = m/(m, c) = q and |bd | = n/(n, d) = r. Let H and K be the
subgroups of G generated by ac and bd , respectively. Consider H ×K. Then

|(ac , bd)| = [|ac |, |bd |] = qr.
G is abelian so H and K are normal in G. Moreover, H∩K = 1. and HK ∼= H×
K. Hence there is an isomorphism ϕ : H ×K → HK given by ϕ((h, k)) = hk
for h ∈ H, k ∈ K and

|(ac , bd)| = |ϕ((ac , bd))| = |acbd | = qr = [m, n].

Reference:

K. H. Rosen, Elementary number theory and its application. 5th edition,

Pearson Education Inc. Press, 2005, p. 119.
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If P is a Sylow p-subgroup of G and a ∈ N(P ) such that apk = 1, then a ∈ P .

Since ap
k

= 1, |a| | pk and hence ⟨a⟩ is a p-subgroup of N(P ). Since P
is normal in N(P ), ⟨a⟩P is a subgroup of N(P ). Since

|⟨a⟩P | = |⟨a⟩||P |
|⟨a⟩ ∩ P | ,

⟨a⟩P is a p-subgroup of N(P ). Then ⟨a⟩P is contained in some p-Sylow
subgroup Q of G and hence |⟨a⟩P | ≤ |Q| = |P |. Since P ≤ ⟨a⟩P , |P | ≤ |⟨a⟩P |.
Since |P | ≤ |⟨a⟩P | and |⟨a⟩P | ≤ |P |, |P | = |⟨a⟩P | and hence P = ⟨a⟩P . It is
obvious that a ∈ ⟨a⟩P = P.

Let θ be an automorphism of a group G. If M is a maximal subgroup of G,

then θ(M) is also a maximal subgroup of G.

Let N be a subgroup of G such that θ(M) ⊆ N ⊆ G but θ(M) ̸= N.
Hence M ⊆ θ−1(N) and M ̸= θ−1(N). But M is maximal in G and hence
θ−1(N) = G. To conclude N = θ(G) = G.

Let θ be an automorphism of a group G and let M be the set of all maximal

subgroups of G. Then

M = θ(M ).

Note that θ−1 is also an automorphism of G. To show the first containment,

let M ∈M . Since θ−1(M) ∈M ,

M = θ(θ−1(M)) ∈ θ(M ).
For the second containment, it is obvious.

Prove that the Frattini subgroup of G (denoted by Φ(G)) is a characteristic

subgroup of G.

Let M be the set of all maximal subgroups of G and let M ∈ M .
Then Φ(G) ≤ M. If θ is an automorphism of G, then θ(Φ(G)) ≤ θ(M) and
hence

θ(Φ(G)) ≤
⋂
M∈M

θ(M) =
⋂
M∈M

M = Φ(G).

Moreover, θ−1(Φ(G)) ≤ Φ(G). To conclude
Φ(G) = θ(θ−1(Φ(G))) ≤ θ(Φ(G)).

Prove that there are no simple groups of order 90 = 2 · 32 · 5.

Let G be a group of order 90. By Sylow’s theorems, n3(G) ∈ {1, 10}
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and n5(G) ∈ {1, 6}. Consider n3(G) = 10 and n5(G) = 6. So there are 6 · 4
elements of order 5 in G. Suppose any 2 distinct Sylow 3-subgroups intersect

trivially. Then there are 10·(32−1) nonidentity elements in Sylow 3-subgroups
of G besides the other 24 elements of order 5 in G, a contradiction since

they do not fit into G. Thus there exist two distinct Sylow 3-subgroups Q1
and Q2 with Q1 ∩ Q2 ̸= 1. Thus |Q1 ∩ Q2| ∈ {3, 9}. If |Q1 ∩ Q2| = 9, then
Q1 = Q1 ∩ Q2 = Q2, a contradiction since Q1 and Q2 are distinct. Thus
|Q1 ∩Q2| = 3. Since the index of Q1 ∩Q2 in both Q1 and Q2 is 3, Q1 ∩ Q2 is
normal in both Q1 and Q2. Thus Q1 ≤ NG(Q1 ∩Q2) and Q2 ≤ NG(Q1 ∩Q2).
As the result, Q1Q2 ⊆ NG(Q1 ∩Q2). Since |Q1Q2| = |Q1||Q2|

|Q1 ∩Q2| = 27,

(1) 27 ≤ |NG(Q1 ∩Q2)|.
Moreover |Q1| divides |NG(Q1 ∩Q2)| and so
(2) 9 divides |NG(Q1 ∩Q2)|.
By Lagrange’s theorem,

(3) |NG(Q1 ∩Q2)| divides 90.
By (1), (2), (3),

|NG(Q1 ∩Q2)| ∈ {45, 90}.
If |G : NG(Q1∩Q2)| = 2, then NG(Q1∩Q2) is normal in G. If |NG(Q1∩Q2)| =
90, then NG(Q1 ∩Q2) = G and so Q1 ∩Q2 is a normal subgroup of G.

Prove that there are no simple groups of order 180 = 22 · 32 · 5.

