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Abstract

In this document, we fully review the theory and applications of the Eshelby Ellipsoidal Elastic Inclusion Problem. We
rigorously derive all the equations related to the Eshelby Ellipsoidal Elastic Inclusion Problem and its applications to various
Micro-mechanics problems like Ellipsodial Inhomogenity, Cracks, and Dislocations.
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1

Summary of Eshelby’s Inclusion and Inhomogeneity Problem

Eshelby’s Inclusion and Inhomogeneity problem is a fundamental concept in the field of continuum mechanics, particularly in the
study of elastic fields and material science. It deals with the elastic behavior of a region within a homogeneous material (the matrix)

that

has different material properties or experiences different strains compared to the surrounding matrix. This problem is crucial in

understanding how inhomogeneities such as voids, inclusions, or other defects within a material affect its overall mechanical properties.

1.1

1.2

1.3

Basic Definitions

Inclusion: An inclusion is a region within a material that has different elastic properties (stiffness, for example) from the
surrounding material (the matrix). The inclusion is assumed to be embedded in the matrix and can have its own distinct
material properties.

Inhomogeneity: Aninhomogeneity refers to a region within a material where the material properties differ from the surrounding
matrix. It is a broader term that includes inclusions but also refers to regions where properties such as density, thermal expansion,
or other physical characteristics differ.

Eshelby’s Inclusion Problem

Eshelby’s Tensor: At the core of Eshelby’s inclusion problem is the Eshelby tensor, which describes the elastic field inside
and around an inclusion when it is subjected to an external stress or strain. This tensor is a fourth-order tensor that relates the
applied strain to the strain inside the inclusion.

Ellipsoidal Inclusions: Eshelby’s work showed that for ellipsoidal inclusions, the strain inside the inclusion is uniform and
can be related to the external strain through the Eshelby tensor. This remarkable result simplifies the analysis of inclusions
significantly, as it reduces the complexity of the problem.

Inclusion vs. Matrix: The key idea is that when an inclusion is subjected to a uniform external stress or strain, the strain field
inside the inclusion remains uniform, although different from the strain field in the surrounding matrix. The specific relationship
between these strains is governed by the shape of the inclusion and the Eshelby tensor.

Mathematical Formulation

Eigenstrain: The concept of eigenstrain (or transformation strain) is central to Eshelby’s analysis. Eigenstrain refers to a strain
that would exist in the inclusion if it were isolated from the matrix and allowed to undergo a strain freely. When the inclusion
is embedded in the matrix, the surrounding material restricts this strain, leading to an interaction between the inclusion and
the matrix.

Elastic Field Equations: The elastic field due to an inclusion is governed by the equations of elasticity. For a linear elastic
material, these equations are linear partial differential equations (PDEs) involving the stress and strain fields, which are solved
subject to boundary conditions at the inclusion-matrix interface.



e Eshelby’s Solution: Eshelby provided an analytical solution for the elastic field both inside and outside an ellipsoidal inclusion
in an infinite medium. His solution showed that the strain inside the inclusion is constant and can be calculated using the Eshelby
tensor.

1.4 Inhomogeneity Problem

e Difference from Inclusion: In the case of an inhomogeneity, the material properties of the region differ from those of the
matrix, leading to a more complex interaction between the region and the surrounding material. Unlike an inclusion, where the
material inside the inclusion can be imagined as having the same properties as the matrix, an inhomogeneity represents a real
difference in material properties.

e Complexity: The solution to the inhomogeneity problem is more complex than the inclusion problem because the contrast
in material properties must be accounted for. This typically requires solving the elasticity equations with variable material
coefficients.

e Perturbation Techniques: In practice, solutions to inhomogeneity problems often involve perturbation techniques, where the
problem is treated as a small deviation from the homogeneous case, or numerical methods, where the equations are solved using
computational techniques.

1.5 Applications

e Material Science: Eshelby’s inclusion theory is widely used in materials science to predict how inclusions and inhomogeneities
affect the mechanical properties of composites, polycrystals, and other heterogeneous materials.

e Micromechanics: The theory forms the basis for many micromechanical models that predict the behavior of materials with
microstructural features such as voids, fibers, or precipitates.

e Fracture Mechanics: In fracture mechanics, Eshelby’s theory is used to understand how cracks and other defects influence
the stress distribution in materials, which is crucial for predicting failure.

1.6 Extensions and Generalizations

e Non-Ellipsoidal Inclusions: While Eshelby’s original work focused on ellipsoidal inclusions, subsequent research has extended
the theory to non-ellipsoidal shapes, though these cases generally require numerical solutions or approximations.

e Anisotropic Materials: The theory has also been extended to anisotropic materials, where the material properties differ in
different directions, adding another layer of complexity to the problem.

1.7 Limitations and Challenges

e Finite Boundaries: Eshelby’s solution assumes an infinite medium, which is an idealization. In real-world applications, the
finite size of the material can influence the stress and strain fields, requiring corrections or alternative methods.

e Nonlinear Materials: The theory is based on linear elasticity, and its application to nonlinear materials is limited. In such
cases, more advanced models are needed.

In summary, Eshelby’s Inclusion and Inhomogeneity problem provides a powerful framework for understanding how embedded regions
within a material interact with their surroundings and affect the material’s overall properties. The theory’s simplicity and analytical
nature make it a cornerstone of material science, despite the challenges in extending it to more complex scenarios.

We start with the derivation of the 2 double derivatives dz;(dz;(r)) and dx; (dxj (dmk (da:l 7’3))), where r is the radius in Carte-
sian coordinates 7 = /2% 4+ 23 4+ 23 and their integration over the surface S of the inclusion. These double derivatives and their
integration over the surface S of the inclusion will be used to find the displacement impressed on the material in stage III (using
the Love 1927 equation (shown in Section 6) of Displacement at r due to point force F; at r’) due to the application of the force
distribution F}; = pkank over S to make the body free of external force (but in a state of self-stress because of the transformation of
the inclusion).

2 Derivation of double derivative and their integration over the surface S

In this section, we compute the double derivative dz;(dz;(r)) where r is the radius in Cartesian coordinates r = /2% + z3 + 23 and
their integration over the surface S. We start with computing dz;(dx;(r)):

Step 1: The first derivative of the radius with respect to z; is:

dx;(r) or i

o0x; r

Step 2: The second derivative is:

r

da(d) = 5 (%)

Applying the product rule:

da; (davi(r)) = 23— Ti%i

r 73

where d;; is the Kronecker delta. Let’s now integrate the above double derivative multiplied with the vector n; over the surface.
Before doing note the following important identity for the solid angle w

dw = 5= .2

= | nil;dS = r’dw

Therefore the integration of the above double derivative dz;(dz;(r)) multiplied with the vector n; over the surface S shall be

/wmmmWw= (2 2t
S

g T r3

)nde



= /dej(dmi(r))njdé’z /S((iij)nde—/S(lile)nde

Substituting the relations n;l;dS = r2dw in the above boxed equation
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Let’s define the tensor F in indicial notation as follows

F. 0ij

o= T
r
Using the Gauss Divergence theorem we can therefore say that
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Let us compute the volume integral by integrating over an elementary cone df2 centred on the direction 1 = (I1,ls,13) = (I, m,n) with
its vertex at . The volume dV of this elementary cone is

dV = r?drdw

Therefore the integral fv (#)dV can be therefore written as

/v(r?’ )V = /M/ drdw/h/ ldrdw/M / drdw/M (lidw(1)

S| [as L)

r

. 4
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Therefore we have

4T
= /Sd:cj(dxi(r))nde: 72/0 r(D)l;dw(1)

3 Derivation of Quadruple derivative and their integration over the surface S

In this section, we do the derivation of the double derivative dx; (d:cj (dmk (dacl r3))), where r is the radius in Cartesian coordinates
r = /2% + 23 + 2% and their integration over the surface S using 3 different methods.

