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It is shown that if a triple of distinct natural numbers (a, b, c) were to exist such that an +bn = cn

for some odd integer n ≥ 3, then it must be Pythagorean, i.e. a2+b2 = c2 must hold too, from which
a contradiction arises since this is possible only if either a or b are zero. We arrive at this conclusion
by investigating the trace of a model hamiltonian operator whose energy levels correspond to those
of the so-called Hückel hamiltonian applied to rings containing an odd number of atoms lying on
a Möbius strip rather than a planar topology. Furthermore, the contradictory nature of our result
implies the correctness of the associated statement contained in the famous Fermat’s Last Theorem.
Given the use of concepts from quantum mechanics, made here but unknown at his time, and the
fact that the essence of the present proof may not fit within a margin of a typical book, mystery
still remains over Pierre de Fermat’s demonstrationem mirabilem.

A partial proof of his famous “Last Theorem” is due
to Fermat himself, who had already established that
the conjecture was true for the case of all exponents n
that are either even numbers or non-prime odd numbers.
In this work, we build a quantum mechanical model of
fermionic particles for which the energy levels can be re-
lated to the statement of Fermat’s Last Theorem at n ≥ 3
odd.

Our quantum mechanical system is defined in terms of
an odd number of states n ≥ 3 that can be occupied each
by at most two electrons (with opposite spins). Given the
integer quantum numbers (a, b, n), with b > a ≥ 0, we
construct the set of quantum states denoted as |a, bζkn〉
where ζkn = ei

2πk
n is the corresponding n-th root of unity

(k = 0, 1, . . . , n − 1). These n states are connected
through the action of the cyclic ladder operator

Ẑ+
n |a, bζkn〉 = (a+ bζk+1

n ) |a, bζk+1
n 〉 , (1)

and its adjoint

Ẑ−n |a, bζkn〉 = (a+ bζ−kn ) |a, bζk−1n 〉 , (2)

built upon the relation (ζln)∗ = ζ−ln . Due to the fact that
ζk±nn = ζkn, only n distinct states exist for a given set
(a, b, n), and these are moreover assumed to form an or-
thonormal basis for the corresponding Hilbert space (i.e.

〈a, bζkn|a′, b′ζk
′

n 〉 = δaa′δbb′δkk′). The ket |a, bζkn〉 repre-
sents an eigenstate of the following one-particle hamilto-
nian operator:

Ĥn = Ẑ+
n Ẑ
−
n , (3)

satisfying the eigenvalue equation

Ĥn|a, bζkn〉 = (a+ bζ−kn )(a+ bζkn)|a, bζkn〉 . (4)

The expression Eab(k) = (a+ bζ−kn )(a+ bζkn) for the en-
ergy eigenvalue of the state |a, bζkn〉 just obtained can be
further cast into the form:

Eab(k) = a2 + b2 + ab(ζkn + ζ−kn )

= a2 + b2 + 2ab cos
2πk

n
, (5)

with each level being doubly degenerate, except for the
highest level (k = 0). The following figure shows the
diagram of the energy levels for the case of n = 5, and
with a total of N = 4 electrons occupying the lowest
levels according to the aufbau principle:

Our model hamiltonian produces actually the same pat-
tern of energy levels of the Hückel hamiltonian1 except
for the completely reversed energetic order. In the ex-
ample above, we see such pattern for a five-atom regu-
lar lattice representative of a cyclopentadienyl structure
with four valence electrons. In a planar topology, the
pattern would see the non-degenerate state as lowest in
energy. However, when the topology of the lattice is that
of a Möbius strip, a reversal of the energy ordering of the
type shown in the above figure is to be expected.2 Such
“Möbius molecules” are absent in nature, but a hand-
ful of them have been synthesized in the laboratory, and
their structures are not completely uncommon as chemi-
cal reaction intermediates.3 The Hückel model is specified
in terms of two physical parameters: the on-site/atomic
energy α and the hopping parameter β (resonance in-
tegral) between two adjacent atoms, that measures the
energy of stabilization experienced by an electron allowed
to delocalize. The value of β between an atom and the
next is modulated by a factor cosω, where ω = π/n is
the relative angle of the atomic orbitals as seen in the
above figure (such angle would be zero in the correspond-
ing planar topology). The connection with our model is
made clear by means of the assignments α = a2 + b2 and
β cosω = ab, albeit for applications to molecules such
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parameters are usually both non-integer (and negative,
as by the typical choice of the zero of the energy). As
expected, our model predicts a stable electronic config-
uration upon delocalization of the four electrons across
the lattice, as compared to the localized (atomic) states
- the latter occupying an energy level standing at a2 +b2.
Such stabilization, known as aromaticity, would follow
the “4N rule” in this case, as opposed to the “4N + 2
rule” for cyclic molecules on a plane.

