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Abstract

We discuss the topological properties of graphene superlattices excited
by ultrafast circularly-polarized laser pulses with strong electric field am-
plitude, aiming to directly observe the Berry phase, a geometric quantum
phase encoded in the graphene’s electronic wave function. As a continuing
research on our recent paper, Phys. Rev. B 96, 075409, we aim to show
that the broken symmetry system of graphene superlattice and the Bragg
reflection of electrons creates diffraction and "which way" interference
in the reciprocal space reducing the geometrical phase shift and making
it directly observable in the electron interferograms. Such a topological
phase shift acquired by a carrier moving along a closed path of crystallo-
graphic wave vector is predictably observable via time and angle-resolved
photoemission spectroscopy (tr-ARPES). We believe that our result is an
essential step in the control and observation of ultrafast electron dynam-
ics in topological solids and may open up a route to all-optical switching,
ultrafast memories, and petahertz-scale information processing technolo-
gies.
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1. INTRODUCTION
The development of ultrafast lasers with controllable carrier-envelope phase
(CEP) able to generate sub-10 fs optical pulses and has made optical control of
condensed matter systems and coherent electron dynamics especially appealing
[1-7]. It also provides a testbed for the realization of features and properties
that were hardly attainable a decade ago. The topological nature of materials is
among the most important characteristics that have intrigued people for some
time, but their control and manipulation have come to a new perspective on the
development of attosecond science. Quantum mechanical systems undergoing
adiabatic evolution on a closed path in the Hilbert space acquire a topological
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phase known as Berry’s phase [8-10]. In condensed matter physics, the Berry
flux and its density, i.e., Berry curvature, in the momentum space play a key role
in the emergence of unique phenomena such as the anomalous [11] and quantum
[12] Hall effects, and topological insulating and superconducting phases [13].
Graphene as the building block of two-dimensional nanosystems exhibits fas-
cinating properties such as high carrier mobility [14, 15], exceptional optoelec-
tronic behavior [16], and unconventional room-temperature quantum Hall effect.
Such phenomena make graphene a promising platform for engineering ultrafast
devices and all-carbon nanoelectronics. Close to the Fermi level, the energy
spectrum of graphene varies linearly with its momentum, and the dynamics of
electrons resembles the two-dimensional gas of Massless Dirac Fermion (MDF)
with a speed of 0.01 speed of light. The coupling of graphene electrons to the
incoming light is strong and due to the gapless energy dispersion, the response
time of electron and photon interaction is known to be ∼ 10 as [17, 18], which is
an order of magnitude faster than the responsivity of bound electrons in atomic,
molecular and semiconducting solids [19]. Indeed, the zero band gap in graphene
makes it intriguing because in principle, we have resonance electron dynamics
at large spectrum from THz all the way to UV frequencies.

It has been known for a long time that if the energy dispersion near a de-
generate point is linear, then the cyclotron orbit will acquire a π-Berry phase,
independent of the shape of the orbit [20]. However, the Berry phase, as a funda-
mental topological attribute, has never been directly observed in real graphene.
The indirect demonstration of the Berry phase has been experimentally ob-
served via a quantum Hall plateau at zero energy [21, 22]. In the same way,
in the previously published research [23] and [24], the Berry phase is implicitly
observed through an angular dependence of the interband matrix elements in
graphene, related to a specific structure of the electron wave function defined
by the crystallographic symmetry.
The explicit indication of Berry’s phase, though, requires moving electrons
around the Dirac point. In our previous work [25], we proposed an ultrafast
interferometric technique with the use of a two-cycle circularly polarized pulse
aiming to directly determine the Berry phase shift in the excitation map of
electron dynamics. Although we see a sharp jump in the real and imaginary
components of the electron wave function, the probability amplitude as a mea-
surable quantity is blind to such a phase shift. However, the Berry phase shows
its signature with the presence of an extra fringe and the appearance of bifur-
cation in the conduction band population distribution - see Fig. 2 in Ref. [25]
and its discussion.
In this paper, we propose the solution to a fundamental problem of directly
observing the Berry phase in the graphene reciprocal space which will open up
a new route in controllable light-driven electronic devices and hold promises
in various applications such as ultrafast memories, petahertz data processing,
and room temperature superconductivity. We show that graphene deposited on
the hexagonal Boron Nitride (h-BN), by breaking the inversion symmetry can
reduce the symmetry of the system and allow us to directly see the Berry phase
and its corresponding jump in the conduction band population distribution. The
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fabrication process of Graphene on h-BN sometimes referred to as the insulat-
ing counterpart of graphene due to their matching hexagonal structures, results
in the formation of a topographic moiré pattern [26-30]. This moiré pattern
produces a weak periodic potential that causes the Berry phase to be different
from ±π and allows it to directly manifest in the excitation distribution of elec-
trons in graphene. As an alternative, such a periodic modulation of electronic
potential can be attained by using an array of nanowires under electrostatic
bias superimposed beneath the graphene monolayer with a well-defined spatial
periodicity [31]. Our proposed theory and the population distribution induced
by the strong optical field in the reciprocal space can be verified by time- and
angle resolved photoemission spectroscopy (tr-ARPES) techniques.