3.1 Method 1: With Using the Exchanging of Integration and Differentiation Operator

We now derive dz; (dz; (dzy (da;r?))), where r = \/a} + 23 + x3. Therefore we have
r® = (af + a3 + 23)*/?
Step 1: The first derivative of r3 with respect to z; is:

o 3
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Step 2: The second derivative is:
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Therefore the integration of the second derivative shall be
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Now note that we have
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Differentiating both sides with respect to z; and x; we get
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Integration [ and differentiation 3 62
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The differentiation 55— 3{;_ (Ix) can be written as
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can be exchanged since they are linear operators
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Therefore we have
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Let us compute the volume integral by integrating over an elementary cone d2 centred on the direction 1 = (Iy,15,13) =

its vertex at x. The volume dV of this elementary cone is

Therefore we have

ax?;xj (/ dxy,(dz(r®))ndS) = 12/“/

= D007, (/S dxy(dz(r°))ndS) =

dV = r?drdw
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3.2 Method 2: With Using Exchanging of Integration and Differentiation Operator

‘We now derive dx; (da:j (dmk (dxl r3))), where r =
"3 —

Step 1: The first derivative of 3 with respect to z; is:

Step 2: The second derivative is:

2?3 + a3 + x%. Therefore we have

(27 + 23 + 13)3/2

(%xl + T51k)
,

3 (l'kl’l
T

+ T5lk)

(I,m,n) with



Therefore the integration of the second derivative shall be

r

/dxk(dxl(r?’))nldsz/3(@+ralk) nldS:/S(xkll+r51k)nldS
S S S

= /dxk(dxl(rS))nldS:3/(lml)zkd5+3/(r51k)nld5
S S S

We know that
LimdS = r(1)*dw

Here r(1) is the distance between the point inside the volume V to the surface dS in the direction of 1 = (Iy,13,13) = (I,m,n). Therefore
we have

4
/dek(dxl(r3))nld5':3/o r(1) xkdw—l—?u/s(r(l)nk)dw

Differentiating both sides with respect to z; and x; we get

> (/ dry(day (r®))ndS) = 3 > (/47T r(1)?zydw) + 3 & (/ r()nkdS)
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Let us compute the volume integral by integrating over an elementary cone df2 centred on the direction 1 = (i1, ls,13) = (I, m,n) with
its vertex at . The volume dV of this elementary cone is

=

dV = r’drdw

02 . o? 4m 52 am v
= 8%837](/5 day (day (r®))ndS) = 38@3%‘ (/0 r2xgdw) + 38%8% (/0 /0 (1572 drdw)

0? o2 4n 92 4w r
= 02,01, (/S dxk(dxz(r?’))mdS) = 38%—3%— (/0 r2xpdw) + 33$i8mj (/0 lk/o 12 drduw)

o 9?2 am 52 4x
~ gL ol mas) =352 ([ vt + 52 ([ e
0? 92 e
| g /S (o)) = 450 /0 o)

We shall now show that the Integration operator f and Differentiation operator aﬁ;x. can be exchanged if and only if when the
©,07;

measure of the integration variable is independent of the Differentiation operator variables x;,z;. We shall explain this concept
using 6 different cases which are as follows

1. Assuming that the incremental solid angle measure dw is independent of the Differentiation operator variables x;, ;.

3
2. Assuming that the incremental volume measure dV = %dw (subtended by a cone emanating from a point inside the volume
V to the surface dS which is at a distance (1) in the direction 1= (I1,ls,13) = (I, m,n) from the point) is independent of the
Differentiation operator variables x;, ;.

3. Assuming that the incremental surface area measure dS = r(1)?dw (subtended by a cone emanating from a point inside the
volume V to the surface dS which is at a distance r(1) in the direction 1 = (I1,12,13) = (I,m, n) from the point) is independent
of the Differentiation operator variables z;, x;.

4. Assuming that the incremental volume measure dV = r?drdw is independent of the Differentiation operator variables x;, z;.

5. Assuming that the incremental angular direction measure dw and incremental volume measure dV is independent of the
Differentiation operator variables x;, z; in the first integration and second integration respectively.

6. Assuming that the incremental angular direction measure I, dw is independent of the Differentiation operator variables x;, z;.

We shall prove that all the above-mentioned 6 cases except the Case 4: ” Assuming that the incremental volume measure dV = r2drdw
is independent of the Differentiation operator variables x;,z;” will lead to a wrong answer. Only Case 4: ” Assuming that the incremental

)

volume measure dV = r2drdw is independent of the Differentiation operator variables z;, x;7 will lead to the Correct answer as

derived in Method 1.

3.2.1 Assuming that the incremental solid angle measure dw is constant with respect to the Differentiation operator
variables z;, z;

In this subsection, we shall show that Integration operator [ and Differentiation operator %{; cannot be exchanged when we
1O

assume that the incremental solid angle measure dw is independent of the Differentiation operator variables x;,z;. Note that we

have earlier derived

32
8$ia(L‘j

. 82 4
3 _ 2
(/S dxy(dz(r°))ndS) = 481:1-815» (/0 rérpdw)

Let’s see what happens when we interchange Integration operator [ and Differentiation operator %{; in the RHS of the above
10T j

equation
62 5 82 4 ) 4 82
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= > (/ dxy (dxy(r3))ndS) = 4( o (rPay)dw)
Oz0x; Jg 1) =2, 0z, k
The first differentiation #;j(r%:k) can be written as
82 2 a 8 2 3 a 2 9 8 a 9
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= 2,01, (r*wy) = 200k + 201055 + 22305 = 27 (10p; + k05 + 1i051)
Therefore we can write
02 3 4im 92 )
Bz 01, (/s day(dzi(r”))mdS) = 4( o 0m,01, (r°zy)dw) 8/57’(ljz5k + 1k64i + 101 ) dw
:>62(/d (day () dS)—S/ (1;0ns + 1304; + 136 ) d
om0z, s Tr(da(r?))my = Sr i0ki + Uebji + Lidgn)dw

As we discussed earlier in Section the correct answer for the #;zj(fs day,(dz(r®))n;dS) shall be

32
axiaxj

TET;Ts

47
= (/ dxy(dzy(r3))ndS) = 12/ (—(z0i; + x0ik + xi0k;) + 3T)dw
s 0

Therefore exchanging the Integration operator f and Differentiation operator %;xj under the assumption that the incremental solid
angle measure dw is independent of the Differentiation operator variables z;, z; leads to wrong answer. Hence Integration operator
J and Differentiation operator #;mj cannot be exchanged under the assumption that the incremental solid angle measure dw is
independent of the Differentiation operator variables z;, x;.

3.2.2 Assuming that the incremental volume measure dV = %dw is independent of the Differentiation operator

variables z;, z;

In this subsection, we shall show that Integration operator [ and Differentiation operator ﬁ;j cannot be exchanged when we

assume that the incremental volume measure dV = gdw (subtended by a cone emanating from a point inside the volume V' to the
surface dS which is at a distance r from the point) is independent of the Differentiation operator variables z;,z;. Note that we
have earlier derived

0? 5 52 i
Dx;0z; (/S dy(dz(r”))ndS) = 481‘1-%(/(3 rergdw)

Let’s see what happens when we interchange Integration operator f and Differentiation operator 3%; in the RHS of the above
10T

equation 52 52 . - ,
azza%(/s day (day(r3))ndS) = 4811'8:53- (/0 rlrpdw) = 4 ; m(r%kdw)
H2 4 2
= | G /3 dnyldr(r*)md$) =4 [ 5 ()

Since we have assumed that dV = ?dw is independent of the Differentiation operator variables z;,z;, the differentiation with
respect to x; shall be zero i.e. %dV = 0, therefore we can write

3, o g r3 0

0 o r

=

0 9, T
8x¢dv =r (7)dw + =

0 r® 0
AV = radw + —
8xi raiol + 3 31‘,’

=

=

(dw)

The incremental volume dV remains constant irrespective change of x;, i.e %dV = 0 therefore we have

r3 0
0 =rz;dw+ 3 oz (dw)
—3rz; 0
= ( 3 Ydw = o2, (dw)
0 _3371’
= oz, (dw) = ( - )dw

This shows that the solid angle integration measure dw is not independent of Differentiation operator variables x;,z; when we

assume that the incremental volume measure dV = gdw is independent of the Differentiation operator variables x;,x;. The

differentiation #;xj(r%ckdw) within the integral f047r ax?gzj (r?zpdw) can be written as

i 9,0

_ 90, 90 . 2 2, 90
= o (g oz, (redw) +r dwaxj (zx))



Substituting the equation 8 (dw)

8331‘833] § 8:52 k 895] 81‘] oz, k
= 72(742:)3 dw) = (m ,rZi(dw)_;’_x dwi(ﬁ) +T2dwi(g; ))
O0x;0x; R = g,k oz, k oz, o, K
0 2 _ 0 5 0 )
= 02,01, (rfxpdw) = B, (xpr %j(dw) + 2z jdw + Tdwiy;)

