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Abstract

This paper ‘with code’ presents several notable properties of the matrix U shown to be
related to the isomorphism between H4 and E8. The most significant of these proper-
ties is that U.U is to rank 8 matrices what the golden ratio is to numbers. That is to
say, the difference between it and its inverse is the identity element, albeit with a twist.
Specifically, U.U-(U.U)−1 is the reverse identity matrix or standard involutory permuta-
tion matrix of rank 8. It has the same palindromic characteristic polynomial coefficients as
the normalized 3-qubit Hadamard matrix with 8-bit binary basis states, which is known
to be isomorphic to E8 through its (8,4) Hamming code. This combined with finding the
construction of U from the Pauli matrices’ relationships to 2-qubit CNOT, SWAP and
3-qubit Toffoli CCNOT and Hadamard matrices will inform the understanding of group
theoretic quantum mechanics (QM), quantum computing (QC), quantum chemistry, and
particle physics.
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1 Introduction

Fig. 1 is the Petrie projection of the Gosset 421 8-polytope derived from the Split Real
Even (SRE) form of the E8 Lie group with unimodular lattice in R8. The reader may be
familiar with some or all figures shown (e.g. in the corresponding Wikipedia articles on
the topic). All were generated using author developedMathematica™ (MTM) VisibLie E8

notebook source code and interactive user interface.

E8 has 240 vertices and 6,720 edges of 8-dimensional (8D) length
√
2. E8 is the largest

of the exceptional simple Lie algebras, groups, lattices, and polytopes, and is related to
octonions (O), (8,4) Hamming codes, and 3-qubit (8 basis state) Hadamard matrix gates.
An important and related higher dimensional structure is the R24 (C12) Leech lattice with
its binary (ternary) Golay code construction (Λ24 ⊃E8⊕E8⊕E8 or E3

8 as the 23rd Niemeier
lattice[1] in the Kneser neighborhood graph shown in Fig. 12).

The Leech lattice (Λ24) is the largest of the Conway groups (Co0) and is the group
of automorphisms of three Leech lattice related sporadic groups Aut(Co1,Co2,Co3). As a
lattice with no roots (i.e. with a Coxeter number of 0), it is at the top of the relationship
map of the 24 Niemeier lattices as described in Table 2. The Y555 Coxeter-Dynkin diagram
in Fig. 10 gives the quotient of the BiMonster group (BiM), which is the wreath product
of the Monster group (M) with Z2 (M ≀Z2). With M as the largest member of the sporadic
groups and E8 as the largest member of the exceptional groups, each can be decomposed
by showing sub-quotient relationships in a Hasse diagram, as shown Figs. 11 and 13
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Figure 1: E8 421 Petrie projection with 8 concentric rings of 30 vertices which are in the
same color palette used to color the edges, which uses an algorithm that assigns colors
based on the norm of the projected edge. The vertex ring colors from smallest to largest
are: 1=Yellow,2=Gray,3=Orange,4=Cyan,5=Magenta,6=Red,7=Green,8=Blue.
The pattern is based on 2 golden ratio (φ) scaled sets of 4 rings of 30 600-cell vertices in
Van Oss projection (i.e. H4 rings 1,3,4,5 and H4φ rings 2,6,7,8). Each ring of 30 contains
1 on-XY-axis vertex with its reflection vertices as a 16-cell and 2 off-XY-axis vertices with
their reflections as an 8-cell in 4 rings making up the 24-cell. This is combined with 4
24-cell rotations of π/5 making up the snub 24-cell of 96 vertices. See Fig. 7 a) and b)
for a more detailed visualization of the 4-polytope sub-structure represented in this E8

diagram. Each ring forms a 4D Boerdijk-Coxeter that tessellates the 3-sphere surface of
the 600-cell as shown in Fig. 1c and d.

respectively. In terms of the triality of the Yabc Coxeter-Dynkin diagram, of interest here
for example are the self-dual D4 24-cell as Y111 and E8 as Y421.

The Coxeter-Dynkin diagram for E8 is shown in Fig. 2 along with its Cartan matrix
(cmE8) and simple roots matrix (srE8). It is easy to show that cmE8=srE8.srE8T , such
that we can think of the simple roots as

√
cmE8. It was also shown that the SRE E8

vertex coordinates can be derived from the dot product of ±E8roots.srE8. Applying
these relationships to U gives interesting results as described in Section 3.