2. MODEL DESCRIPTION
In our theory, we use the tight binding model of graphene with the two-band
electron system, i.e., a conduction band (CB) and a valence band (VB). Our
non-magnetic optical pulse is a single-cycle with vacuum wavelength 1.5µ m and
a pulse duration of 5 femtoseconds. The electric field vector of the laser, FL,
has components in the plane of graphene as:

Fx(t) = −F0e
−t2

(
1− 2t2

)
, Fy(t) = ±2tF0e

−t2 (1)

where ± signs correspond to the right and left polarized pulse. F0 the ampli-
tude of the pulse is related to its power, P, through the relationship P = cF 2

0 /4π.
If the pulse duration is less than the characteristic scattering time, then the elec-
tron dynamics become coherent. In this case, the scattering processes during
pulse propagation (including electron-electron collisions), do not have the time
to produce a significant effect on the electron dynamics [32-40]. The excitation
dynamics of electrons in graphene interacting with the ultrafast optical field in
the coherent regime is described by the time-dependent Schrödinger equation
(TDSE):

iℏ
dΨ(t)

dt
= H(t)Ψ(t) (2)

with the general Hamiltonian of the closed system as

Ĥ = Ĥ0 + eFL(t) · r+ V cos(Q · r)Î (3)

where Ĥ0 is the field-free Hamiltonian of graphene described by the tight-
binding (TB) model with nearest neighbor hopping, r is the planar vector
of monolayer graphene and Î is the identity matrix. Q = {0, Qy, 0} with
Qy = 2π/L is the reciprocal superlattice vector corresponding to the periodic po-
tential generated by the h-BN substrate. The pulse’s external, time-dependent
electric field of the pulse has an impact on electronic motion, that is, the field
induces electron motion within a single band (interband dynamics) and induces
the coupling of electron states of different bands (interband dynamics). Such
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interband coupling is similar to Zener interband tunneling in constant, external
electric fields [41, 42].
We neglect the spin-orbit interaction, which is known to be negligibly small (
∼ 1µeV ) in graphene [43]. Within a single band, the dynamics of an electron
in momentum (wave vector) space is appropriately described by the Houston
function. At the initial moment of time, i.e., before the pulse, the Houston
function is the Bloch function with wave vector k0.

With time, the electron wave vector is shifted by the value ∆k(t) = k(t) −
k0 = e

ℏ
∫ t

−∞ FL (t′) dt′, which is independent of the initial wave vector, k0.
Therefore, within a single band, the electron dynamics in the reciprocal space are
described by the Bloch acceleration theorem dk(t)

dt = e
ℏFL(t) which is universal

and is valid for any dispersion relation [44].
The states that belong to different bands (VB and CB) but have the same

initial crystal wave vector, k0, will have the same crystallographic wave vector,
k(t), at all moments of time t. After the pulse ends, the wave vector returns to
its initial value k0. The periodic potential coming from the moiré superlattice
couples states within each band with crystal moments k and k′ = k±nQ, where
n = ±1,±3, . . . is the order of the Bragg reflection from the underlying h-BN
substrate. Assuming potential ∆(y) to be smooth and weak enough, we will
only take into account n = ±1.