3; L dw which we derived earlier into the above boxed equation we get

= ax?;xj (r?epdw) = %(—31‘jmkdw + 2xpxidw + TQdOJ(Skj)
= ax?;xj(r%kdw) = %(7$jxkdw + r2dwéy;) = aixi(*xjmkdw) + Ok; 6(; (r*dw)
= ax?;xj (rPagdw) = (—xkdwa%xj - a:jdwa%a:k - xkxja%dw) + O (223w + 17 ii (dw))
—3a;

Substituting the equation 2 (dw) =

Therefore we can write

axzam]

/ day (day () )mdS) = A(

=

>Ldw which we derived earlier into the above boxed equation we get

2

O0x;0x;

(r?zpdw) = (—zdijdw — xj0pdw + 3zkx2jxi dw) + 0y (22;dw — 3z;dw)
62

i [ —

(9331‘(92133'

82
al'ial’j

xk:rsz

(Tkadw) = (—zgdijdw — x;0;dw + 3———dw) — x;05;dw

mkxjx,

= dw

(r?zpdw) = —(z0;5 + ;0 + 0k )dw + 3———

47 62

83:1-690]-

47 o
(r’zrpdw)) = 4/ (—(zx0i; + xj0ik + ©i0k;) + Z’)L&gzZ )dw
0

0

82
8xic’)xj

TR Ty
T

4
(/ day(day(r°))ndS) *4/ (=(@rdij + z;0ik + xidk;) + 3
0

As we discussed earlier in Section the correct answer for the #ng(fs dxy,(dxy(r®))n;dS) shall be

Therefore exchanging the Integration operator [ and Differentiation operator

volume measure dV =

82
8l‘i8Ij

:ckxjxl

4T
(/ day(dzy(r®))n,dS) = 12/ (—(zx0i; + 0 + xidk;) + 3 )dw
s 0

%‘;m under the assumption that the incremental
T J

%dw (subtended by a cone emanating from a point inside the volume V to the surface dS which is at a

distance r from the point) is independent of the Differentiation operator variables x;, z; leads to wrong answer. Hence Integration

. . . 2
operator f and Differentiation operator %
iOTj

)

cannot be exchanged under the assumption that the incremental volume measure

3.2.3 Assuming that the incremental volume measure dV = r?drdw is independent of the Differentiation operator

variables x;, 2

In this subsection, we shall show that Integration operator f and Differentiation operator %;m
2,07,

can be exchanged when we assume

that the incremental volume measure dV = r2drdw is independent of the Differentiation operator variables x;, z;. Note that here r
is not the distance between the point inside the volume V and surface dS. We have earlier derived that

This can be alternatively written as

82
8:51-8333»

(/S day(dz (r

62 3 82 4m 9
g ot mas) = ag ([ rPa)
3 H2 4m 5 47 r(1) ) 52 47 r(1) )
))mdS) = 46@833]- (/0 lgr(l)®dw) = 48@8:2]' (/0 SZk/O rdrdw) = 128%856]' (/0 lk/o rdrdw)

Since the direction cosine [ remains constant as we integrate from 0 to r(l), we can take the direction cosine I inside the second

integral for(l). Therefore

Let’s see what happens when we interchange Integration operator [ and Differentiation operator

equation
32
al‘ia.’[?j

Since r2drdw is independent of the Differentiation operator variables z;, x;, we have

we can write the above equation as

4 pr(l)
(/ / 2 drdw)
o Jo

(/S day (dz(r*))ndS) = 12

axiaxj al'lal’j

#{;_ in the RHS of the above

4 pr(l) ) 4 pr(l) 2
lprdrdw) = 12/ /
(/0 /0 ) o Jo Ox0x;

(r?drdw) = 0. We can therefore write

(L2 drdw)

3 _
(/3 dxy(dz(r°))ndS) = 126%8%

62
a:Ei, 8Ij

, 47 r(1) 82
([ drtmomas) =12 [ [ ow,01,

32

Ip)r2drd
8xi8xj k)r raw




The differentiation m(lk) can be written as

P gy= Oyl 00y 0 L ag),
O0x;0x; O0x;0x; Ox; Oxj  r T Oz r2
82 0 (T(sjk - wkrwj) 0 5jk TR
O0x;0z; (b) = 8xi( 72 )= 87%(7 3 )
82 0 1 0 T 6jkxi 1 0 0 1
92,0z, () = 511@57%(;) - 87@( 3 )=- 3 3 (xka L “‘%5 TE) — xkaa 1(7"3)
0? OipTi 1 0 1
02,01, (lx) = — Jr?’ _ T—S(xkisj'i + J?jéki) — xkl‘]aixz(ﬁ)
9?2 0iLTi 1 TLTiT;
g () = L5 — S (wkdyi ) + 370
10T
o2 1 TRTiT;
= B g ) = — g (@idj + wrdji + x0i) +3 L
10T
0? 1
= 83:1(’)33] (lk) = ﬁ(*(llfs]k + lk(Sji + lj(gki) + 3lkl]l,)
Therefore we have
1
o5 (/ g (dzy (r®))mdS) = 12/ r—g(—(ziéjﬁlkaﬁ+zj5ki)+3lkzjzi)dv
Yy Js 1%

Let us compute the volume integral by integrating over an elementary cone df2 centred on the direction 1 = (I1,13,13) =

its vertex at x. The volume dV of this elementary cone is

dV = r?drdw
Therefore we have
82

T (/ dar(dai (r))nudS) _12/“/

82 47
= 7(/ dmk(dml(r?’))mdS) = 12/ (—(liéjk + lk(Sji + ljéki) + 3l;€ljli)/
6:0181:] S 0 0

— (185 + s + 10ni) + 3lil;li)r?

T

(I,m,n) with

drdw

drdw

82
(9231(93{7'

=

4
(/ dxk(dxl(r?’))nldS) = ].2/ r(—(liéjk + lkéji + ljéki) + 3lkljlz)dw
S 0

As we discussed earlier in Section the correct answer for the ([ da(day(r®))nydS) shall be

dx;0x; 6:8

82
8:Jci8:z:j

TET;jTs

4
(/ dy(day(r®))ndS) = 12/ (—(zxbij + 250 + 2i0pj) +3
0

)dw

Therefore exchanging the Integration operator [ and Differentiation operator #‘;M

under the assumption that the incremental

volume measure dV = r2drdw is independent of the Differentiation operator variables z;, z; leads to correct answer. Hence Inte-

gration operator f and Differentiation operator can be exchanged under the assumption that the

62
87:7 axj

dV = r’drdw is independent of the Differentiation operator variables z;, x;.

Reason why we are getting different answers

incremental volume measure

The reason why we get a different answer than when we consider the incremental volume measure dV = édw to be indepen-

dent of the Differentiation operator variables z;,z; is due to the following reason If we consider i

incremental volume measure

dV = r’drdw to be independent of the Differentiation operator variables x;,z;, i.e a ( 2drdw) shall be zero. Then we get

0 0 , 4 o, 0 0 0 , 5
oz, dv = oz, -(r*drdw) = r*dr oz, (dw) +r oz, (dr) + dwdr oz, (r9)
0 9, O 0 0, 5
8% dV = r4dr oz, (dw) + 7 oz, (dr) + dwdr oz, (r)
0 9, 0
(’hz dV = redr o2, (dw) + 2x;dwdr

The incremental volume dV remains constant irrespective change of z;, i.e a dV = 0 therefore we have

=0= T’Qd’l"aa (dw) + 2x;dwdr

Lq

9 (d)

Lg

= —2x;dw = r?

0
a:Ei

21‘1‘

dw
2

(dw) = —

But if We consider the incremental volume measure dV =

ie a (5 dw) shall be zero. Then we get
0 o r o r r3 0
ox; v = 336,( dw) = ox; (g)dw + 3 Oz, dw
0 o r. 0 r3 0
dV = —(— d — d
:>8xi v 87’(3)81‘i(r) Wt 3 Ox; v

%dw to be independent of the Differentiation operator variables z;, z;,



= aii dv = r2(7')dw + 3 50 (dw)
= 31 dV = rz;dw + 7;336:1:,- (dw)
The incremental volume dV remains constant irrespective change of x;, i.e %dv = 0 therefore we have
0 =rz;dw+ i@iz (dw)
> (e = o ()
= aii (dw) = (‘ffi )du

The %(dw) is different for different assumptions of integration measure independence with respect to the Differentiation operator

variables x;, ;. This leads to different values of #;j(fs dxy (dzy (1)) dS).