Let G be a group of order 180. By Sylow’s theorems, n3(G)∈{1, 4, 10}. Let
N be the normalizer of a Sylow 3-subgroup of G. Suppose n3(G) = 4. Then

|G : N| = 4. Since |G| does not divide |G : N|!, N must contain a nontrivial
normal subgroup of G. By Sylow’s theorems, n5(G) ∈ {1, 6, 36}. Let N
be the normalizer of a Sylow 5-subgroup of G. Suppose n5(G) = 6. Then

|N| = |G|/n5(G) = 30. So N has a normal subgroup K of order 3. Since K is
normal in N, N ≤ NG(K). So
(1) 30 divides |NG(K)|.
Note that K ≤ P where P is some Sylow 3-subgroup of G. Thus K is normal
in P and hence P ≤ NG(K). So
(2) 9 divides |NG(K)|.
Moreover, by Lagrange’s theorem,

(3) |NG(K)| divides 180.
By (1), (2) and (3),

|NG(K)| ∈ {90, 180}.
If |NG(K)| = 90, then |G : NG(K)| = 2 and so NG(K) is a normal subgroup
of G. If |NG(K)| = 180, then NG(K) = G and so K is a normal subgroup of
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G. Now consider n3(G) = 10 and n5(G) = 36. So there are 36 · 4 elements
of order 5 in G. Suppose any 2 distinct Sylow 3-subgroups intersect trivially.

Then there are 10 · (32 − 1) nonidentity elements in Sylow 3-subgroups of G
besides the other 144 elements of order 5 in G, a contradiction since they

do not fit into G. Thus there exist two distinct Sylow 3-subgroups Q1 and

Q2 with Q1 ∩ Q2 ̸= 1. Thus |Q1 ∩ Q2| ∈ {3, 9}. If |Q1 ∩ Q2| = 9, then
Q1 = Q1 ∩ Q2 = Q2, a contradiction since Q1 and Q2 are distinct. Thus
|Q1 ∩Q2| = 3. Since the index of Q1 ∩Q2 in both Q1 and Q2 is 3, Q1 ∩ Q2 is
normal in both Q1 and Q2. Thus Q1 ≤ NG(Q1 ∩ Q2) and Q2 ≤ NG(Q1 ∩ Q2).
As the result, Q1Q2 ⊆ NG(Q1 ∩Q2). Since |Q1Q2| = |Q1||Q2|

|Q1 ∩Q2| = 27,

(1) 27 ≤ |NG(Q1 ∩Q2)|.
Moreover |Q1| divides |NG(Q1 ∩Q2)| and so
(2) 9 divides |NG(Q1 ∩Q2)|.
By Lagrange’s theorem,

(3) |NG(Q1 ∩Q2)| divides 180.
By (1), (2), (3),

|NG(Q1 ∩Q2)| ∈ {36, 45, 90, 180}.
If |G : NG(Q1 ∩Q2)| ∈ {2, 4, 5}, then |G| does not divide |G : NG(Q1 ∩Q2)|!
and hence NG(Q1 ∩ Q2) must contain a nontrivial normal subgroup of G. If
|NG(Q1 ∩ Q2)| = 180, then NG(Q1 ∩ Q2) = G and so Q1 ∩ Q2 is a normal
subgroup of G.

Prove that there are no simple groups of order 144 = 24 · 32.

Let G be a group of order 144. By Sylow’s theorems, n3(G) ∈ {1, 4, 16}.
If n3(G) = 1, then G is not simple. Let N be the normalizer of a Sylow

3-subgroup of G. If n3(G) = 4, then |G : N| = 4. Since |G| does not
divide |G : N|!, N must contain a nontrivial normal subgroup of G. Now
suppose n3(G) = 16. Since n3(G) ̸≡ 1(mod 32), there exist two distinct
Sylow 3-subgroups Q1 and Q2 of G such that Q1 ∩ Q2 is of index 3 in both
Q1 and Q2. Since Q1 ∩ Q2 is normal in both Q1 and Q2, Q1 ≤ NG(Q1 ∩Q2)
and Q2 ≤ NG(Q1 ∩ Q2). As the result, Q1Q2 ⊆ NG(Q1 ∩ Q2). Since
|Q1Q2| = |Q1||Q2|

|Q1 ∩Q2| = 27,

(1) 27 ≤ |NG(Q1 ∩Q2)|.
Moreover |Q1| divides |NG(Q1 ∩Q2)| and so
(2) 9 divides |NG(Q1 ∩Q2)|.
By Lagrange’s theorem,

(3) |NG(Q1 ∩Q2)| divides 144.
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By (1), (2), (3),

|NG(Q1 ∩Q2)| ∈ {36, 72, 144}.
If |G : NG(Q1 ∩ Q2)| ∈ {2, 4}, then |G| does not divide |G : NG(Q1 ∩ Q2)|!
and hence NG(Q1 ∩ Q2) must contain a nontrivial normal subgroup of G. If
|NG(Q1 ∩ Q2)| = 144, then NG(Q1 ∩ Q2) = G and so Q1 ∩ Q2 is a normal
subgroup of G.

Prove that there are no simple groups of order 792 = 23 · 32 · 11.

Let G be a group of order 792. By Sylow’s theorems, n11(G) ∈ {1, 12}. let
N be the normalizer of a Sylow 11-subgroup of G. Suppose n11(G) = 12.