In Fig. 1 we illustrate and graphically explain our graphene superlattice
proposal: Panel (a) represents the schematic of the interaction process of the
few-cycle circular pulse with the graphene superlattice created by superimposing
it on the hBN . In panel (b) the band structure including the highest VB, the
lowest CB, and the Dirac points, K and K′, are shown. Panel (c) shows an
electron trajectory (the dashed red line) for an isolated monolayer of graphene
in the reciprocal space caused by a single-oscillation circularly polarized pulse.
The separatrix (shown by the solid blue line) is the position of initial wave
vectors where their corresponding trajectories pass precisely through the Dirac
point [45]. If the initial point, k0, is outside of the separatrix, as in panel
(c), then the trajectory does not encircle the Dirac point, and the total Berry
phase accumulated on such a trajectory is zero. In contrast, if k0 is inside the
separatrix, as in panel (d), then the trajectory encircles the Dirac point and,
consequently, the Berry phase is ±π for the K - and K′ point, respectively.
Panel (e) shows the electron trajectory for the graphene superlattice; the red
line shows the actual electron trajectory in the reciprocal space starting at a
crystal wave vector k0, where the solid line corresponds to the electron in the VB
and the dashed line in the CB. There are also two additional trajectories shown
by the dash-dot blue and green lines that are obtained from the original (red)
trajectory by shifting it with the superlattice reciprocal vectors, ±Qy. The
electron moving along the original (red) trajectory undergoes a Bragg reflection
from the superlattice acquiring the wavevector −Qy and jumps to the blue
trajectory, as shown by a vertical arrow. This jump is necessarily accompanied
by a VB → CB transition to avoid the Pauli blocking due to the VB being
fully occupied. Passing by the K - point, the electron undergoes the CB → VB
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Figure 1: (a) Schematic of the proposed structure. A graphene monolayer is
positioned over a superlattice formed by nanowires with period L and gat-
ing potential V (or analogously deposited on a h-BN substrate which pro-
duces the so-called moiré pattern with a well-defined superlattice wavelength
L and potential strength V). Inset: Illustration of the electric field waveform
F(t) = {Fx(t), Fy(t)} as a function of time t for a single oscillation circularly
polarized ultrashort pulse. (b) Electron dispersion of graphene monolayer ob-
tained within tight-binding approximation. Energies of the highest valence band
( π-band) and the lowest conduction band ( π∗-band) in the reciprocal space
are displayed as functions of wavevector k = {kx, ky}. The two distinct Dirac
points are labeled as K and K’. (c) An illustration of an electron trajectory
(dashed red line) in the reciprocal space, which starts and ends at a k0-point
outside the separatrix and passes close to the K-point without circling it. The
separatrix (solid blue line) separates the k0-points for those trajectories that
circle the K-point and those that do not. (d) The same as in panel (c) but for
the k0 point inside the separatrix. (e) Schematic of the reciprocal space trajec-
tories and transitions caused by the Bragg reflections for the k0-point outside
of the separatrix, corresponding to the case of the panel (c). The red line shows
an electron trajectory where the solid and dashed segments correspond to the
VB and CB, respectively, as indicated. The thin dash-dot green and blue lines
are Bragg-shifted replicas of the original trajectory. (f) The same as in panel
(e) but for the k0-point inside the separatrix, corresponding to the case of the
panel (d).
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transition and then another VB → CB transition at the point of the second
Bragg reflection. The electron completes its trajectory at the initial k0 point
but in the CB state. In both cases of the initial crystal moments inside and
outside of the separatrix [Fig. 1 (e)-(f )], the electron circles the K - point but
only in part, hence the accumulated Berry phase along the passage is less than
π and makes it observable as sharp phase jumps in the reciprocal space carrier
distribution - see Fig. 2 and 3.
The further derivation and computation procedure is elaborated in Ref. [31].
In the next section, we present some results of numerical solutions for graphene
interacting with the circular pulse. We show that the deposition of graphene
on substrates breaks the fundamental lattice symmetries and by changing the
electronic spectrum of graphene, leads to the manifestation of the Berry phase
as well as interesting signatures of valley polarization and generation of Hall
current perpendicular to the drift current induced by the electric field of the
pulse.

3. RESULTS AND DISCUSSION
To elucidate the topological Berry phase corresponding to the electronic states
of graphene at the Dirac points, we turn to Figs 2 and 3 where the residual
population of conduction-band states is illustrated with the false color. Fig. 2
shows the results of our two-band model for graphene interacting with a single
cycle circularly polarized pulse with field strengths ranging from 0.25 to 1 V/Å.
The simulation has been illustrated in the extended Brillouin zone (BZ) for bet-
ter comprehension. We employed the realistic values [26] for both the potential
strength and the moiré wavelength; V=0.05 eV, and L = 10 nm. The discon-
tinuity in the population distribution of the reciprocal space corresponding to
the Berry phase is apparent.
Due to the intrinsic chirality of graphene, as the field amplitude increases, the
interaction and population exchange between K and K′ valleys increases. In
principle, the separatrix governs the trajectory of the electron wave packet
around the K and K′ points. A higher field means larger separatrix; when
the trajectory around one Dirac point gets sizable such that it passes in the
region of the neighboring Dirac point, there will be a proximity area where the
two Quantum pathways with different directionality and phase properties start
to overlap with each other. This partial intersection produces the interference
fringes that are observable for the field amplitudes of 0.75 and 1 V/Å in Fig. 2
and 3.