3.2.4 Assuming that the incremental angular direction measure /;dw is independent of the Differentiation operator
variables x;, z;

In this subsection, we shall show that Integration operator f and Differentiation operator %;m cannot be exchanged when we
iOTj

assume that the incremental angular direction measure /;dw is independent of the Differentiation operator variables x;,z;. Note

that here r is not the distance between the point inside the volume V and surface dS. We have earlier derived that

32

2 4
0 (/S day(dzy(r®))n,dS) = 483:,»813 (/0 r(1)2zdw)

al‘ian

Let’s see what happens when we interchange Integration operator [ and Differentiation operator #{;M in the RHS of the above
equation

82 5 82 47 ) 4 62

Since we have assumed that the incremental angular direction measure [ydw is independent of the Differentiation operator variables
x;, %4, the differentiation with respect to x; shall be zero i.e. %(lkdw) = 0, therefore we can write

(r(1)2mkdw)

2 4 2 An 9 .
8w?8xj (/S do(do(r))mdS) = 4(/0 8;?83:]» (r(1)*e)dw) = 4(/0 51‘?8@ (r()?l)dw) = 4(/0 lkm(r(l)?’)dw)

2 4 2
&:jaxj (/s day,(d(r?))mudS) = 4(/0 lkagjaxj(r(l)g)dw)

We know that

82 3 il
T ) =3 ( Iy réi;) =3 (il + réy;)

Therefore can write

62

= 8:518;5]

47
( /3 day(dan (r*))mdS) = 12( /O r (Uil + 65511)dw)

As we discussed earlier in Section the correct answer for the #;xj( [ dzg(day(r®))nydS) shall be

82
(%iaxj

TET;jT;

471
( / dary (daey (%)) mydS) = 12 / (= (2101 + 2380 + 2i0n;) + 3 Vo
S 0

r2

Therefore exchanging the Integration operator [ and Differentiation operator 6%;- under the assumption that the incremental
10T j

angular direction measure [,dw is independent of the Differentiation operator variables z;,z; leads to wrong answer. Hence

62

Ox;0x

direction measure [;dw is independent of the Differentiation operator variables x;, ;.

Integration operator [ and Differentiation operator cannot be exchanged under the assumption that the incremental angular

3.2.5 Assuming that the incremental angular direction measure dw and incremental volume measure dV is independent
of the Differentiation operator variables z;,z; in the first integration and second integration respectively

In this subsection, we shall show that Integration operator | and Differentiation operator cannot be exchanged when we assume

82
Bociaxj
that the incremental angular direction measure dw and incremental volume measure dV is independent of the Differentiation operator
variables x;,z; in the first integration and second integration respectively. Note that here 7 is not the distance between the point

inside the volume V and surface dS. We have earlier derived that

0 3 N 0
= dzy(d dsS)=3 d 33— I dV
axﬁxj (/S wk( 331(7‘ ))nl ) 83?18%‘] (/0 "k W) + axlaxj (/V § )
Let’s see what happens when we interchange Integration operator [ and Differentiation operator #;% in the RHS of the above
equation
82 3 4 2 0 32
dzxy(d ds)=3 d 3 lxdV
8:5,»8@ (/g xk( .’EZ(T ))nl ) 0 8901693] (7“ Tk W) + /V 81‘1'813]‘( k )

10



Since the incremental angular direction measure dw and incremental volume measure dV is independent of the Differentiation
operator variables z;, x; in the first integration and second integration respectively, we can write the above equation as

82 4 2 82
day(dzy(r®))ndS) = ———(r?xy,)d / Iy)d
8xi83:j (/S Ik( IZ(T ))TL[ S) 3/0 8:1%8.’1?] (T zk) W 3 % al‘ial'j( k) v

The first differentiation #{;,(r%&k) can be written as
i0Tj

o 2 9 9 9 s O 0 9
02,01, (rxy,) oz, (-'L'kaxj (r) +r 9z, (z1)) 8@( erxj + r20;)
82 2 8 2 6 6 8 )
= —(2 i ) = 2z — Y e
- dx;0x; () 8:51-( Ty +1r70k5) = 2(zk B2, + z; 0z, Tk) + Ok; pro
0? ) 9 ,
= m(r T)) = 87@(2%% +1r0k;) = 2(zx0ij + ;0ik) + 220k,
02 9
= M(r xk) = Q(xkém + .chsik + 1’Z5kj)
02 9

. . . 2 .
The second differentiation ~2— (Z=) can be written as
Ox;0x; \ T

02 o 0 o (reXmp —azpzr)
O0x;0x; 7) - Oz, 87%(7)) - 8xi( J r2 —)
- 896?;@(? - 8iz(w) - 621(6% a xifj)
e () = b (1) = e () = 2 L Dy Do) — vy
62;% %) = _%:3:1:1 - Tig(ﬂfk% + 20ki) — xkxj%(%g)
N I 03+ T+ 1) + Bl

axiaxj 7

Note that we have dV = gdw. Therefore can write

82
8$ial‘j

4 1
(/S dxk(dxl(r?’))nldS) = 6/0 T(lk(sij + l](szk + lzékj)dw + 3/‘/(7“*2(—(@(216 + lkdﬂ + lj(sm) + 3lkljlz))dV

82 47
= 7(/ day (day(r3))ndS) = 6/ r(Ik0ij + 1jdi + ik )dw +/ (r(= sk + s + 1ions) + 3lil;l;) ) dw
Owidx; " g 0 \%

2 47
= 9 (/ dxk(dxl(rg))mdS) = / 5T(lk5ij + ljéik + lidkj)dw + / (3lkljli)dw
&vié)xj S 0 v

As we discussed earlier in Section the correct answer for the #;xj(fs dxy,(dz(r?))n;dS) shall be

9? am TRTiT;
e Aol ma$) =12 [ (~ (ot + astc+ i) + 375

Therefore exchanging the Integration operator [ and Differentiation operator #j}z]_ under the assumption that the the incremental
angular direction measure dw and incremental volume measure dV is independent of the Differentiation operator variables x;, z;
in the first integration and second integration respectively leads to wrong answer. Hence Integration operator f and Differentiation
operator %;xj cannot be exchanged under the assumption that the incremental angular direction measure dw and incremental

volume measure dV' is independent of the Differentiation operator variables x;,z; in the first integration and second integration
respectively.

3.2.6 Assuming that the incremental surface area measure dS = r(1)?dw is independent of the Differentiation operator
variables z;, z;

In this subsection, we shall show that Integration operator [ and Differentiation operator %;w_ cannot be exchanged when we
iOLj

assume that the incremental surface area measure dS = r(1)2dw (subtended by a cone emanating from a point inside the volume
V to the surface dS which is at a distance 7(1) in the direction 1 = (I3,l2,13) = (I,m,n) from the point) is independent of the
Differentiation operator variables x;,z;. Note that we have earlier derived

/ day(da (r()?))mdS = 3 /

S(lml)xde—i—S/(r(l)élk)nldS

S

S
X Ti\r 3 n = T )n, T n
=>/Sd k(d l( (1) )) 1dS 3/S(ll k) ldS—‘r?)/S( (1)51;9) 1dS

11



Using Gauss Divergence theorem on the first integration, we can write the above equation as

/dek(d:cl(r(l)?’))nldS:?)/V ail(llxk)dV—i—?)/S(r(l)élk)mdS

=
Now note that we have 9 5 9 9
B, 11k) = lig (@) + g () = g (@) + ok g —(20)
9 9 (rom () —migzm) 0 (3r — =) (3r — 1)
= Tm(llm) = ll%(xk) + 2 — = ll%(xk) tae—— 5 = bl o
0
= %(llxk) = 3lk
Therefore we have
= / day (dz(r(1)3))ndS = 9/ zkdv+3/(r(1)5lk)nlds
S v s
= /dwk(dml(r(l)3))nld5:9/ lde+3/r(l)nde
s % s

. Therefore using the Gauss Divergence theorem, we can write

/ LpdV = / 9y = / r()nedS
v v Oz s
\% S

Therefore we can write
= /dxk(dxl(r?’))mdS: 12/r(l)nkd$’
S s

Now not that we have a%(r) =
k

in the RHS of the above

Let’s see what happens when we interchange Integration operator [ and Differentiation operator 52.9
4 82
(r(nedS)

equation
o , o
o — . 1 =12 Dng =12
e /S dad(r{)") ) = 1255 [5 rmids) =12 [ 25

4 62
3 _
" / dldn(r())mds) =12 [ 50

Since we assumed that the incremental surface area measure dS = 7(1)2dw (subtended by a cone emanating from a point inside the
(Il,m,n) from the point) is independent of