Returning to the connection with Fermat’s Last The-
orem, we observe that Eq. (5), combined with the well-

know identity
∑n−1
l=0 ζ

l
n = 0 and its complex conjugate,

gives the following result for the trace of our hamiltonian
Ĥn in the (a, b) subspace:

Tr(a,b)Ĥn = (a2 + b2)n . (6)

Next we investigate the eigenvalues of the operator
Ẑ+
n by inspection of its matrix representation for the

simplest case of n = 3. In the standard basis
|a, bζ3〉 = {|a, bζ03 〉, |a, bζ13 〉, |a, bζ23 〉}, we have

Z+
3 =

 0 0 a+ b
a+ bζ3 0 0

0 a+ bζ23 0

 = D3P3 , (7)

and in general Z+
n = DnPn, where the diagonal ma-

trix Dn has elements: (a+ b), (a+ bζn), . . . , (a+ bζn−1n ),
whereas Pn is the appropriate n × n cyclic permuta-
tion matrix. For the operator Ẑ−n , we get the hermi-
tian transposed matrix, hence Z−n = PTnD

∗
n. At this

stage, we recognize the following relation: det (Dn) =∏n−1
k=0(a + bζkn) = an + bn, where the last identity is

well-known and valid for n odd. With this result, the
n eigenvalues of the ladder operators Ẑ+

n and Ẑ−n can
be easily shown to be of the form cζmn and cζ−mn , re-
spectively, with m = 0, . . . , n − 1 and c = n

√
an + bn.

Furthermore, if we assume c to be a positive integer, this
leads rather naturally to a second expression for the trace
of the hamiltonian, namely

Tr(a,b)Ĥn = nc2 ⇔ c ∈ N . (8)

In order to prove Eq. (8), we proceed as follows. For the

pair (a, b), the operator Ẑ−n gives rise to a non-hermitian
matrix for which a right |Rm(a, b)〉 and a left eigenvector
|Lm(a, b)〉 exist at each eigenvalue cζ−mn . Biorthogonality
gives 〈Lk(a, b)|Rm(a, b)〉 = δkm, but no such constraints
hold for the norm of the eigenvectors. Hence, the trace
condition (a2 + b2)n = c2

∑
m〈Rm(a, b)|Rm(a, b)〉 results

from expressing the trace in the right-eigenvector basis:

Tr(a,b)Ĥn =
∑
m(Ẑ−n |Rm(a, b)〉)†(Ẑ−n |Rm(a, b)〉). How-

ever, if c is an integer then another set of eigenstates of
Ẑ−n are found to have the same set of eigenvalues cζ−mn ,
being the states |Rm(0, c)〉 obtained in the subspace of
the basis states |0, cζkn〉, and therefore orthogonal to the
basis states |a, bζkn〉.

By the principle of superposition, states of the type
|ψm〉 = µm|Rm(a, b)〉+ νm|Rm(0, c)〉 are then legitimate
eigenstates with the same eigenvalue as its two compo-
nents whenever µ2

m + ν2m = 1 (to preserve biorthogo-
nality). For the sake of our proof, we will consider the
specific case in which the coefficients µm and νm are cho-
sen to be independent from m. In this case, the trace in
the larger space |R(a, b)〉 ⊕ |R(0, c)〉 reads:

TrψĤn = µ2c2
∑
m

〈Rm(a, b)|Rm(a, b)〉 (9)

+ ν2c2
∑
m

〈Rm(0, c)|Rm(0, c)〉

= µ2(a2 + b2)n + ν2nc2 .

On the other hand, when expressed in the direct sum of
basis states |a, bζn〉 ⊕ |0, cζn〉, the same trace is given by
(a2 + b2)n+nc2, and the two expressions should coincide
for any choice of the coefficients µ and ν satisfying the
constraint µ2 + ν2 = 1. But this appears to be possible
only if the relation a2 + b2 = c2 holds. (Q.E.D.)

By comparing Eq. (6) and Eq. (8), it follows that the
relation a2+b2 = c2 must be true, but since by definition
an + bn = cn, the fulfillment of both relations would
require either a or b to be zero. We then conclude that
c = n

√
an + bn must always be irrational, in accordance

with what Fermat conjectured sometime during the year
1637.

Our proof is now complete.

Addendum. In conclusion, the result presented here
holds the missing piece to an elementary proof of what
has come to notoriety as Fermat’s Last Theorem. As
such, it complements the important results occurred since
the 17th century and culminating in the 1995 proof
by Andrew Wiles.4 The developments in many areas of
mathematics that led to his proof are the truly significant
results of the endeavours of the many mathematicians
who worked on the problem. What presented here is in-
stead an answer to Fermat’s question whereby little or
no progress in mathematics is expected. It is a blessing
that such a proof - or one alike, if indeed Pierre de Fermat
kept it undisclosed - remained lost for centuries. Perhaps
the greatest gift to mankind from the man himself.
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