A subtle, yet interesting feature of the population distribution with the use
of a circularly polarized pulse is that the superlattice potential induced by the
h-BN substrate breaks the inversion symmetry of the graphene system giving
rise to the population imbalance in the nonequivalent K and K ′ valleys and the
manifestation of the quantum Valley Hall Effect (QVHE) [46, 47]. One can note
the presence of valley Hall current as a consequence of opposite Berry curva-
ture at K and K′, by the significant difference in the carrier distribution around
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Figure 2: The CB population distribution in the extended BZ scheme for a
single-cycle circularly polarized field after the end of the excitation pulse whose
amplitudes are (a) F0 = 0.5, (b) 0.5, (c) 0.75 and (d) 1 V/Å, respectively. The
distributions of the population in the vicinity of the K - vs. K′-point are dif-
ferent because the chirality of the circularly-polarized pulse causes significantly
different electron trajectories at the nonequivalent Dirac points, which are in-
trinsically chiral themselves. (Note that for linearly polarized pulses, there is
no such a distinction: the distribution at the K - and K′-points are identical -
see Ref. [18].

nonequivalent valleys.
Another important attribute one may infer by analyzing the CB population dis-
tribution of graphene is the possibility of Valley polarization in graphene. The
valley degeneracy at K and K′ Dirac points in the momentum space present an
additional degree of freedom for charge carrier manipulation. Analogous to the
spin states in spintronics, controlling the population of valley states is essential
to the development of valley-based devices with graphene and other topological
two-dimensional materials. The circularly polarized pulse lifts such degeneracy
in a controlled way and reveals the chiral nature of graphene.

Degeneracy lifting of the valley degree of freedom is directly related to the
global sublattice symmetry breaking. We cannot distinguish the nonequivalent
Dirac points of graphene’s band structure with the linear pulse since it is achi-
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Figure 3: The CB population distribution around the K-point to visualize the
phase shift accompanied by the nontrivial Berry phase of graphene’s electronic
wave function. As the field amplitude increases, the carrier distribution around
the K-point starts to intersect with its neighboring Dirac point and introduces
interference fringes.

ral and a superposition of right and left circularly polarized pulse. In a sense,
the effect of the Berry phase in reciprocal space is in correspondence with the
Aharanov-Bohm effect in the configuration space where a phase is acquired if
the electrons diffraction moving around the magnetic flux [48]. In fact, the Dirac
point in graphene has a local Berry flux that acts like a local magnetic field.

To better visualize the discontinuities at the separatrices and their Bragg
replica, corresponding to the Berry phase, here we pinpoint the excitation dis-
tribution of the CB states to enclose only the K- Dirac point. The three dis-
continuities are clearly seen at the separatrix and its replicas Bragg-shifted by
±Q. The interference fringes of population dynamics and the discontinuity cor-
responding to the topological Berry phase are observable using tr-ARPES. The
electron-electron collision dynamics will manifest itself by the smearing-out of
the interferograms, which can also be traced by TRARPES with a temporal
resolutions of a few fs and the momentum resolution defined by the ARPES
setup, which is realistically ∼ 1.5 percent of the Brillouin zone edge ( ≈ 1.6Å )
that is ≈ 0.025Å [49]; the momentum resolution can be as high as 0.005Å for
nano-ARPES [50]. Such resolutions are more than sufficient to observe the in-
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Figure 4: Displays the magnitude of the phase jump corresponding to the Berry
phase in the population distribution of CB states of graphene supperlattice as a
function of (a) moiré wavelength ( L ) in nanometer, and (b) potential strength
(V) in electron volt.

terference fringes predicted in this Letter and their evolution caused by electron
collisions.