(r(DnedS)

=

volume V to the surface dS which is at a distance (1) 1n the direction 1 = (Iy,1a,13) =
the Differentiation operator variables z;, z;, we have 55— 6 (dS ) = 0. Therefore the above-mentioned boxed equation becomes

( / da(dr () mia$) = 12 | ! a:f;mj (r(Ung)dS

awiax]—

Now we know that
g, = r(1)%dw = dS

Differentiating both sides of the equation with respect to x; we get
0

Oz

Since we assumed that the incremental surface area measure dS = r(1)2dw is independent of the Differentiation operator variables

0

5. W) = 5-——(dS)

x;,xj, we have (92] (dS) =
0 0
l Iy =0
= k@xjnk +nk8xj ¥
0 0 Tk
l —)=0
- k@xjnk—i_nk@scj( r )
9 )
9 (re=ap — Tp5—T)
= lp—n, +ng 9z; o2, =0
6l‘j 72
0 (rdjp — =52
=1 =0
k@xj e T r2
6 (nj _ lefl,':];fl,'])
= _\r T
6xj 1k lk
S e
Oz T
0 n;  NExj
= —np =2 —
0z k Tk 72
o 2 0 o .
Similarly, we also have | [;n; = r(1)°dw = dS | and 3 (dS) = 0|, therefore we can similarly write
z;
0 0
nj +n;— Bz, ;=0

j@

12



0 0 x
= lj—n;+n;— (-2 0
I gp, T 8951-( ” )
0 (T 3mr %5 — T 377
= lj—n; +n;—= T =0
T R )
0 (rdi; — =)
=>lj=—n;+n = =0
Tz, 7 r2
9 ng _ MiTiT
= 4N, = & 7 )
6562 lk
8 n; — MNjT;T4
:3x-n]_(1xr2)
i J
8 n; njxi
= -
ox; 7 xj 72
To compute the double derivative %;m(rnk) = %(%(rnk)). We need to first compute the 2 derivatives %(rnk) and %(rnj).
10T i J j i

Note that we can write using the product rule

87]_(7"77%) = Taixjnk + nkaTj’l"
0
—(rnj) =rs—n; + nja—zir

Substituting the expression for a%jnk that we got earlier in the above equation a%j(rnk) = Ta%jnk + nyg a%jr we get

0 n;  NET; nEr;  TN; ML nEL
= L) =M - k23)+g:4,7k4+7k£
O0x; Tk r r Ty r T

0 N
= | —(rng) = —
6xj( k) T

Substituting the expression for %nj that we got earlier in the equation a%i(rnj) = r%nj +n; %r we get

LY LT,
ox; x; r r xj T r
0 rn;
= | — ) = ——
81’i (T'Tl]) x]

Using the expression for 8%j(?”nk) that we derived earlier, we can write the double derivative #{;j(rnk) = %(%(Tﬂk)) as

02 0,0 0 ,rn;
= 81‘i61‘j (rnk) o a-%'z(aiﬂfj(rnk)) B 8731’ E)

o? (x50 (rny) — rnj o= (1))
= Ox;0x; (rmy) = z3

Using the expression for %(rnj) that we derived earlier,

92 (F52 — rn;k:)
= (rng) = —————
I 2
0xz;0t; x3
2
N 0 () = i 15 0ks
e = 2
00 LT xy
0? N N
= | ———(rng) = - —2]
O0x;0x; LT x;

Now we have derived earlier that

92 5 4 92
=12 1
5acpe /S dayldr(r*)ma$) =12 [ 52 (rma)ds
Substituting the above-mentioned boxed equation into the previous equation we get
o (/ day(day (r*))nydS) = 12/47T( iy
0x;0z; " Jg M : a o Timp o}

As we discussed earlier in Section the correct answer for the #;zj( [ di(dy(r?))nydS) shall be

62
8:1:,-8:1:j

TETjTq

)dw

47
(/ day(day (r®))mdS) = 12/ (=(@rbij + 2j0ik + T:i0k;) + 3
S 0

r2

Therefore exchanging the Integration operator f and Differentiation operator %{; under the assumption that the incremental
iOTj

surface area measure dS = r(1)?dw (subtended by a cone emanating from a point inside the volume V to the surface dS which is
at a distance r(1) in the direction 1 = (I1,12,13) = (I,m,n) from the point) is independent of the Differentiation operator variables

x;,x; leads to wrong answer. Hence Integration operator f and Differentiation operator 872 cannot be exchanged under the
[l Ox;0x;

assumption that the incremental surface area measure dS = r(1)?dw is independent of the Differentiation operator variables x;, zj.

13



3.3 Method 3: Without Using Exchanging of Integration and Differentiation Operator

We now derive dz; (dz; (day, (dayr?))), where r = \/a? + 23 + 23. Therefore we have

r? = (2] + 23 + 153)3/2

Step 1: The first derivative of r3 with respect to x; is:
3
x
dx; (7’3) =2 =32t = 3rxz;
r

Step 2: The second derivative is:
dxy (3rz;) =3 (8;3:1 + raxl>

=3 (—xl + Télk)

3 (% + Télk)

o (3 (M+ ri)) = (ax] (%5) + gy )

T ) kLL'l + 6 1Tk TRpXI1T;
0
0

Step 3: The third derivative is:

oz (

r3

=
o) = =46
; (7" lk) r 123

8 5 . .
dx; (3 (M + rélk)) -3 ( kTl + 01Tk TpTIT; + xa(glk)
T

r r3

Y S5 A A
dx; (3 ( jhTLt Otk xkxgﬂj + %5”@))
r r r

da (5jka:l + 5jl-73k) _ 0k + 0510k B (5jk$g + 6]‘13%) T;

Step 4: The fourth derivative is:

For the first term:

r r r3

For the second term:

das _l‘kl‘ll‘j . _Bl'kl‘lle'i + (Sikl'll‘j + 5il$k$j + 5ijxkxl
v r3 - rd r3

For the third term:

des ($j51k> _ 6i_j61k _ l'jélk%i

r r 73

Combining all the terms, we get:

0jk0il + 05i0ik + 0ij0us  OjkTiTi + 0k + duk®; + dip®1j + O s + 05T . 3$k$l$j$i>
, 3 5

dx; (dxj (dack (da:l r3))) =3 (

Therefore the integral fs dx; (da:j (da:k (da:l 7"3))) n;dS shall be

/ d; (d.’bj (dxk (d%l ?"3))) nydS = / 3 (5jk5il + 5j15ik + 5ij(slk B (5jk:vlmi + 5jl1'k1'i + 5ilxkxj —E(&kxla:j + 5lkmjxi + 5ijxkxl I 3xkxl5xj1'i> n
T T T

0i 010 + 8,50 il Salils + Sulil; + Sanlils + Suulils + 00ilily 3Ll
/dxz'(dzj(dxk(dxﬂg)))nldS:/S(djk l+6jlrk+6j lk—(;jkl +5ﬂk + ””;HS]H]JF eyt F Jkl—|—3k;j >nldS
S

Note that we can write
n;l;dS = r2dw

Therefore we can write

4 . . . . ..
s (o () mas = [ 3RO g5 [ 0ttt by ) [ 3L T,
0

T T

We shall co qute each of the 2 surface integrals on the RHS one by one. Let us start by computing the 1st surface integral

53149, 5:;8
$3 Sikdut i ht0is £ Yn;dS. For this we define a tensor F in indicial notation as follows:

06031 + 6510k + 03501k
T

Fijii = 3( )

Using the Gauss Divergence theorem we can write

/S(F.n)dS:/V(V.F)dV:/V(angl)dV

dV can be written as

OF;;
6zjlkl )

an Kl 05k0i1 + 0510k + 6501k
/V (9.;1 dV / axl J ]’I“ J ))dV = 3(5Jk521+5ﬂ51k+5”51k)/

The volume integral [, (

0 2
6xl(r)dv = 3(5]k§1l+5ﬂ(5m+5”5lk)/V( ﬁ)dv

Let us compute the volume integral by integrating over an elementary cone dw centred on the direction 1 = (I1,13,13) = (I, m,n) with
its vertex at x. The volume dV of this elementary cone is

dV = r?drdw
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Therefore the integral fv (+%)dV can be therefore written as

4 4 47 r(1) 4
/ 7“3 )dV = / / —drdw */ / LidrdQ = / ll/ drdw 7/ Lir(D)dw
14 0

N /V(TS)dV /04Wr(1)lldw

Therefore the volume integral shall be

8Fl X A
/ (i)dv = 3(5jk5il + 5jl6ik + 5ij5lk) / (7%)(1‘/ = *3(5jk5il + 5jl5ik + 51]5lk)/ T(l)lldw(l)
v Oz v T 0