Then |N| = |G|/n11(G) = 66. So N has a normal subgroup H of order
11 and a subgroup K of order 3. Let θ ∈ Aut(HK). Then θ(K) is also a
subgroup of HK of order 3. By Sylow’s theorems, there is one and only one

subgroup of order 3 in HK. Thus θ(K) = K and hence K is a characteristic

subgroup of HK. Since |N : HK| = 2, HK is normal in N. Since K is a
characteristic subgroup of HK and HK is normal in N, K is normal in N and

hence N ≤ NG(K). So
(1) 66 divides |NG(K)|.
Note that K ≤ P where P is some Sylow 3-subgroup of G. Thus K is normal
in P and hence P ≤ NG(K). So
(2) 9 divides |NG(K)|.
Moreover, by Lagrange’s theorem,

(3) |NG(K)| divides 792.
By (1), (2), (3),

|NG(K)| ∈ {198, 396, 792}.
If |G : NG(K)| ∈ {2, 4}, then |G| does not divide |G : NG(K)|! and hence
NG(K) must contain a nontrivial normal subgroup of G. If |NG(K)| = 792,
then NG(K) = G and so K is a normal subgroup of G.

Prove that there are no simple groups of order 2025 = 34 · 52.

Let G be a group of order 2025. By Sylow’s theorems, n5(G) ∈ {1, 81}.
If n5(G) = 1, then G is not simple. Now suppose n5(G) = 81. Since

n5(G) ̸≡ 1(mod 52), there exist two distinct Sylow 5-subgroups Q1 and Q2
of G such that Q1 ∩ Q2 is of index 5 in both Q1 and Q2. Since Q1 ∩ Q2 is
normal in both Q1 and Q2, Q1 ≤ NG(Q1 ∩ Q2) and Q2 ≤ NG(Q1 ∩ Q2). As
the result, Q1Q2 ⊆ NG(Q1 ∩Q2). Since |Q1Q2| = |Q1||Q2|

|Q1 ∩Q2| = 125,

(1) 125 ≤ |NG(Q1 ∩Q2)|.
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Moreover |Q1| divides |NG(Q1 ∩Q2)| and so
(2) 25 divides |NG(Q1 ∩Q2)|.
By Lagrange’s theorem,

(3) |NG(Q1 ∩Q2)| divides 2025.
By (1), (2), (3),

|NG(Q1 ∩Q2)| ∈ {225, 675, 2025}.
If |G : NG(Q1 ∩ Q2)| ∈ {3, 9}, then |G| does not divide |G : NG(Q1 ∩ Q2)|!
and hence NG(Q1 ∩ Q2) must contain a nontrivial normal subgroup of G. If
|NG(Q1 ∩ Q2)| = 2025, then NG(Q1 ∩ Q2) = G and so Q1 ∩ Q2 is a normal
subgroup of G.

Prove that there are no simple groups of order 3159 = 35 · 13.

Let G be a group of order 3159. By Sylow’s theorems, n3(G) ∈ {1, 13}.
If n3(G) = 1, then G is not simple. Suppose n3(G) = 13. Since

n3(G) ̸≡ 1 (mod 32), there are two distinct Sylow 3-subgroups P and Q in G
such that P ∩Q is of index 3 in both P and Q (hence is normal in each). Thus
P ≤ NG(P ∩Q). Similarly, Q ≤ NG(P ∩Q). As the result, PQ ⊆ NG(P ∩Q).
Since |PQ| = |P ||Q|

|P ∩Q| =
35·35
34 = 3

6,

(1) 36 ≤ |NG(P ∩Q)|.
Moreover, |P | divides |NG(P ∩Q)| and so
(2) 35 divides |NG(P ∩Q)|.
By Lagrange’s theorem,

(3) |NG(P ∩Q)| divides 3159.

By (1), (2), (3), |NG(P ∩Q)| = 3159 and thus NG(P ∩Q) = G.

Prove that there are no simple groups of order 432 = 24 · 33.

Let G be a group of order 432. By Sylow’s theorems, n3(G) ∈ {1, 4, 16}.
If n3(G) = 1, then G is not simple. Let N be the normalizer of a Sylow

3-subgroup of G. If n3(G) = 4, then |G : N| = 4. Since |G| does not
divide |G : N|!, N must contain a nontrivial normal subgroup of G. Suppose
n3(G) = 16. Since n3(G) ̸≡ 1 (mod 32), there are two distinct Sylow
3-subgroups P and Q in G such that P ∩ Q is of index 3 in both P and Q
(hence is normal in each). Thus P ≤ NG(P ∩Q). Similarly, Q ≤ NG(P ∩Q).
As the result, PQ ⊆ NG(P ∩Q). Since |PQ| = |P ||Q|

|P ∩Q| =
33·33
32 = 3

4,

(1) 34 ≤ |NG(P ∩Q)|.
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Moreover, |P | divides |NG(P ∩Q)| and so
(2) 33 divides |NG(P ∩Q)|.
By Lagrange’s theorem,

(3) |NG(P ∩Q)| divides 432.

By (1), (2), (3),

|NG(P ∩Q)|∈{108, 216, 432}.
If |NG(P ∩ Q)| = 108, then |G : NG(P ∩ Q)| = 4. Since |G| does not divide
|G : NG(P ∩ Q)|!, NG(P ∩ Q) must contain a nontrivial normal subgroup of
G. If |NG(P ∩ Q)| = 216, then |G : NG(P ∩ Q)| = 2 and so NG(P ∩ Q) is a
normal subgroup of G. If |NG(P ∩ Q)| = 432, then NG(P ∩ Q) = G and so
P ∩Q is a normal subgroup of G.

Prove that there are no simple groups of order 252 = 22 · 32 · 7.