The quaternion (H) Weyl group orbit O(Λ)=W(H4)=I of order 120 is constructed
from the parent orbit (1000) of the Coxeter-Dynkin diagram for H4 shown in Fig. 3b. This
results in the 600-cell 4-polytope of order 120 labeled here and in [2] as I. In Section 2, it will
be shown that U provides for a direct mapping from E8 to four copies (1⊕φ)(H4L⊕H4R)
of both the 600-cell and the tri-rectified parent of H4 (i.e. the filled node 1 is shifted right
3 times giving 0001), which is the 120-cell of order 600 labeled here and in [2] as J. Both
of these 4-polytopes are shown in Figs. 8-9 as concentric 3D hulls.
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Figure 2: a) E8 Coxeter-Dynkin diagram with it Cartan matrix and simple roots matrix

It has been shown[3] that the matrix U in (1) along with its inverse (2) is related to
the isomorphism between H4 and E8.

Figure 3: Coxeter-Dynkin diagram folding patterns
a) E8 in folding orientation
b) The associated folded H4

∼=600-cell
c) D6 in folding orientation
d) The associated folded H3

e) D4
∼=24-cell in folding orientation

f) The associated folded G2
∼= Aut(O)

It is known[4] that the E8 can be projected, mapped, or ”folded” (as shown in Fig. 3a
and b) to two golden ratio φ = 1

2

(
1 +

√
5
)
≈ 1.618 scaled copies of the 4 dimensional 120

vertex 720 edge H4 600-cell. Folding an 8D object into a 4D one can be done by projecting
each vertex using its dot product with a 4×8 matrix (e.g. using the first or last 4 rows or
columns of U). This produces H4⊕φH4, where H4 is the binary icosahedral group 2I of
order 120, a subgroup of Spin(3). It covers H3 as the full icosahedral group Ih of order 120,
a subgroup of SO(3). The binary icosahedral group is the double cover of the alternating
group A5.

2 Constructing the palindromic unitary matrix U

Despite others’[5][6] recent attempts, the inverse morphism or ”unfolding” from H4 to
E8 is less trivial given that the matrix is not square and lacks an inverse. Yet, a real
(R) symmetric volume preserving Det(U)=1 rotation matrix(1) was derived in 2012 and
documented[3]. The quadrant structure of U rotates E8 into four 4D copies of H4 600-cells,
with the original two (L)eft and (R)ight side unit scaled 4D copies related to the two L/R
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φ scaled copies. This traceless form of U has palindromic characteristic coefficients and
provides for an explicit isomorphic mapping of E8 ↔ (1⊕φ)(H4L ⊕H4R) which involves
using a bidirectional L↔R mapping function (mapLR) and U−1(2).

It is interesting to note the exchange of 1↔φ in U ↔ U−1, excluding −φ2. The
properties of U are described in more detail in Section 3.

U =



1− φ 0 0 0 0 0 0 −φ2

0 −1 φ 0 0 φ 1 0
0 φ 0 1 −1 0 φ 0
0 0 −1 φ φ 1 0 0
0 0 1 φ φ −1 0 0
0 φ 0 1 −1 0 φ 0
0 1 φ 0 0 φ −1 0

−φ2 0 0 0 0 0 0 1− φ


/(2

√
φ) (1)

U−1=



φ− 1 0 0 0 0 0 0 −φ2

0 −φ 1 0 0 1 φ 0
0 1 0 φ −φ 0 1 0
0 0 −φ 1 1 φ 0 0
0 0 φ 1 1 −φ 0 0
0 1 0 φ −φ 0 1 0
0 φ 1 0 0 1 −φ 0

−φ2 0 0 0 0 0 0 φ− 1


/(2

√
φ) (2)

U can be generated using a combination of the unimodular matrices commonly used
for QC logic, namely those of the 2-qubit CNOT (3) and SWAP (4) gates. Taking these
patterns, combined with the recursive functions that build φ from the Fibonacci sequence,
it is straightforward to derive U from scaled QC logic gates[3].

