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Abstract

This paper explores the concept of osmotic momentum within
quantum mechanics, offering a novel theoretical framework that in-
tegrates stochastic mechanics with generalized electrodynamics. By
revisiting Edward Nelson’s interpretation of the Schrédinger equa-
tion, we propose that osmotic momentum arises from interactions
with gauge waves—an extension to classical field components. Ad-
ditionally, we outline a method for experimental detection of these
waves using a "quantum lens,” a device designed to convert gauge
waves into detectable photons. This work bridges gaps between quan-
tum mechanics, gravity, and dark energy, suggesting that gauge waves
could unify these phenomena under a common theoretical framework.
Experimental validation of this model could redefine our understand-
ing of quantum and relativistic systems.

1 Introduction

The development of quantum mechanics marks one of the most transfor-
mative revolutions in scientific history. At the dawn of the 20th century,
classical physics, built on the principles of Newtonian mechanics, dominated
our understanding of the natural world. However, as scientists began probing
the atomic and subatomic realms, they encountered phenomena that defied
classical explanations. Observations of black-body radiation, the photoelec-
tric effect, and atomic spectra revealed mysterious behaviors that needed a
paradigm shift.
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This paradigm shift began with pioneers like Max Planck, who in 1900
introduced the idea of quantized energy levels [I], suggesting that energy
could only be absorbed or emitted in discrete packets, or “quanta”. This
radical notion paved the way for Albert Einstein, who extended the idea in
1905 to explain the photoelectric effect [2], laying the groundwork for the
wave-particle duality of light.

Building on these revolutionary ideas, Niels Bohr in 1913 provided a
quantum model of the atom [4] 5] 6] that explained the Rydberg formula for
the spectral lines observed in hydrogen. His model proposed that electrons
orbit the nucleus in quantized states and emit or absorb light only when
transitioning between these levels. This explanation not only validated the
Rydberg formula, but also marked the first quantum theory of atomic struc-
ture, solidifying quantum mechanics as a framework for understanding the
atomic world.

In the 1920s, quantum mechanics blossomed further through the con-
tributions of Werner Heisenberg [7], Erwin Schrédinger [§] and Niels Bohr.
Schrédinger’s wave function formalism and Heisenberg’s uncertainty principle
redefined our conception of reality, introducing a framework where particles
existed in a superposition of states until observed.

When Erwin Schrodinger published his famous equation [§] in 1926 he
left an important question unanswered, how to interpret the wave function.
This has led to the development of various interpretations, each attempting
to clarify the nature of quantum reality.

Among these, the Copenhagen interpretation, pioneered by Niels Bohr
and Werner Heisenberg [9, [10], remains one of the most widely taught. It
suggests that quantum systems exist in a superposition of states, described
by a wave function until measured. Upon observation, the wave function
“collapses” to a single outcome. However, this idea of collapse raised ques-
tions about the role of the observer and the nature of reality, sparking debate
and skepticism among physicists.

An alternative to this probabilistic view is the interpretation of many
worlds, formulated by Hugh Everett [I1) 12]. This theory proposes that all
possible outcomes of a quantum event actually occur, each in its own branch-
ing universe. According to many-worlds, the wave function never collapses;
instead, every observation splits the universe into a multitude of parallel
realities, where each possible outcome of every quantum event is realized.

In contrast to these views, De Broglie-Bohm theory (or Bohmian me-
chanics) offers a deterministic explanation. Proposed by Louis de Broglie
and later expanded by David Bohm [13, [14], this interpretation suggests
that particles have defined positions at all times, guided by a 'pilot wave’.
Here, quantum mechanics behaves more like a hidden variable theory, where



unseen forces guide particles along specific trajectories, preserving causality
and determinism within the quantum framework.

Further expanding these ideas, Edward Nelson’s stochastic mechanics [15]
proposes a picture of quantum dynamics based on randomness. Nelson ar-
gued that quantum behavior could be explained as the result of underlying
stochastic (random) processes, where particles undergo Brownian-like mo-
tion due to fluctuating hidden variables. In this interpretation, randomness
is not a fundamental feature of nature, but arises from interactions with an
unseen environment.