Let G be a group of order 252. By Sylow’s theorems, n3(G) ∈ {1, 4, 7, 28}
and n7(G) ∈ {1, 36}. Let N be the normalizer of a Sylow 3-subgroup of G.
If n3(G) = 4, then |G : N| = 4. Since |G| does not divide |G : N|!, N must
contain a nontrivial normal subgroup of G. Now consider n3(G) ∈ {7, 28}
and n7(G) = 36. So there are 36 · 6 elements of order 7 in G. Suppose any 2
distinct Sylow 3-subgroups intersect trivially. Then there are n3(G) · (32 − 1)
nonidentity elements in Sylow 3-subgroups of G besides the other 216

elements of order 7 in G, a contradiction since they do not fit into G. Thus

there exist two distinct Sylow 3-subgroups Q1 and Q2 with Q1 ∩ Q2 ̸= 1.
Thus |Q1 ∩ Q2| ∈ {3, 9}. If |Q1 ∩ Q2| = 9, then Q1 = Q1 ∩ Q2 = Q2, a
contradiction since Q1 and Q2 are distinct. Thus |Q1 ∩ Q2| = 3. Since the
index of Q1 ∩ Q2 in both Q1 and Q2 is 3, Q1 ∩ Q2 is normal in both Q1
and Q2. Thus Q1 ≤ NG(Q1 ∩ Q2) and Q2 ≤ NG(Q1 ∩ Q2). As the result,
Q1Q2 ⊆ NG(Q1 ∩Q2). Since |Q1Q2| = |Q1||Q2|

|Q1 ∩Q2| = 27,

(1) 27 ≤ |NG(Q1 ∩Q2)|.
Moreover |Q1| divides |NG(Q1 ∩Q2)| and so
(2) 9 divides |NG(Q1 ∩Q2)|.
By Lagrange’s theorem,

(3) |NG(Q1 ∩Q2)| divides 252.
By (1), (2), (3),

|NG(Q1 ∩Q2)| ∈ {36, 63, 126, 252}.
Suppose |NG(Q1 ∩ Q2)| = 36. There are 36 · 6 elements of order 7 in G
and the remaining 36 elements should belong to NG(Q1 ∩Q2). So NG(Q1 ∩
Q2) is the only subgroup of order 36 in G and hence it is normal in G. If
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|G : NG(Q1 ∩ Q2)| ∈ {2, 4}, then |G| does not divide |G : NG(Q1 ∩ Q2)|!
and hence NG(Q1 ∩ Q2) must contain a nontrivial normal subgroup of G. If
|NG(Q1 ∩ Q2)| = 252, then NG(Q1 ∩ Q2) = G and so Q1 ∩ Q2 is a normal
subgroup of G.

Prove that there are no simple groups of order 540 = 22 · 33 · 5.

Let G be a group of order 540. By Sylow’s theorems, n3(G) ∈ {1, 4, 10}.
Let H be the normalizer of a Sylow 3-subgroup of G. If n3(G) = 4, then

|G : H| = 4. Since |G| does not divide |G : H|!, H must contain a nontrivial
normal subgroup of G. By Sylow’s theorems, n5(G)∈{1, 6, 36}. Let K be the
normalizer of a Sylow 5-subgroup of G. If n5(G) = 6, then |G : K| = 6. Since
|G| does not divide |G : K|!, K must contain a nontrivial normal subgroup of
G. Now consider n3(G) = 10 and n5(G) = 36. Then |H|= |G|/n3(G) = 54.
and |K|= |G|/n5(G)=15. By Lagrange’s theorem, |H ∩K| ∈ {1, 3}. Suppose
|H ∩ K| = 1. Then |HK| = |H||K|

|H ∩K| = 810, a contradiction since the elements

of HK cannot fit into G. Thus |H ∩ K| = 3. Note that H ∩ K < P where P
is some Sylow 3-subgroup of G. Since H ∩K < NP (H ∩K),

|NP (H ∩K)| ∈ {9, 27}
and so 9 divides |NP (H ∩K)|. But NP (H ∩K) ≤ NG(H ∩K) and so 9 divides
|NG(H ∩ K)|. Since |K| = 15, K is cyclic and hence abelian. So H ∩ K is
normal in K and K ≤ NG(H ∩K). Thus 15 divides |NG(H ∩K)|. Both 9 and
15 divide |NG(H ∩K)| and hence
(1) 45 divides |NG(H ∩K)|.
By Lagrange’s theorem,

(2) |NG(H ∩K)| divides 540.
By (1), (2),

|NG(H ∩K)|∈{45, 90, 135, 180, 270, 540}.
Suppose |NG(H ∩ K)| = 45. By Sylow’s theorems, NG(H ∩ K) has a normal
subgroup Q of order 5 and hence NG(H ∩K) ≤ NG(Q). Notice that Q is also
a Sylow 5-subgroup of G. Since n5(G) = 36, |NG(Q)| = 15. But |NG(H∩K)|
divides |NG(Q)| and so 45 divides 15, a contradiction. Thus |NG(H∩K)| = 45
is not an actual possibility. If |G : NG(H ∩ K)| ∈ {2, 3, 4, 6}, then |G| does
not divide |G : NG(H ∩ K)|! and hence there is a nontrivial normal subgroup
of G contained in NG(H ∩ K). If |NG(H ∩ K)| = 540, then NG(H ∩ K) = G
and so H ∩K is a normal subgroup of G.

Let G be a group of order 120 = 23 · 3 · 5. Then G has a subgroup of index 3
or a subgroup of index 5 (or both).