CNOT=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3)

SWAP=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (4)

The particular maximal embedding of E8 at height 248 that we are interested in
for this work is shown in Fig. 14 as the special orthogonal group of SO(16)∼=D8 at
height (120=112+4+4)+128‘, where 112 is interpreted as the subgroup embeddings of
SO(8)⊗SO(8)∼=D4⊗D4 and 128‘ is interpreted as symplectic subgroup embeddings of C8

where Sp(8)⊗Sp(8)∼=C4⊗C4 at height 136=128+4+4. These selected embeddings corre-
spond to the 112 integerD8 vertices and the 128 half-integer BC8 (the 8-demicube) vertices
given by SRE E8, in addition to the 8⊕8 generator roots for a total of 28. This is in 1::1
correspondence with the canonical root vertex ordering from the 9th row of the palin-
dromic Pascal triangle {1, 8, 28, 56, 3535, 56, 28, 8, 1}, where each entry in the list gives the
number of vertices that alternate between half-integer BC8 and integer D8 vertex sets,
with the right 5 overbar sets of 128 vertices being the negated vertices of the left 5 sets of
128 in reverse order.
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At this point it is interesting to note the connection between E8
∼=BC8⊕D8 and H4

quasicrystals. If we project E8 into the Petrie projection of the D6 Coxeter plane, which
has the same 10 dihedral symmetry basis as the BC6 6-demicube and 5-cube, and overlay
that with the electron diffraction pattern of an icosahedral Zn-Mg-Ho QuasiCrystal, the
resonances in the diffractogram are striking in the pattern matching to the E8 vertex
overlap counts and the edges that meet between the vertex rings. This makes sense due
to the fact that D6 folds to H3 as shown in shown in Fig. 3c and d. So even quantum
chemistry is informed by the symmetry of E8 and its subgroups.

Figure 4: Icosahedral Zn-Mg-Ho QuasiCrystal
There are 2480 overlapping edge lines from the 240 E8 vertices. They have unit norm
lengths calculated from the 5D non-zero projected dimensions of E8. Of these, 32 inner
vertices and 80 edges belong to the 5D 5-Cube (Penteract) proper. Edges are shown with
colors assigned based on origin vertex distance from the outer perimeter. The vertex colors
of the 5-Cube projection represent E8 vertex overlaps.

These embeddings have an isomorphic connection to U and provide the E8↔(1 ⊕
φ)(H4L ⊕H4R) mapping via mapLR. It demonstrates that E8 rotates into four 4D copies
of H4 600-cells, with the original two (L)eft side φ scaled 4D copies related to the two
(R)ight side unscaled 4D copies.

Due to the palindromic structure of U, the H4L and H4R are also palindromic with
each R vertex being the reverse order of the L vertex, along with mapLR exchanges in
the (S)nub 24-cell vertices. For each L vertex that is not a member of the (T)etrahedral
group’s self-dual D4 24-cell (or φT), the R vertex will be a member of the scaled φS (or
S) respectively. This is due to the exchange of φ3/2↔φ−3/2 in mapLR which changes the
norm (i.e. to/from a small norm=1/

√
φ or a large norm=

√
φ). The 24-cell T vertices are

unaffected by mapLR exchange and have L and R vertex values of the same norm and
palindromic opposite entries, with the larger φH4 having the same signs and the smaller
unit scaled H4 having opposite signs.
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3 Properties of U

Similar to the relationships between the Cartan matrix, ±roots, weights, heights of E8,
we can construct a Cartan matrix cmU=U.U shown in (5), with U playing the role of
the simple roots matrix. Just as the integer identity φ-1/φ=1, we now have cmU-cmU−1

generating the exchange matrix or standard involutory permutation matrix of rank 8
shown in (6). This has the same palindromic characteristic polynomial coefficients (10)
as the normalized 3-qubit Hadamard matrix with 8-bit binary basis states shown in (7),
which has been shown by Elkies[7] to be isomorphic to E8 through its (8,4) Hamming
code.

cmU=



√
5
2

0 0 0 0 0 0 1
2

0
√
5
2

0 0 0 0 1
2

0

0 0
√
5
2

0 0 1
2

0 0

0 0 0
√
5
2

1
2

0 0 0

0 0 0 1
2

√
5
2

0 0 0

0 0 1
2

0 0
√
5
2

0 0

0 1
2

0 0 0 0
√
5
2

0
1
2

0 0 0 0 0 0
√
5
2


(5)

cmU− cmU−1=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


(6)

H=



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


/
√
8 (7)