In 1926, Erwin Madelung [16] introduced a novel hydrodynamical inter-
pretation of quantum mechanics, reformulating the Schrodinger equation to
resemble the equations of fluid dynamics. This approach allows quantum
particles to be viewed as fluid-like entities that flow according to a quantum
potential. Madelung’s interpretation captures the probabilistic distribution
of quantum particles as a kind of fluid density, with dynamics governed by an
additional quantum force derived from the curvature of the wave function.
By transforming the complex Schrodinger equation into a system of real,
coupled equations, Madelung provided a compelling analog for quantum be-
havior, suggesting that particles move within an underlying fluid governed
by both classical forces and an enigmatic quantum force. Although it does
not alter the predictions of quantum mechanics, Madelung’s hydrodynamical
model offers an intuitive perspective that bridges classical fluid mechanics
with quantum theory, influencing later studies in quantum fluid dynamics
and interpretations like the de Broglie-Bohm pilot-wave theory.

And in 1999, Alexander Gresten [17] showed that if you write the equation
for a massless spin 1 particle and set w E— zB then solutions will also be so-
lutions to Maxwell equations. In a follow-up comment, Valeri V. Dvoeglazov
[18] points out that solutions to the generalized Maxwell equations also solve
the massless spin 1 equation. This gives an interesting suggestion on how to
interpret @5, at least for photons.

More recently, fluid dynamics experiments have offered an unexpected
and tangible model for studying quantum-like behavior. One striking ex-
ample is the silicon droplet experiment pioneered by Yves Couder and Em-
manuel Fort [19, 20, 21]. In these experiments, droplets of silicon oil, called
'bouncers’, are made to vibrate on the surface of a vibrating oil bath, where
they interact with the waves they generate. This setup mimics some quan-
tum phenomena, such as wave-particle duality, interference patterns, and
quantized orbits, providing a physical analogy that captures the dynamic
nature of quantum systems. The silicon droplet experiment, though classi-
cal, reveals the interplay between a particle and a guiding wave field, bearing



a strong resemblance to Bohm’s pilot wave model and inspiring new ways of
thinking about quantum dynamics.

Finally, gauge theory has become essential to modern quantum physics
[22, 23, 241, 25| 26, 27, 28], 29], used to describe interactions between particles
through fields. At its core, gauge theory examines symmetries in physical
systems, focusing on how these symmetries can produce forces and interac-
tions. Central to gauge theory is the idea that certain parameters, known
as gauge functions, represent non-physical and redundant degrees of freedom
— values that can change without affecting the observable quantities of the
system. To account for these redundancies, gauge theory seeks to formulate
a Lagrangian, which remains invariant under gauge transformations.

The quest to understand quantum mechanics has thus spawned a vari-
ety of interpretations and experimental analogs, each attempting to address
questions about the nature of reality, causality, and measurement. As these
perspectives continue to evolve, so too does our toolkit for exploring quan-
tum phenomena. From abstract wave functions to oil droplets dancing on a
vibrating surface, physicists are developing increasingly innovative methods
to investigate the strange dynamics that underpin the quantum world.

Another pillar we will build on is generalized electrodynamic, which his-
tory starts with Ampere’s force law, formulated by André-Marie Ampere in
the 1820s [31]. The law describes the force between two current-carrying
conductors. Ampere discovered that parallel currents attract, while antipar-
allel currents repel, a fundamental principle for understanding electromag-
netic forces. However, in addition to the transverse force, Ampere’s work
hinted at a longitudinal force component—a lesser-known aspect suggesting
that conductors carrying current in the same direction could experience a
repulsing force along the line connecting them. Although Ampere initially
observed it, the longitudinal force was largely overshadowed by the devel-
opment of James Clerk Maxwell’s field-based electromagnetic theory, which
focuses on the transverse forces associated with changing magnetic and elec-
tric fields, which is sufficient to describe normal electric circuits. In the
20th century, however, some researchers reproduced Ampere’s and similar
experiments [32), B3], [34] 35], 36] and explored extensions to classical electro-
dynamics [37, 38, 39, 140, 4T, 42, 43, [44] that could account for longitudinal
forces directly between current elements. This work contributed to general-
ized electrodynamics, a framework that goes beyond Maxwell’s equations to
include additional field components that may explain certain quantum phe-
nomena. Generalized electrodynamics remains a niche but intriguing area
of research, linking historical insights from Ampere’s early observations to
modern theoretical physics. While as a niche research area, the vocabulary
lacks standardization, and authors often use different words for the same
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concepts.