OF ki

=
1% 8.%[

47
VAV = —3/ (1) (0j1ls + 0irly + 0i5lk)dw(1)
0

Therefore the surface integral shall be

r

/ 3(5jk5iz + 05103k + 65501
s

4
)nldS = 73/ r(l)(éjkll + 5iklj + (lek)dw(l)
0

nydS. For this define a tensor G in indicial notation as follows:

. SililitSululy+oulsli
Let us now compute the 2nd surface integral [ (= + o i Houlitiy

Sjlili + 0ulkly + dul;l;
T

Gijrl =

Using the Gauss Divergence theorem we can write

/GndS /VGdV /80”’“
(91‘1

dV can be written as

0G i1 0 ulily + 0ulily + duljl;
Prighly gy = | £ d
/V(axl)v /Vaxl( - )dv

The volume integral [, ( aGukl)

We need to do differentiate (6j’l’“li+5“lr"“lj+§’“’ljli) before doing the volume integral. Given the function:

0l + O Ll + O L5l

r

Substituting I; = £, [; = %, and [, = % into the above expression for u, we get:

1 Th X; T X
e

{L‘j&)

rr

1
=|u= 7"73 (5jl$k1'i + 5ilcckxj + 5kl$j1'i)

Now, let’s compute the differentiation of u with respect to x;:

3 (6jl$k$i + (Silxkxj + (Sklxj:ri)

ou 0 1 1 0
aixl = 6—33[ (> (5ﬂxkxi =+ 5ilxkxj =+ (5k1xj$i) + 7“7367%‘1

ou o (1 0 1 0
= 87@ = E <7“3> %(T) ((5jll‘kl‘i + (5,‘1%‘;.3.%‘]' + (5kll‘jl‘i) + 7"73871'1 (5jlxkxi + 5il$kxj + 5klxjxi)

ou 3x; 1 0
= 8717 = _TT (6jlxkxi -+ 5i1xkxj -+ 5kl1'jxi) =+ ﬁ% (5jlxkxi + 5il1'kxj + 5klxjxi)

Now, let’s compute the differentiation 6%1 (0jixkz; + duzrpxj + Ogxjx;) term by term. For the first term we have:

0 0 0 0
o2 (0jixpe;) = i1 (xpxs) = 0j1 (ifiaxlxk + zp axl%) = 0j; (O + duxy)

= | — (5jl$kxi) = 0kx; + 6ji1'k

8xl

For the second term we have:

0 0 0 0
pre (buzrrs) = 5“87; (zrwj) = 51‘1(% (zk) ) + pr (z5) k) = 0u(Omz; + Sw)

0
= Txl (5i1xkxj) = 5ikxj + 5ij$k

For the third term we have:

0 0 0 0
o2 (Omz ;) = 6“8733; (xjz;) = 5kl($i87xl(xj) + xj%(xi)) = 0 (62 + dyixy)

0
= Txl (5klxjmi) = 5kj1'i + 5ki$]‘

Therefore we have

0
(971’] (5jlxk$i + 5il$k$j + 5klxj$i) = 2(§kj37i + 5/ﬂ‘l‘j + 5ij1'k)

15



Therefore the differentiation 3%1 (0j1xkx; + 0xpa; + dpxjz;) shall be

% - 7% (Ojuns + Sawpw; + d;ja) + %(&cjxi + iz + 0;57k)
% - _7% (252 + Tiokd; + 2p250) + %(6iji + Okitj + 0ijk)
% = —%mixkxj + %(&jxi + Opij + O
a% = _%lilklj + %(%li + Okl + ijlk)
= dixz (5jllkli + 5iliklj + 5}clljli) _ %(_glilklj + 2010 + 20kl + 26,511)

This is the fully simplified expression for the derivative. Therefore the volume integral shall be

/ d (bl + 0ulily + dljli
v dxy r

1
))dV = / 3 (= OLilil; + 2645 + 2003l + 20511)dV
14

Let us compute the volume integral by integrating over an elementary cone dw centred on the direction 1 = (Iy,1s,13) = (I, m,n) with
its vertex at . The volume dV of this elementary cone is

dV = r?drdw

Therefore the volume integral shall be

/ d(5jllkli+5illklj+5klljli
v

4w pr(l) 1
dz; . ))dv = / / ﬁ(_glzlkly + 2(5ij,‘ + 25kilj + 25i.jlk)7“2drdw
0 0

:>/ d (5jllkli+5illklj+5klljli
%

47 r(1)
df ))dV = / (—9lilklj + 26kjli + 25;“‘1]‘ + 25ijlk> / drdw
g r 0 0

=

/ d <5jllkli+5illklj+5klljli
%

4m
di.’[:l , >)dV = / T(l)(—glzlkl] + 2(5ij¢ + 2(5]“‘1]' + 252]lk)dw
0

Therefore the surface integral shall be

/(5jllkli + (5illklj + 5lkljli
S

A7
. )nldS = /0 T(l)(—glilklj + 2(5].3]'[1‘ + 2(5].”‘Zj + 2(5ijl]€)dw

Now we earlier derived that

Ol + dulkly + duklyl;
T

)1

r

/ da:i (d]}j (dxk (d.’L‘l 7“3))) ’nldS = / 3(5Jk61l + 5]l61k + 6”6”€ )TL[CZS-‘r/ T(Qlkl]‘li—3((Sjkli+5ikllj-‘v-(sijlk))dw—/ 3(
S S 0 S

Substituting the expressions of the 2 surface integrals that we derived earlier into the above equation we get

47 47
/ dx; (dmj (dxlc (dl‘l 7"3))) ndS = _3/ T(l)((sj‘;gli + 5iklj + (Sijlk)dw(l) +/ T(l)(9lklljli — 3((5]'1@11‘ + 6iklj + (Sijlk))dw(l)
S 0 0
4
—3/ T(l)(—glllklj + 26k]lz + 26kll] + 2(5Ulk)dw(l)
0

4T
= / d!El (dl'] (d(Ek (dxl 7‘3))) nldS = / T‘(l)(?)ﬁlkljll - 12(5ij¢ - 125iklj - 125”lk)dw(l)
S 0

4T
= / dﬁz (dLCJ (d.%‘k (d{,Cl 7‘3))) ’rleS = 12/ T(l)(?)lkljlz - (SjklZ - 5iklj - 6”lk)dw(l)
S 0

4 Betti’s Theorem and Reciprocity

Betti’s Theorem is a fundamental result in linear elasticity that provides a relationship between two different states of stress and
strain within an elastic body. The theorem states that if a body is subjected to two different sets of equilibrating forces, the work
done by one set of forces during the displacements caused by the other set is the same as the work done by the second set during the
displacements caused by the first set.

Let:
e 1) be the displacement field due to traction force t(") and body force b1,
e u(? be the displacement field due to traction force t(*) and body force b(?).

Then Betti’s Theorem is expressed as:

/tg1>u§2> dS+/ bV dvz/t§2)u§1) dS+/ b ul) dv
S |4 S \4

Or, in component form:
/ 0@ gg 4 / My v = / ONOPT / @y av (1.82)
s v s v
To prove Betti’s Theorem, we begin by noting the stress-strain relationships in each state:

Uz(;) = Cijkleg) and Uz(j) = Cijklefz)
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The strain energy densities for the two states are given by:

W@ _ = Cijn 1) _(2)

0;i € k€l €5 and o,

DD _ Cype@el)

Since Cjj is symmetric under interchange of the first and second pairs of indices (i.e., Cijp = Criij), we have:

W), _ @, 1)
ij €ij = T4 Cij

Integrating this over the volume V', we obtain:

/ag)eg)dV:/ al-(?)eg;) dv  (1.83)
v 1%

(1) (2) (1), (2)
/ 0,5 € dV = / 055 Uji dV
\% \%

/ag)uﬁ) dV:/( Dl av — / ol dv
v ' v v
M 4 40 .