By Sylow’s theorems, n2(G) ∈ {1, 3, 5, 15}. Suppose n2(G) = 1. Then
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G has a normal Sylow 2-subgroup P . Let Q be a subgroup of G such that

|Q| ∈ {3, 5}. Thus |G : PQ| ∈ {3, 5}. Let N be the normalizer of a Sylow
2-subgroup of G. If n2(G) = 3, then |G : N| = 3. If n2(G) = 5, then
|G :N| = 5. Now suppose n2(G) = 15. Since n2(G) ̸≡ 1 (mod 22), there are
two distinct Sylow 2-subgroups P and Q in G such that P ∩ Q is of index
2 in both P and Q (hence is normal in each). Thus P ≤ NG(P ∩ Q) and
Q ≤ NG(P ∩Q). So PQ ⊆ NG(P ∩Q). Since |PQ| = |P ||Q|

|P ∩Q| =
23·23
22 = 2

4,

(1) 24 ≤ |NG(P ∩Q)|.
Moreover, |P | divides |NG(P ∩Q)| and so
(2) 23 divides |NG(P ∩Q)|.
By Lagrange’s theorem,

(3) |NG(P ∩Q)| divides 120.
By (1), (2), (3),

|NG(P ∩Q)|∈{24, 40, 120}.
If |NG(P ∩ Q)| = 24, then |G : NG(P ∩ Q)| = 5. If |NG(P ∩ Q)| = 40, then
|G : NG(P ∩ Q)| = 3. If |NG(P ∩ Q)| = 120, then NG(P ∩ Q) = G and so
P ∩ Q is a normal subgroup of G. Let N = P ∩ Q. Consider G = G/N. So
|G | = 120/22 = 30. Note that G has subgroups of order 6 and 10 and their
complete preimages in G are subgroups of G of order 24 and 40, respectively.

So in this case G has subgroups of index 3 and 5.

Prove that there are no simple groups of order 240 = 24 · 3 · 5.

Let G be a group of order 240. By Sylow’s theorems, n2(G) ∈ {1, 3, 5, 15}.
If n2(G) = 1, then G is not simple. Let N be the normalizer of a Sylow

2-subgroup of G. If n2(G) = 3, then |G : N| = 3. Since |G| does not
divide |G : N|!, N must contain a nontrivial normal subgroup of G. If
n2(G) = 5, then |G : N| = 5. Since |G| does not divide |G : N|!, N must
contain a nontrivial normal subgroup of G. Suppose n2(G) = 15. Since

n2(G) ̸≡ 1 (mod 22), there are two distinct Sylow 2-subgroups P and Q in
G such that P ∩ Q is of index 2 in both P and Q (hence is normal in each).
Thus P ≤ NG(P ∩Q) and Q ≤ NG(P ∩Q). As the result, PQ ⊆ NG(P ∩Q).
Since |PQ| = |P ||Q|

|P ∩Q| =
24·24
23 = 2

5,

(1) 25 ≤ |NG(P ∩Q)|.
Moreover, |P | divides |NG(P ∩Q)| and so
(2) 24 divides |NG(P ∩Q)|.
By Lagrange’s theorem,

(3) |NG(P ∩Q)| divides 240.
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By (1), (2), (3),

|NG(P ∩Q)|∈{48, 80, 240}.
If |G : NG(P ∩ Q)| ∈ {3, 5}, then |G| does not divide |G : NG(P ∩ Q)|! and
hence there is a nontrivial normal subgroup of G contained in NG(P ∩ Q). If
|NG(P ∩Q)| = 240, then NG(P ∩Q) = G and so P ∩Q is a normal subgroup
of G.

Prove that there are no simple groups of order 280 = 23 · 5 · 7.

Let G be a group of order 280. By Sylow’s theorems, n7(G) ∈ {1, 8}.
Let N be the normalizer of a Sylow 7-subgroup of G. Suppose n7(G) = 8.

Then 8 = |G : N| and so |N| = 35. By Sylow’s theorems, N has a normal
subgroup P of order 5 and hence N ≤ NG(P ). So
(1) 35 divides |NG(P )|.
Notice that P is also a Sylow 5-subgroup of G. Since n5(G) ∈ {1, 56},
(2) |NG(P )| ∈ {5, 280}.
By (1), (2), |NG(P )| = 280. Thus NG(P ) = G.

Let G be a group of order 23 ·3·23. Then its Sylow 23-subgroup is normal in G.

By Sylow’s theorems, n3(G) ∈ {1, 4, 46, 184} and n23(G) ∈ {1, 24}.
Suppose n3(G) = 1. Thus G has a normal Sylow 3-subgroup N. Since

|G/N| = 184, G/N has a normal subgroup of order 23 of the form H/N for
some subgroup H of G containing N. Thus |H| = 23 · 3 = 69. Since H/N
is normal in G/N, H is also normal in G. Note that H has a subgroup P of

order 23. Let θ ∈ Aut(H). Then θ(P ) is also a subgroup of H of order 23.
By Sylow’s theorems, there is one and only one subgroup of order 23 in H.

Thus θ(P ) = P and hence P is a characteristic subgroup of H. Since P is

a characteristic subgroup of H and H is normal in G, P is normal in G. If

n23(G) = 1, then G has a normal Sylow 23-subgroup. Let N be the normalizer

of a Sylow 3-subgroup of G. Suppose n3(G) = 4. Then 4 = |G : N| and so
|N| = 138. By Sylow’s theorems, N has a normal subgroup P of order 23 and
hence N ≤ NG(P ). So
(1) 138 divides |NG(P )|.
Notice that P is also a Sylow 23-subgroup of G. Since n23(G) ∈ {1, 24},
(2) |NG(P )| ∈ {23, 552}.
By (1), (2), |NG(P )| = 552. Thus NG(P ) = G. Consider n3(G)∈{46, 184}
and n23(G)=24. So there are n3(G) · 2 elements of order 3 in G and 24 · 22
elements of order 23 in G, a contradiction since they do not fit into G.
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Lemma 0

Let G be a group of order 23 · 24. If G has a normal subgroup N with
|N| ∈ {2, 3, 6}, then G has a normal Sylow 23-subgroup.