Finally, Milo Wolft’s Wave Structure of the Electron [45] proposes a
unique perspective on the nature of subatomic particles, suggesting that par-
ticles like electrons are not point-like entities but rather spherical standing
waves. According to Wolff, an electron consists of a continuous inward and
outward wave interference pattern, which he argued could account for prop-
erties such as charge and mass without needing point particles. The inward
wave converges toward a central point, while the outward wave radiates from
it, creating a self-sustaining wave structure that gives the electron its ob-
served stability and characteristics. A missing insight in the article was that
Wolff never specified what was waving. While we lean on Milo’s model, other
particle models have also been suggested [46, [47, 48, [49]

2 The osmotic momentum of quantum me-
chanics

In 1966 Edward Nelson published an article where he derived Schrodinger’s
equation [15].

Edward considered a system where the particle is also influenced by Brow-
nian motion. The particle then have 2 contributions to its momentum, the
first one p'is from the potential V' and the second part ¢'is from the Brownian
environment and is named the osmotic momentum.
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Notice the way the wave-function is split is a little different from David
Bohm’s more well known approach. [14] By using a stochastic description
with R = 11n(p), Edward was able to drive the Schrodinger equation. To
show the relation between the momenta and the Schrodinger equation, we
will just expand the latter. Starting from:
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Substituting ¢ = e and differentiating.
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Removing the common 1) = efi*% factor and taking the gradient on both
sides.
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Substituting with p° = hVS and & = AVR and splitting the real and
imaginary part gets us:
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These are two couple equations equivalent to Edward’s equations, except
velocities were used in he’s article. Compared with the Copenhagen inter-
pretation, you could say that Edward Nelsons interpretation still agree that
Y* is a probability distribution, but the latter tells us that it comes from a
stochastic description of the Brownian interaction.

The following figure illustrates the osmotic momentum for the ground-
state of a particle in at 2D harmonic potential[50].
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Figure 1: Osmotic momentum for a particle in a 2D harmonic potential.

Another thing that Edward’s paper touches briefly upon is that the
Schrodinger equation is expressing an average energy equation. A view-
point that is examined more deeply in [51] and also expanded to the Dirac
equation.

While the Schrodinger equation normally is written as in , it is actually
used for calculations like:

wiind + 252 vy =0 (7)

Where (| |) is Dirac’s Well—known bra-ket notation that notes an integra-
tion over space and time, resulting in an average value given v is normalized.

This tells us that it express energy conservation on average. Indicating
that energy must flow in and out of a quantum system in a balance way.
Such that the energy flowing in is equal to the energy flowing out over time.

While Edward Nelson article don’t give an explanation for the origin of
the Brownian interaction, we will see that a possible answer can be obtained
from generalized electrodynamics.



3 Generalized electrodynamics

To write down generalized electrodynamics, we start with the electric charge
and current density p(¢,7), 7(¢,7) in Gauss units, and leave out material
parameters to keep it simpler. The electric potential and vector potential
can then be defined as
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Then the electric and magnetic fields can be expresses like this:
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By writing up the wave equation for the potential.
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One can derive the field equations by substituting the right-hand side
(rhs) and differentiate under the integration on the left-hand side (lhs).

(10)

Integration is done by first simplifying with D = 7, — 7, D = |D| and
T =1t — D/e, following [52]
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When the two sides is put together, we get:
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By using similar approach on A [44] we get:
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Now, notice that we have the terms * 8¢+V Ain both equations, normally

a gauge condition is applied to these terms like the Lorenz gauge 1 a¢ +V A=
0 but in generalized electromagnetism we define an extra field component

109
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In this paper, I will call it the time component of the electric field and use the
symbol F, which fits with the other components of the electric field vector
E, B, E,.

There are two good reasons why these components might have been left
out of classical electrodynamics. The first is that early electrodynamics were
developed to understand electric circuits. When you integrate this compo-
nent over a closed circuit the positive and negative contributions cancel out
and one gets zero. Hence, the theory for a closed electronic circuit works
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fine without this component. The second reason is that the units for the
components are power per charge, so it seems to describe energy flowing in
and out of the circuit, an apparent violation of the energy conservation law.
Still, we will see later that this isn’t the case.

Using this symbol in these two equations and div and curl on the field
definitions, we can now write the 4 generalized field equations as:
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4 On the wave nature of particles

If we write up the charge continuity expression and substitute in the field
equations, we get a wave expression in Fy:
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If we have charge continuity:
dp =
—+V-7=0 16
5 TV (16)
Then we also get a wave equation for standing wave in E;:
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Let us use that, as a hint, to model electrically charged particles as spher-
ical standing waves in E;. The spherical wave equation in 3D is well known
[53, 54], in spherical coordinates (r,6,®) the solution can be written as a
linear combination of terms on the form:
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When only looking for real solutions.