)
/ o el av = / tPu® ds + / b MulP dv  (1.85)
14 S |4

), (1) 2) (1 (2) (1)
/ o el dv = /tf. ug)d5+/bi u) av
Vv S \4

Equating these expressions gives Betti’s Theorem:

/ {04 g5 + / bDul av = / 20 ds + / bPul) av
S |4 S 1%

Betti’s Theorem can be used to derive the reciprocity relation for the Green’s function in elasticity. The Green’s function G;;(z,z’)
represents the displacement in the i-th direction at point z due to a unit point force in the j-th direction at point z’. The reciprocity
relation states that:

Expanding the left-hand side:

Applying the divergence theorem:

Using the equilibrium condition o

Similarly, for the second state:

Gij(z,2") = Gj;(2',z) (1.86)

Consider two specific states:

o bgl) = F;6(z — M), i.e., a point force F; at =),

. b§2) = H;6(x — ), i.e., a point force H; at ().
The corresponding displacement fields are:

ugl)(x) = Gyj(z,sW)F;  and u§2) (z) = Gij(z, 2@ H,
Substituting these into Betti’s Theorem:
/‘/Fié(x —2W)Gij(x, 2PV H AV = /V Hid(z — ) Gyi(z, e F, dV
Simplifying using the properties of the delta function:
FiH,;Gy(aM,2®) = FiH;Gi(2®), 2W)
Since F; and H; are arbitrary, this implies the reciprocity of the Green’s function:
Gij (M, 2@ = Gy (2P, W) (1.90)

The derivation provided above rigorously covers the theory and equations presented in Section 1.7 of the document. Betti’s Theorem

provides a powerful tool for understanding the relationship between different states of stress and strain in an elastic body, and it leads
directly to the important reciprocity relation for Green’s functions, which is essential in solving a wide range of problems in elasticity.

5 Derivation of the Green’s Function for Isotropic Medium

To derive the Love 1927 Solution of Displacement we need to first derive the Navier-Cauchy equations. The Navier-Cauchy
equations describe the equilibrium state of an isotropic elastic medium under applied forces. The equilibrium equation in the absence
of body forces is:

V.o+f=0

where o is the stress tensor, and f represents the body forces. For an isotropic material, the stress tensor o is related to the strain
tensor € via Hooke’s law:

’ Uij = /\5ij€kk + 2,LL€,']'

where A and p are the Lamé constants, and the strain tensor ¢;; is:

i = 2 8.73]' 8a:i

Substituting the strain tensor into the stress tensor and then into the equilibrium equation gives:

9 du,
oz, (Aa”a e 6”) =0

Expanding this, we have:
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0 % + 82ui + (92’uj‘
Ox; Oxy, s 817? “axiaxj

+fi=0

2 ; 2 . . .
Recognizing that %};% = %, we simplify to:
J

8 8uk 2 -
6xi8Tck+uv u; + fi =0

(A+p)

In vector form, this is:

|uV%u+ (A + @) V(Y -u) +£ =0

This is the Navier-Cauchy equation in its general form. To find the Green’s function G;;(x,%¢), we consider the Navier-Cauchy
equation with a point force applied at xq:

0 0G;(x,%0)
V3G, (x,x A T — 66k —x
o zg( 0) + ( + /1') axi 8xk i ( O)
Here, G;;(x, o) represents the ith component of displacement at x due to a unit point force in the jth direction at xo. We take the
Fourier transform F of the Navier-Cauchy equation. The Fourier transform of a function f(r) in three dimensions is defined by:

FU®N00 = fk) = [ e ) ar

We will now compute the Fourier transform of each term in the Navier-Cauchy equation separately. The term V?u is the Laplacian
of the displacement field. In three dimensions, the Laplacian of a vector field u(r) is:

0%u;
2. i
Viu = (&T?)

FVu,(r)} (k) = F { O uifr) } ()

2
8:cj

Taking the Fourier transform:

Using the property of Fourier transforms:

82ui(r) o 24
f{ o } (k) = —k2ii(k)

we have:
F{V2u;(r)}(k) = —k?;(k)

where k? = k;k;. The term V(V - u) involves the gradient of the divergence of the displacement field. First, compute the Fourier
transform of V - u:

3u,;
8xi

FAV a0 = {52 1) = b9

Now, take the gradient:

0 [ Ouy
. k = _— i k = —k.k:U: k
AV w9 = 7 {57 (5] } 00 = kst
For completeness, we also compute the Fourier transform of the body force term f:

F{Er)}(k) = £(k)

In the case of a point force applied at r = rq, this becomes:

F{o(r —ro) (k) = e~
Substituting these results into the Navier-Cauchy equation:

(=K (%)) + (A + p) (—kik; i (k) = = fi(k)

— (A + pkikja;(k) = —fi(k)
+ (N + pkik;ii; (k) = fi(k)

= —uk*a;(k

—_—  ~—

= pk?a;(k
In matrix form, this can be written as:
[,qucSij + ()\ + ,u)kikj] ﬁj(k) = fz(k)
To find 1 (k), we need to invert the matrix A;; = pk?8;; + (A + p)k;k;. The matrix A;; can be decomposed into:
Aij = Hk’Zéij + (/\ + ,U)kikj
We need to find A;jl such that AijA;kl = §;,. We propose the inverse to be of the form:

)

Oé(Sjk + ﬁkfclsk
k2

kik;
kQ

1
A’ijl — W (aéij + ﬁ

Multiplying A;; with the proposed inverse A;jlz

(A”Az_jl = ,quCSij + ()\ + M)klk]) <

A A kik
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For this to equal §;, we need:

Therefore we have:

_ 1 A p kik;j
Al = (4. — inj
i W(” Nt 2 k?)

The displacement field (k) is then:
i (k) = A fi(k)

Substituting the inverse:

e~ ikTo A4 kik;
(k) = —— [ 8.0 — il
u]( ) (61] )\"_2,“ k2 )

The Green’s function Gj;(r,ro) in real space is given by the inverse Fourier transform:

Gis(r,r0) = FH{ Gy} () = ﬁ / G ) ) i

Substituting G;;(k):

B _ 1 1 B )‘+:u klkﬂ ik-(r—ro)
Gij(r,ro) = @) /}R3 e (5” Nton k2 >e dk

The first integral involves fRS L ek dk. This is known to yield:

k2
1 _ 1
7 {k|2 (r) = 4r
1

Let’s rigorously derive the Fourier transform of # in three dimensions. The inverse Fourier transform of f k) = e is:

L 1 1 eikr
r) = f_ = r) = — Ty dk
0=} 0= s L e
Here, k and r are three-dimensional vectors. The function ﬁ is spherically symmetric in k-space. Therefore, we can simplify the
problem by transforming to spherical coordinates. In three dimensions, the spherical coordinates are:

k = (ky,ky, k.) = (ksinf cos ¢, ksin 0 sin ¢, k cos 6)

where: k = |k|, 0 is the polar angle (angle with the z-axis), ¢ is the azimuthal angle (angle in the zy-plane). The volume element in
spherical coordinates is dk = k2 sin @ dk df d¢. The integral becomes:

1 o pm p2m eikr cos 0
f(r) = W/ / / Tk’Qsin@dq/)dekz
0 0 0

Here, r = |r| and without loss of generality, we have aligned r along the z-axis, so k - r = kr cos§. Simplifying the integrand:

1 e’} T 27 .
f(r) = e / / / eFreosOgin 0 dep df dk
m 0 o Jo

The integral over ¢ is straightforward fo% d¢ = 2m. This simplifies the expression to:

1 oo s .
flr)= — e*reosOgin 0 df dk
@2m)% Jo Jo

Next, consider the integral over the polar angle 6:

/ eikr cos 0 sin 6 do
0
Let u = cos @, hence du = —sin 0 df, and the limits change from 6 = 0 to § = 7 correspond to u =1 to u = —1:
T -1 r

/ ezkr cos 0 sinfdo = / ezkru(idu) — / ezkrudu

0 1 -1
This is a standard integral fil etkridy = 25%5’“) Thus, the expression for f(r) becomes:

1 I
f(r) = W . Sln(k'f’) dk

Finally, we evaluate the integral over k:

/ sin(kr) g
0 k

2
Thus:
1 ™ 1
T =505 3 = Tar
The inverse Fourier transform of k% is:
1 1
F1— =
0=
So, the first integral contributes:
1 9%
wAanr



The second integral involves fR3 k;ff’ e®r dk. The Fourier transform of kik;/ k* gives:

[ g ()t
rs k* r;0r; \ |r| 7D

Combining the results, the Green’s function for an isotropic elastic medium is:

1 riT;
Gij(r,ro) = % [(3 — 4V)(57;j + TQJ}

where r = |r—r¢| and v is Poisson’s ratio. This derivation rigorously follows from the Navier-Cauchy equations, through the application
of Fourier transforms, detailed inversion of the resulting matrix in Fourier space, and evaluation of inverse Fourier transforms. The
final Green’s function describes the displacement field due to a point force in an infinite isotropic elastic medium.