Let G = G/N. So |G | ∈ {92, 184, 276} and G has a normal Sylow
23-subgroup H. Let H = {x ∈ G | xN ∈H}. Then H is a subgroup of G and
H∼= H/N; thus

23 = |H | =
|H|
|N| .

So |H| ∈ {46, 69, 138} and H has a Sylow 23-subgroup Q. Let ϕ be an
automorphism of H. Then ϕ(Q) is a Sylow 23-subgroup of H. H has exactly

one Sylow 23-subgroup and thus ϕ(Q) = Q. Since H is normal in G, H is

normal in G. Since Q is a characteristic subgroup of H and H is normal in G,

Q is normal in G.

If G is a group of order 23 · 24, then G has a normal Sylow 23-subgroup.

By Sylow’s theorems, n3(G) ∈ {1, 4, 46, 184} and n23(G) ∈ {1, 24}. If
n3(G) ∈ {1, 4, 46, 184} and n23(G) = 1, then G has a normal Sylow

23-subgroup. Now suppose n3(G) = 1 and n23(G) = 24. So G has a normal

Sylow 3-subgroup and thus, by Lemma 0, G has a normal Sylow 23-subgroup.

Suppose n3(G) = 4 and n23(G) = 24. Let N be the normalizer of a Sylow

3-subgroup of G. Then |G : N| = 4. Since |G| does not divide |G : N|!,
N must contain a nontrivial normal subgroup of G. Let H be the nontrivial

normal subgroup of G in N. Thus |H| ∈ {2, 3, 6, 23, 46, 69}. If |H| ∈ {2, 3, 6},
then, by Lemma 0, G has a normal Sylow 23-subgroup. If |H| = 23, then
there is nothing to prove. If |H| ∈ {46, 69}, then H has a Sylow 23-subgroup
Q. Let ϕ be an automorphism of H. Then ϕ(Q) is a Sylow 23-subgroup of

H. H has exactly one Sylow 23-subgroup and thus ϕ(Q) = Q. Since Q is a

characteristic subgroup of H and H is normal in G, Q is normal in G. Now

suppose n3(G) ∈ {46, 184} and n23(G) = 24. So there are 24 · 22 elements
of order 23 in G and n3(G) · (3− 1) elements of order 3 in G, a contradiction
since they do not fit into G.

Prove that there are no simple groups of order 2376 = 23 · 33 · 11.

Let G be a group of order 2376. By Sylow’s theorems, n11(G)∈{1, 12}. let
N be the normalizer of a Sylow 11-subgroup of G. Suppose n11(G) = 12.

Then |N| = |G|/n11(G) = 198. So N has a normal subgroup H of order
11 and a subgroup K of order 32. Let θ ∈ Aut(HK). Then θ(K) is also a
subgroup of HK of order 32. By Sylow’s theorems, there is one and only one

subgroup of order 32 in HK. Thus θ(K) = K and hence K is a characteristic

subgroup of HK. Since |N : HK| = 2, HK is normal in N. Since K is a
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characteristic subgroup of HK and HK is normal in N, K is normal in N and

hence N ≤ NG(K). So
(1) 198 divides |NG(K)|.
Note that K < P where P is some Sylow 3-subgroup of G. Thus K is normal

in P and hence P ≤ NG(K). So
(2) 33 divides |NG(K)|.
Moreover, by Lagrange’s theorem,

(3) |NG(K)| divides 2376.
By (1), (2), (3),

|NG(K)| ∈ {594, 1188, 2376}.
If |G : NG(K)| ∈ {2, 4}, then |G| does not divide |G : NG(K)|! and hence there
is a nontrivial normal subgroup of G contained in NG(K). If |NG(K)| = 2376,
then NG(K) = G and so K is a normal subgroup of G.

Prove that there are no simple groups of order 300 = 22 · 3 · 52.

Let G be a group of order 300. By Sylow’s theorems, n5(G) ∈ {1, 6}.
If n5(G) = 1, then G is not simple. Let N be the normalizer of a Sylow

5-subgroup of G. If n5(G) = 6, then |G : N| = 6. Since |G| does not divide
|G : N|!, N must contain a nontrivial normal subgroup of G.

Prove that there are no simple groups of order 600 = 23 · 3 · 52.

Let G be a group of order 600. By Sylow’s theorems, n5(G) ∈ {1, 6}.
If n5(G) = 1, then G is not simple. Let N be the normalizer of a Sylow

5-subgroup of G. If n5(G) = 6, then |G : N| = 6. Since |G| does not divide
|G : N|!, N must contain a nontrivial normal subgroup of G.

Prove that there are no simple groups of order 900 = 22 · 32 · 52.