We have T(t) on the form Ar cos(kct) + Brsin(kct) where k, Ar, Br € R
are constants.

() have the form Ag cos(me¢)+Bg sin(me) here Ag, Bs € Rand m € Z.

©(0) is associated Legendre polynomials in cos(#) : ©(60) = P/"(cos(f))

Here 1 is in N and the polynomial is non-zero when — < m < 1.

The polynomials can be found by:

m (L—a?)™2 (O™ 5
e =" &) @ e
At last R(r) are a spherical Bessel functions j;(kr), they have the form:
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Writing up one of the simplest non-zero solution, when {,m = 0, A4, Ap =
1 and Bg, Br = 0 we have:

sin(kr

)
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Ei(t,r,0,0) = jo(kr) P (cos(0)) cos(kct) =

5 The origin of the osmotic momentum

In electromagnetism, it is well known that one can add a gauge function
S(t,7) to the potential without it having any influence on the fields. In a
simple system without charge p and current ) densities, we can write:
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The resulting wave equation:
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Describing how the gauge waves interact with the electric time compo-
nent.
It solves the problem with energy conservation of E;, as energy is just
converted to and from the gauge waves radiation field.
If we take the simplest particle-wave from and integrate it over space

to get the average value:
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As the expression cycles between negative and positive with time, so will
the flow of energy move in and out from the particle-wave to the gauge wave
radiation field, and it is easy to see that if we integrate time out [ dt we get
zero just like in ([7)).

This explains why the Schrodinger and Dirac equations are average en-
ergy equations [15, [51]. The particle’s energy will change rapidly on a short
timescale, but it will remain unchanged on average.

Establishing gauge waves as the source for Edwards osmotic momentum
and Brownian interaction.

Next, we will study how the gauge waves can be detected.

6 Detecting Gauge-waves

Gauge waves can be detected through their interaction with gradients in the
time component of the electric field (£;).

From the generalized field equations, we can derive the wave equa-
tions in the fields.

19%E o - = o oo - 107
~ Y _VV-E E=dr(-Vp— =2
T VV-E+V XV X 7T( Vp 02815)
(27)
10°B = = = 4dno
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For regions without sources (p = 0,7 = 0) the wave equations can be
rewritten using the field equation:
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These equations describe a transverse electromagnetic (EM) wave equation

(28)

with an additional source term related to ﬁEt.

When a gauge wave encounters this gradient, its interaction generates a
photon that can be captured by a camera or optical detector. This process
provides an indirect yet observable method for confirming the presence of
gauge waves.

Detecting gauge waves would provide experimental confirmation of their
existence, offering a vital link between theory and observation while advanc-
ing our understanding of fundamental quantum phenomena.

7 Constructing a quantum lens

To detect gauge waves experimentally, we propose the development of a de-
Vic{-] called the ”quantum lens” [55], which converts gauge wave interactions
into detectable photons. This detection relies on the interaction between
gauge waves and a carefully engineered gradient in the time component of
the electric field, F;. When a gauge wave interacts with this gradient, it
induces changes that can generate photons. These photons can then be cap-
tured using a standard optical or electromagnetic detection system.

The creation of the required F; gradient involves a magnetic vortex.
Based on the second generalized electrodynamics equation with 7 re-
moved:

. - 10E <
B--"—"_VE, = 2
V x c ot Vt 0, (9)

a magnetic vortex (V x B) can be induced by introducing an electric field

pulse 19 })otween two strong magnets aligned in opposing directions. Af-

c Ot
ter the pulse, this configuration ensures that the contribution from %%—f is

minimized, isolating the gradient in F; as the dominant factor for generating
photons.

IPatent pending.
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Figure 2: Quantum lens sketch

The experimental setup, shown in Figure [2] consists of several key com-
ponents:

e Two powerful magnets, aligned in opposite directions, to create the
necessary magnetic field configuration.

e Two conducting rings, designed to establish an electric field between
them.

e A sample holder, where materials or systems under study can be
placed.

e A detection camera, capable of capturing photons generated by the
gauge wave interactions.

The entire apparatus would be placed within a cryostat and cooled to
deci-kelvin temperatures. This low-temperature environment reduces noise
and thermal fluctuations, thereby increasing the sensitivity of the detection
system. Additionally, cooling might slow down the gauge wave interaction
processes, improving measurement precision.