In Fig. 4, we plot the magnitude of jump in CB distribution associated with
the Berry phase as a function of moiré wavelength (λ) and potential strength
(V). The magnitude of the jump has been scaled between 0 and 1 , corresponding
to the phase difference of 0 to π. The phase jump as a function of moiré
wavelength exhibits a maximum at around 20 nm which predicts the optimum
value gating length. On the other hand, the magnitude of the Berry phase
jump displays a monotonic behavior with respect to the gating potential before
it reaches a plateau at V ∼ 0.15eV.

4. CONCLUSION
We present a developmental study of our preceding letter [25] where we looked
into the self-referenced interferometry in pristine graphene with the use of few-
cycle circularly polarized pulse to detect the non-trivial Berry phase of ±π cor-
responding to electron trajectories encircling the K - and K′ - points. Although
the characteristics of non-trivial Berry curvature of graphene was evident in the
chiral structure of electron distribution in CB and the formation of bifurcation,
the direct visualization of the phase shift corresponding to the π-phase was out
of sight of the tr-ARPES eye. We overcome this subtlety by overlaying graphene
on a hexagonal Boron Nitride (h-BN) substrate and making a superlattice moiré
pattern. Due to the Brag reflection caused by this extra week ( and periodic)
interlayer potential, states with different crystallographic wave vectors couple
with each other and thereby reduce the Berry phase to less than a full period.
Such a reduced symmetry system manifests the Berry phase as discontinuities
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on the interferometric distribution of electrons and thereafter can be read out
using attosecond pulses produced by high harmonic generation. Berry phase as
the phase factor of electron wave function contains rich information about the
singular nature of the Dirac cones and the chirality of graphene and hence of
great importance in understanding the band theory of solids and their intrinsic
topological essence, as well as emerging phenomena like Valleytronics, quantum
Hall effects, and topological superconductivity.

APPENDIX A: DESCRIPTION OF BERRY PHASE
WITHIN TOPOLOGICAL BAND THEORY OF
GRAPHENE
Revealing the electronic band structure of graphene over the entire Brillouin
zone in the electric field of the pulse requires a lattice description of the system.
Knowing the band structure properties for the whole Brillouin zone allows us to
calculate the relevant topological quantum numbers and identify the topological
(Berry) phase of the graphene system. From the definition, the interband dipole
elements are calculated as below:

Dx =
Vx

i (Ec − Ev) /ℏ
=

1

i (Ec − Ev)
⟨v| ∂H

∂kx
|c⟩ (A1)

Where

⟨v| ∂H
∂kx

|c⟩ = ∂

∂kx
(⟨v|H|c⟩)− ⟨∂kx

v|H|c⟩ − ⟨v|H |∂kx
c⟩ = (Ec − Ev) ⟨v | ∂kx

c⟩
(A2)

Using the following identity

∂kx
⟨v | c⟩ = 0 = ⟨∂kx

v | c⟩+ ⟨v | ∂kx
c⟩ (A3)

we get the following expression for Dx as:

Dx =
1

i
⟨v | ∂kx

c⟩ (A4)

By definition, the Berry phase is given by the following expression

θ = −i

∮
c

⟨c|∂t|c⟩dt (A5)

Without loss of generality, we can assume a particular loop in reciprocal
space around the Dirac point that the change in ky is negligible. Hence, the
Berry phase can be rewritten as below:

θ = −i[

∫ a

−a

⟨c | ∂kx
c⟩dkx︸ ︷︷ ︸

Ky+0

+

∫ −a

a

⟨c | ∂kx
c⟩dkx︸ ︷︷ ︸

Ky−0

] (A6)
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The integrand of the above integral is equal to:

⟨c | ∂kxc⟩ = ⟨c| 1√
2

(
ieiϕ

∂ϕ

∂kx

)
eikr +

1√
2

(
e1
) ∣∣eikrx〉 =

i

2

∂ϕ

∂kx
(A7)

Similarly one can obtain:

⟨v | ∂kx
c⟩ = − i

2

∂ϕ

∂kx
(A8)

Hence,

⟨c | ∂kx
c⟩ = −⟨v | ∂kx

c⟩ = −iDx (A9)

Substituting Eq. (A9) into Eq. (A6) reads:

−i[i

∫ a

−a

Dx dkx︸ ︷︷ ︸
Ky−0

−i

∫ a

−a

Dx dkx︸ ︷︷ ︸
Ky+0

] =

∫ a

−a

Dx dkx︸ ︷︷ ︸
Ky−0

−
∫ a

−a

Dx dkx︸ ︷︷ ︸
Ky+0

= π = θ (A10)
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