Let G be a group of order 900. By Sylow’s theorems, n5(G) ∈ {1, 6, 36}.
If n5(G) = 1, then G is not simple. Let N be the normalizer of a Sylow

5-subgroup of G. If n5(G) = 6, then |G : N| = 6. Since |G| does not
divide |G : N|!, N must contain a nontrivial normal subgroup of G. Suppose
n5(G) = 36. Since n5(G) ̸≡ 1(mod 52), there are two distinct Sylow
5-subgroups P and Q in G such that P ∩ Q is of index 5 in both P and Q
(hence is normal in each). Thus P ≤ NG(P ∩Q). Similarly, Q ≤ NG(P ∩Q).
As the result, PQ ⊆ NG(P ∩Q). Since |PQ| = |P ||Q|

|P ∩Q| =
52·52
5 = 125,

(1) 125 ≤ |NG(P ∩Q)|.
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Moreover, |P | divides |NG(P ∩Q)| and so
(2) 52 divides |NG(P ∩Q)|.
By Lagrange’s theorem,

(3) |NG(P ∩Q)| divides 900.
By (1), (2), (3),

|NG(P ∩Q)| ∈ {150, 225, 300, 450, 900}.
If |G : NG(P ∩ Q)| ∈ {2, 3, 4, 6}, then |G| does not divide |G : NG(P ∩ Q)|!
and hence there is a nontrivial normal subgroup of G contained in NG(P ∩Q).
If |NG(P ∩Q)| = 900, then NG(P ∩Q) = G and so P ∩Q is a normal subgroup
of G.

Prove that there are no simple groups of order 2n · 3 · 5 for n ≥ 4.

Let G be a group of order 2n · 3 · 5 for n ≥ 4. By Sylow’s theorems,
n2(G) ∈ {1, 3, 5, 15}. If n2(G) = 1, then G is not simple. Let N be the
normalizer of a Sylow 2-subgroup of G. If n2(G) = 3, then |G : N| = 3. Since
|G| does not divide |G : N|!, N must contain a nontrivial normal subgroup of
G. If n2(G) = 5, then |G : N| = 5. Since |G| does not divide |G : N|!, N
must contain a nontrivial normal subgroup of G. Suppose n2(G) = 15. Since

n2(G) ̸≡ 1 (mod 22), there are two distinct Sylow 2-subgroups P and Q in
G such that P ∩ Q is of index 2 in both P and Q (hence is normal in each).
Thus P ≤ NG(P ∩Q) and Q ≤ NG(P ∩Q). As the result, PQ ⊆ NG(P ∩Q).
Since |PQ| = |P ||Q|

|P ∩Q| =
2n ·2n
2n−1 = 2

n+1,

(1) 2n+1 ≤ |NG(P ∩Q)|.
Moreover, |P | divides |NG(P ∩Q)| and so
(2) 2n divides |NG(P ∩Q)|.
By Lagrange’s theorem,

(3) |NG(P ∩Q)| divides 2n · 3 · 5.
By (1), (2), (3),

|NG(P ∩Q)|∈{2n · 3, 2n · 5, 2n · 3 · 5}.
If |G : NG(P ∩ Q)| ∈ {3, 5}, then |G| does not divide |G : NG(P ∩ Q)|! and
hence there is a nontrivial normal subgroup of G contained in NG(P ∩ Q). If
|NG(P ∩ Q)| = 2n · 3 · 5, then NG(P ∩ Q) = G and so P ∩ Q is a normal
subgroup of G.

Prove that there are no simple groups of order 324 = 22 · 34.

Let G be a group of order 324. Thus G has a Sylow 3-subgroup H.
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Since |G| does not divide |G : H|!, H must contain a nontrivial normal
subgroup of G.

Prove that there are no simple groups of order 648 = 23 · 34.

Let G be a group of order 648. Thus G has a Sylow 3-subgroup H.

Since |G| does not divide |G : H|!, H must contain a nontrivial normal
subgroup of G.

Prove that there are no simple groups of order 1176 = 23 · 3 · 72.

Let G be a group of order 1176. By Sylow’s theorems, n7(G) ∈ {1, 8}.
If n7(G) = 1, then G is not simple. Suppose n7(G) = 8. Since

n7(G) ̸≡ 1(mod 72), there are two distinct Sylow 7-subgroups P and Q
in G such that P ∩Q is of index 7 in both P and Q (hence is normal in each).
Thus P ≤ NG(P ∩Q) and Q ≤ NG(P ∩Q). As the result, PQ ⊆ NG(P ∩Q).
Since |PQ| = |P ||Q|

|P ∩Q| =
72·72
7 = 343,

(1) 343 ≤ |NG(P ∩Q)|.
Moreover, |P | divides |NG(P ∩Q)| and so
(2) 72 divides |NG(P ∩Q)|.
By Lagrange’s theorem,

(3) |NG(P ∩Q)| divides 1176.
By (1), (2), (3),

|NG(P ∩Q)| ∈ {392, 588, 1176}.
If |G : NG(P ∩ Q)| ∈ {2, 3}, then |G| does not divide |G : NG(P ∩ Q)|! and
hence there is a nontrivial normal subgroup of G contained in NG(P ∩ Q). If
|NG(P ∩Q)| = 1176, then NG(P ∩Q) = G and so P ∩Q is a normal subgroup
of G.

Lemma 1

Let a and b be positive integers such that a | b. Then a ≤ b.
Proof.

Since a | b, b = ma for some integer m. Suppose m ≤ 0. Then ma ≤ 0 and
hence b ≤ 0, a contradiction. So m > 0 and then m ≥ 1. Thus ma ≥ a and
to conclude b ≥ a.

Lemma 2

Let a, b,m, r be integers such that b > 0 and 0 < r < b. If a = mb + r, then

b ̸ | a.
Proof.
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Suppose b | a. Then b | (a − mb) and thus b | r. Since b and r are positive
integers such that b | r, b ≤ r, a contradiction.