Just as φ+1/φ
2φ−1

=1, cmU+cmU−1

2φ−1
=8x8 Identity Matrix. Of course, we can reverse the rows in

cmU, which then swaps the sum and difference operation results of Identity vs. Involutory
permutation matrices (respectively). Also as the exponentiation of sum (difference) φn ±
1/φn results in integer factors on even (odd) n and integer radicand factors on odd (even)
n as shown in Table 1, by using matrix power operations on cmUn ± cmU−n produces
the Identity (Involutory) matrices with those same scaling factors. This application of
matrix powers to U instead of cmU puts all even n as the alternating integer (integer
radicand) matrices, with odd n shown in (8) and (9). Please note that like the 3-qubit
Hadamard matrix, inside the square brackets these matrices are traceless and unitary with
the characteristic polynomial of (10) and can be constructed from sums of Pauli matrices.
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Table 1: Sum and difference in powers of φ

n φn φ−n φn+φ−n φn − φ−n

1 φ 1
φ

√
5 1

2 φ2 1
φ2 3

√
5

3 φ3 1
φ3 2

√
5 4

4 φ4 1
φ4 7 3

√
5

5 φ5 1
φ5 5

√
5 11

Uodd(n) + U−odd(n)=


uUR =

1

2



0 0 0 0 0 0 0 −2
0 −1 1 0 0 1 1 0
0 1 0 −1 1 0 1 0
0 0 −1 1 1 1 0 0
0 0 1 1 1 −1 0 0
0 1 0 1 −1 0 1 0
0 1 1 0 0 1 −1 0
−2 0 0 0 0 0 0 0




φn + 1

φn/2
(8)

Uodd(n) − U−odd(n)=


uUL =

1

2



−2 0 0 0 0 0 0 0
0 1 1 0 0 1 −1 0
0 1 0 1 −1 0 1 0
0 0 1 1 1 −1 0 0
0 0 −1 1 1 1 0 0
0 1 0 −1 1 0 1 0
0 −1 1 0 0 1 1 0
0 0 0 0 0 0 0 −2




φn − 1

φn/2
(9)

Matrix powers of uUL,R generate the rank 8 Identity matrix with determinants of

roots of unity. Interestingly, while uU1/n
L produces matrices that always have a 1 in upper-

left/lower-right corners, uU1/n
R does not. Yet both produce the same n’th root of unity

determinant. We can redefine U = 1
2

(
φ−3/2uUL + φ3/2uUR

)
.

Hcp=x8 − 4x6 + 6x4 − 4x2 + 1 (10)

Ucp=x8 − 2
√
5x6 + 7x4 − 2

√
5x2 + 1 (11)

Exploring further, if we take seriously the idea of cmU as a Cartan matrix, it can
be visualized with its positive roots, weights, heights, and Hasse diagrams as shown in
Figs. 15-16. After deleting duplicates generated in the SuperLie[8] analysis of cmU, the
cumulative index count up to height 8 is same as that of E8 being 120. The Coxeter-
Dynkin diagram, with Cartan, Schlafli, and Coxeter matrices shown in Fig. 5 shows that
rational scaling on the Identity and Involutory matrices can reproduce cmU.

Generating the cmU-based vertex coordinates and projecting to 3D using the methods
of [7] gives somewhat different results than with the folded E8 of Fig. 8. Instead of finding
each of 56 possible subsets of 3 dimensions having the same tally of hull groupings with
the same hull geometries, U groupings rotate into much smaller groups as shown in Fig.
6.
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Figure 5: cmU Coxeter-Dynkin diagram, with Cartan, Schlafli, and Coxeter matrices

Figure 6: Orthogonal projections to 3D of cmU-based vertices from the ±roots of cmU

4 Discussion

From [3] we know that U produces the folding of E8 to H4 with U−1 involved in the
unfolding back to E8. We also know its palindromic characteristic polynomial coefficients
are those shown in (11) with the same form as (10). This gives us a better understanding
of why E8 has an isomorphism to both the Hadamard matrix and H4. Given that the sum,
difference, product, and division of U and cmU generate both the left and right matrix
identities of rank 8 suggests a possible connection to Bott periodicity.

Since Toffoli and Hadamard matrices and gates are universal for quantum
computation[9] [10], this makes the relationship between E8 and H4 (by way U and cmU,
uUL, and uUR constructed by them) interesting for QC.