This quantum lens design offers a practical path toward detecting gauge
waves and validating their existence. Successful detection would provide
empirical support for the theoretical framework presented in this work, and
open new avenues for exploring gauge wave interactions.

8 Gauge-waves, Gravity and Dark energy

The interplay between gauge waves and particle waves offers new insights
into the fundamental forces shaping our universe. One intriguing possibility
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is that gauge waves might be responsible for gravity. This could arise through
a screening effect, where particle waves partially shield each other from the
radiation pressure of gauge waves. Such a mechanism would create a gradient
in radiation pressure, giving rise to the gravitational force. Mathematically,
this concept can be expressed as [56]:

. - - 109°S =,

Furthermore, gauge waves may also contribute to the phenomenon of dark
energy [57]. Their inclusion in the stress-energy tensor of general relativity
[58] would result in an additional energy density, producing a repulsive force.
This effect could account for the observed acceleration of the universe’s ex-
pansion, suggesting that gauge waves play a dual role: mediating attractive
gravitational forces and repulsive dark energy effects.

These ideas imply that both gravity and dark energy, often treated as dis-
tinct phenomena, may stem from a unified mechanism rooted in gauge wave
interactions. This unification would bridge quantum mechanics and general
relativity, suggesting that both theories are approximations of a deeper gauge
wave framework.

While this proposal is still in its early stages, it highlights the potential of
gauge wave theory to address longstanding questions in fundamental physics.
Future theoretical work and experimental validation, particularly through
the detection of gauge waves, will be crucial in assessing these hypotheses.
If verified, this framework could transform our understanding of the forces
governing the universe.

9 Discussion

By relating Edward Nelson’s stochastic mechanics with generalized electro-
dynamics, this work introduces a deterministic framework that offers an al-
ternative to probabilistic quantum interpretations. Notably, this approach
aligns with the concept of unhidden variables, as it posits observable, testable
field interactions as the underlying drivers of quantum phenomena.

The parallels with Albert Einstein’s work on Brownian motion [59, 60] are
particularly striking. Just as Einstein demonstrated that the erratic motion
of pollen particles in water could be explained by interactions with unseen
atomic forces, this study suggests that quantum systems are influenced by
analogous gauge wave interactions at a much smaller scale. This similarity
underscores the continuity of scientific inquiry in uncovering hidden layers of
physical reality through testable models.
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If gauge waves can be detected experimentally, as proposed through the
quantum lens design, this would mark a paradigm shift in quantum theory.
Unlike hidden variable theories that rely on abstract, unobservable mecha-
nisms, the unhidden variable framework advanced here provides a tangible
basis for experimental validation. By converting gauge waves into photons,
the quantum lens could open the door to directly observing these previously
elusive phenomena, challenging traditional interpretations like the Copen-
hagen model and providing empirical support for deterministic quantum me-
chanics.

The implications extend beyond quantum mechanics. The hypothesis
that gauge waves contribute to gravity and dark energy suggests a potential
unification of quantum and relativistic physics. The notion that gauge waves
mediate radiation pressure gradients offers an innovative mechanism for grav-
itational attraction and the repulsive effects attributed to dark energy. Such
a unification could bridge two foundational yet historically incompatible the-
ories of modern physics.

However, this work is not without challenges. Experimentally, the de-
tection of gauge waves requires precision instruments, such as deci-kelvin
cryostats and superconducting magnet setups, to minimize noise and ensure
sensitivity. Theoretically, questions remain about how gauge waves interact
with quantum entanglement, how they influence particles of varying spins,
and their role in quantum non-locality.

10 Conclusion

This study presents a theoretical framework for understanding osmotic mo-
mentum in quantum mechanics, attributing its origin to interactions with
gauge waves. By modeling these interactions and proposing their detection
through a ”quantum lens”, we have outlined a path toward experimental val-
idation of this concept. This approach aligns with broader efforts to bridge
quantum mechanics and general relativity, suggesting that gauge waves could
underlie phenomena such as gravity and dark energy.

The proposed quantum lens offers an innovative method for uncovering
hidden variables, transitioning this theory from speculative to observable
science. If successful, it would mark a significant step in reconciling quantum
theory and relativistic models, while opening new avenues for research in
particle dynamics, field interactions, and cosmology. Future work should
focus on refining the experimental design, exploring implications for quantum
entanglement, and extending this model to account for particles of varying
spins. Collaboration with experts in cryogenics and superconducting systems
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will be pivotal to realizing this next phase.
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