Lemma 3

If p is a prime number, then, for all integers n ≧ 2, pn ̸ | p!.
Proof.

Since p > 1, 0 < (p − 1)p < p2. Since (p − 1)! ≡ −1 mod p and
−1 ≡ p − 1 mod p, (p − 1)! ≡ p − 1mod p and thus p! ≡ (p − 1)p mod p2.
So p! = kp2 + (p − 1)p for some integer k. By Lemma 2, p2 ̸ | p!. Now let
n > 2. Suppose pn | p!. Since p2 | pn and pn | p!, p2 | p! which is a contradiction.

Lemma 4

If G is a finite group and H ̸= G is a subgroup of G such that |G| ̸ | |G : H|!,
then H must contain a nontrivial normal subgroup of G.

Theorem 1

Any subgroup of order pn−1 in a group G of order pn, p a prime number, is

normal in G.

Proof.

Suppose the result is true for n − 1. To show that it then must follow for
n. Let G be a group of order pn and H be its subgroup of order pn−1. Since

|G| ̸ | |G : H|!, that is pn ̸ | p!, by Lemma 4, H must contain a normal subgroup
N ̸=1 of G and hence N ∩Z(G) ̸=1. Since p divides |N ∩Z(G)|, by Cauchy’s
theorem, N ∩Z(G) has an element b of order p. Let B be the subgroup of G
generated by b. So |B| = p. Since b ∈ Z(G), B must be normal in G. Since
G/B is a group of order pn−1 and H/B is its subgroup of order p(n−1)−1, by

the induction hypothesis H/B is normal in G/B. To conclude H is normal in

G.

Let G be a group of order pn and H ̸= G be a subgroup of G. Then there is
a subgroup of G that contains the subgroup H of index p.

Suppose the result is true for n − 1. To show that it then must follow
for n. Let G be a group of order pn and H ̸= G be a subgroup of G. Since
Z(G) ̸= 1, p divides |Z(G)| and so Z(G) has an element a of order p. Let N
be the subgroup of G generated by a. Since a ∈ Z(G), N must be normal in
G. Moreover, |N ∩H| divides |N|. So |N ∩H| divides p. Thus |N ∩H| = 1 or
p. Suppose |N ∩H| = 1. Then NH is a subgroup of G and

|NH| =
|N||H|
|N ∩H| = p|H|.

Thus H < NH and |NH : H| = p. Suppose |N ∩ H| = p. Since N ∩ H ≤ N
and |N ∩ H| = |N|, it follows that N ∩ H = N and hence N ≤ H. Since N is
normal in G, N must be normal in H as well. Define G= G/N and H= H/N.

So |G | = pn−1. Moreover, H is a subgroup of G . If H =G , then |H |= |G |
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and hence |H|= |G|, a contradiction since |H|< |G|. Thus H ̸=G . So, by
induction hypothesis, G has a subgroup P that contains H and |P :H | = p.
Let P be the complete preimage of P in G. Let h ∈ H. Then Nh ∈ H . But
P contains H and thus Nh ∈ P . So h ∈ P . To conclude that P contains H
and |P : H| = |P :H | = p.

The commutator of two elements x and y is x−1y−1xy . The notation for this

commutator element is [x, y ]. If X and Y are subgroups of G, then [X, Y ] is

defined to be the group generated by all [x, y ] with x in X and y in Y .

Facts:

(1) [x, y ] = 1 if and only if xy = yx .

(2) [X, Y ] = 1 if and only if X ≤ CG(Y ) if and only if Y ≤ CG(X).
(3) [X, Y ] = [Y,X].

(4) [X, Y ] ≤ X if and only if Y ≤ NG(X).
[X, Y ] ≤ Y if and only if X ≤ NG(Y ).

(5) If X and Y normalize each other and X ∩ Y = 1, then X and Y centralize
each other.

Let H and K be subgroups of a group G such that H is normal in K and K is

normal in G. Suppose there exists a normal subgroup N of G with K ∩N = 1
and KN = G. Then H is normal in G.

Since H is normal in K, K = NK(H) ≤ NG(H). Since both K and N
are normal in G, N ≤ KN = G = NG(K) and K ≤ KN = G = NG(N). Thus
K and N normalize each other. But K ∩ N = 1 and so K and N centralize
each other. Hence N ≤ CG(K) ≤ CG(H) and so [N,H] = 1 ≤ H. Thus
N ≤ NG(H). Since K ≤ NG(H) and N ≤ NG(H), G = KN ≤ NG(H). To
conclude NG(H) = G.

Let G be a group, and let the prime p divide |G|. Suppose further that
|G| < p2. Show that G has a normal subgroup of order p.

Since p divides |G|, G has an element x of order p and the order of
⟨x⟩ is p. Suppose H,K are subgroups of order p. By Lagrange’s theorem,
|H ∩K| divides |H| and so |H ∩K| = 1 or p. Suppose |H ∩K| = 1. Then

|HK| = |H||K|
|H ∩K| = p

2,

a contradiction since HK is a subset of G but |G| < p2. Thus |H ∩ K| = p.
Since H∩K is a subset of H and |H∩K| = |H|. H∩K = H and thus H ⊂ K.
Similarly, since H∩K is a subset of K and |H∩K| = |K|. H∩K = K and thus
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K ⊂ H. Since H ⊂ K and K ⊂ H, H = K. So there is exactly one subgroup
of G of order p. Let g ∈ G. Then g⟨x⟩g−1 is also a subgroup of G of order
p. To conclude g⟨x⟩g−1 = ⟨x⟩.