With this new perspective, uU may be able to be understood as a chiral 8D Real (R)
form of what the Complex (C) Pauli (and Dirac) matrices are in 2D (and 4D) as spinors.
Further study using hypercomplex forms of H (and G2 as the automorphism group of
octonions O) for 4D H4 (and 8D E8 e.g. using Kirmse closed construction[11]) respectively,
is warranted. If a group theoretic E8 based three generation Standard Model (SM) with
particle assignments is shown to be viable[12][13] (e.g. as R ⊗ C ⊗ H ⊗ O [14][15][16]),
this perspective might provide a possible connection between the Fermi-Dirac statistics
of fermions (and Bose-Einstein statistics of bosons) originating from the odd (and even)
powers of U, as well as provide more detailed implications for QM, Grand Unified Theories
(GUTs), such as in CPT symmetry breaking.
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5 Conclusion

This paper has presented several notable properties of U that are shown to be related
to the isomorphism between H4 and E8. The most significant of these properties is that
U.U is to rank 8 matrices what the golden ratio is to numbers. This combined with
finding the construction of U from the Pauli and Dirac gamma matrices’ relationship to
2-qubit CNOT, SWAP and 3-qubit Toffoli CCNOT and Hadamard matrices informs the
understanding of group theoretic quantum mechanics (QM), quantum computing (QC)
theory, quantum chemistry, particle physics, and GUTs.
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Supplementary Materials

E8 and H4 Projections Figs. 7-9

Figure 7: E8 Petrie projection with H4 600-cells’ substructure in Van Oss projection
a) H4 24-cell highlighting the 16-cell (red on-axis vertices) and 8-cell (blue off-axis vertices)
b) H4 Snub 24-cell with four π/5 rotations of the 24-cell (black) in red, green, blue, yellow
c) φH4 600-cell 2D projection of 60 vertices and 180 edges in inner/outer rings
d) φH4 600-cell 3D projection with Boerdijk-Coxeter helices tessellating 3-sphere surfaces
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Figure 8: Concentric hulls of 421 in Platonic 3D projection with numeric and symbolic
norm distances
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Figure 9: Concentric hulls of J as the tri-rectified H4 120-cell of order 600 in Pla-
tonic 3D projection with numeric and symbolic norm distances. This is generated by
J = prq[A′, 1, I] = prq[A′,α0−4, T].
Note: The numeric and symbolic tally list of unpermuted vertex values in the lower-right
corner
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Decomposition of the largest sporadic and exceptional groups Figs. 10-13

Figure 10: The wreath product of the Monster group with Z2 (M ≀Z2) is the BiMonster, a
quotient of the Y555 Coxeter-Dynkin diagram which contains six E8(Y124) Coxeter-Dynkin
diagrams and the 23rd Niemeier lattice E3

8 root system. This can be reduced to Y444 by
applying the spider relation to E3

8 .

J

J

Figure 11: Hasse diagram of sporadic groups in their Monster group sub-quotient relation-
ship. Happy Family genarations:
Red=Mathieu groups (1st)
Green=Leech lattice groups (2nd)
Blue=other Monster sub-quotients (3rd)
Black=Pariahs
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Table 2: Niemeier Lattice Table
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Figure 12: Kneser neighborhood graph of Niemeier lattices
Each color coded node represents one of the 24 Niemeier lattices, and the lines joining
them represent the 24-dimensional odd unimodular lattices with no norm 1 vectors.
The Coxeter number of the Niemeier lattice is to the left.
The red node index number indicates the row in Table 2.
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Figure 13: E8 subgroup tree as a directed Hasse diagram
The height of the Lie algebra on the diagram approximately corresponds to the rank of
the algebra.
Note: A line from an algebra down to a lower algebra indicates that the lower algebra is
a subalgebra of the higher algebra.
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Maximal embeddings of E8 at height 248 Fig. 14

Figure 14: E8 maximal embeddings at height 248 of content SO(16)∼=D8 (120,128’)
a) Height 248 SO(16) content 120=(112+4+4)+128‘
b) Height 120 and 128‘ SO(8)⊗SO(8) content w/8⊗2

v,c,s triality
c) Height 136 Sp(8)⊗Sp(8) content (32+4)⊗1, 1⊗(32+4), 8⊗2

Note: This output was created in MathematicaTM with support from the GroupMath[17]
and SuperLie[8] packages.

18



Analysis of cmU Figs. 15-16

Figure 15: Analysis of cmU showing the cumulative height group indices, positive roots,
weights, and heights
Note: At height 8 the cumulative index count is 120, giving 240 positive and negative roots
as in E8
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Figure 16: Analysis of cmU showing its Hasse visualizations up to height 8
Note: At height 8 the cumulative index count is 120, giving 240 positive and negative roots
as in E8
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