6 Displacement due to Spontaneous Change of Form of Inclusion

The Displacement at r due to point force F; at r’ is (Love 1927)

_ 1 B 1 F 0
Cdrplr—r’|  167u(l — o) 00,

Ui(r — 1)

v —r’|

which is Equation (2.5) of Eshelby’s classic paper 1957. Note that we have earlier derived

6,‘]‘ .’L‘i.’l?j

dzj(dz;(Jr —r’|)) = P R

The Displacement (Love 1927) at r due to point force F; at r’ can be therefore written as

=) = e~ T = P~ o)
= Uil =) = ﬁ fj(sﬁﬂ - 16##(11 —0) il r(sjir’l - Ir?ij’\‘q’)
= Uilr = F) = e e T ] A=) e
=Ui(r—1°) = 167w1<? 5 (3|;ili)vfﬂ 167w(ll 5 ‘rgy_igi.j,P
= |Vile =) = 167r,u1(? - a)((i—i(’f) gt |rail;]’|3)

which is Equation (2.14) of Eshelby’s classic paper 1957. There are multiple ways to do the surface integral over S of the above-boxed
quantity. We shall mention 2 different methods in this article

6.1 Method 1: Simple Method using only Gauss Divergence Theorem

In Stage III, we apply a force distribution F; = pfknk over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion). The displacement impressed on the material in stage I1I is

uf = / Ui(r —r*)dS
S

c _ Fj (3—40’) N LUZ'ZL'j
v /s(167ru(1 —a)( r—r’| it )9

1 (3—4o0) ;T
C _ . . Ko
U= 16mu(l — o) /SF]( r’| i r— Jds

= U

1 (3 —4o0) ;T
c T iTj
=|u’ = - 85 + as
b 167u(1 — o) /spjk( r—r’| 7" \r—r’|3)nk

Let’s proceed with a rigorous application of the Gauss Divergence Theorem to compute the given surface integral. We need to evaluate
the surface integral:
1 3—4o TjT;
c T jxi
U = ————— ; — ] 6ij ng dS
" L6mu(l o) /Spjk (( r ) G ) )

. p]Tk is the stress tensor, which is constant throughout the volume.

where:

e 1y is the k-th component of the unit normal vector to the surface S.

® §;; is the Kronecker delta.

o r = \/z? + 23 + 23 is the radial distance from the origin.

Let us now apply the Gauss Divergence Theorem. The Gauss Divergence Theorem states:

/Fknde:/ %dv
S v Oz,

where F}, is a vector field. However, in this problem, we have a tensor field Fj; defined as:

3—4do TiX;
Fik:pka<( " >57;j+ 7{3)
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The surface integral becomes:

I:/Fiknde
S

Using the Gauss Divergence Theorem for tensor fields, this surface integral can be converted into a volume integral:

F;

1= [ % gy
v Oz,

We need to compute the divergence of the Tensor Field %I; :

8Fik - i . 3—4do 5 + TjTq
Or, Oz Pik r * r3

OF; r 0 3—4do T,
= Sy — —_— 52 J
Oxy, pjk@xk (( r ) it r3 >

Let’s differentiate each term of the above-mentioned boxed equation. The differentiation of the first term shall be

9 3_405.. _5..i 3—4do
oz, T ST Y 9z r

O (1Y _ =
Oxp \r ) 13

5__i (3—40> :_5i_xk(3—40)

1,
T Oz, r J r3

Since pka is constant, it can be factored out:

Now note that we have

Therefore we can write

The differentiation of the second term shall be

7 ()

9 <%xﬂ__@ﬁqu+ 0 (%)

v — T
Oz, \ 13 Oz, 13 Tz \r3

This expands using the product rule:

oz
oz

Since = 4,1, the above equation can be written as

5y () =oi g ()

Note that for the second term of the above-equation we can write

jl(fg._éﬁ g ik
dx, \r3/) 13 rd
Thus, the divergence of the tensor field Fj; becomes:

OF;;, T k(3 — 4o) T Oik TiTk
8xk :pjk (—(5”7434‘6]]67"3"‘1& T73_3

The surface integral now transforms into a volume integral:

1 z,(3 — 40) T 8; T

C T k i ik Lk
= | Pip | 0 ——"F 0= t ;| = — dv
Ui = Ton a a)/ Jk( J 3 k3 T (7,3 3 5 ))

Now note that the above volume integral can be written as
)) av

1 2 (4 — 4o) x x; i ;X
C_ T el NRLANTY SRRSO L Sl
u; = T6m (1 — o) /ijk (—6” 3 + 045 3 —l—(5jkT3 + (r3 3—

,
= ul = *m /Vpgrkf;ij mk(i; il av + 167TM(11 — ) /‘/P]'Tk(fsij% + 5jk% + 5ik% - Sxiigxk)dv
= uf = —m /sz;ﬂk “ ;340) av + 167#(11 =) /Vpgrk(&j% + 5jk% + &k% - 3%?7;%)dv
= uf = —m /Vpgl;lk (4 ;240) dv + 167ru(11 2 /ijTk(cS,-j?lj; + 5jk% + 5%% _ 3liigélk)dv
—uC = _m /V n (4 ;240) o 1GW(11 — /V o (8ijlk + Ol t;sikzj = 3Lljly) 40
= uf = —m /V(piklk +pil5) @ ;220) av + 167T,u(11 =) /ijTk (O + Oyl tjmlj — 3liljlk)dV
|G = _m /V(pﬁlk +pgpjlj)z(lrg o) o 167m(11 — /Vp;pk (850K + Skl ;@kzj — 3lizjzk)dv

Due to balance of the angular momentum, the transformation stress matrix p” is symmetric, i.e

T T
Pij = Dj;
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Therefore we can write

7 Oijle + 0jicli + Sixly — 3Lil;li)

1
; d
167u(l — o) /ijk r2 v

1 2(1-o0)
C T T
c_ - T Yk Sl ¢ Ve
Ui 167 ,u(l O) /\/ (plk k p-“ ]) r2

Now we can write
T; _ T
Pkl = ij‘sijlk

pjTilj :p]Tk(;iklj

Therefore we can write

1 2(1 70’) 1 (5zlk + 0ipl; + Oinl; 73lzllk)
uzc = _71671'/1,(1 — U) /;/(pfk(sijlk +p?k5iklj) 5 dV + 167TM(1 — U) /fok J J 3 J k) v
1 2(1 70) 1 (6zlk+5klz+5zkl 73llllk)
C T T J J J J
. L (85505 + Oigl dv ; av
T T T i6ma(i— o) /vpf’f( et Ol S o) /Vp 2

Since pJTk is constant inside the volume V', we can take jz)JT,C outside the volume integral

T T
C Pik / s 2(1 — J) Pik / (5ijlk + 5jkli + 5iklj — 3liljlk)
R LEy iy iy av av
U 16mp(l — o) V( sl & Dikly) 2 + 16mp(l — o) Jy r2
O i / ~2(8ijli + 8urdy) (1 — 0) + (Bisle + Sl + Sikly — Blilyle)
C 16mp(l—o) Jy r2
L Pk / (sl + Oinly)(1 = 20) = (Bisl + Sikly) + (Biglh + Syli + Oixly = 3lilsla) o,
Y 16mp(l—o) Jy r2

WG Pik / —(Bigli + dinly) (1 — 20) — Qigth — Guaet + Segth + Ojueli + Sarty — 3lilly .,
1% 2

b= 167p(l — o)

T
ooyl = L / — (Gl + dinly) (1 = 20) + Gjuls — Sliljlk
16mp(l —0o) Jyv r2
T
N UZC _ Pik / (1 — 20)(5ijlk + 51klj) — 5jkl’L + 3l7ljlk av
16rp(l — o) Jy r?

which is the first part of the Equation (2.15) of Eshelby’s Classic Paper.

6.2 Method 2: Eshelby’s Method of using the Gauss Divergence Theorem and a special variation of
Stokes’s theorem

Note the following 2 important identities in spherical co-ordiantes (r, 8, ¢)

19,0 1 0 P 1 o2 9
2,0 = 2 (2 = (sinf= - = i
V=5 e+ s B0 )t sz ) = ;

109,,0 1 0 1

2.3 __ Y3 (e (3
VT _r25‘r(r 5‘r(r ))+r2sin080(8m9 () +

The above-mentioned 2 identities can be written in cartesian co-ordinates as

T =12
r2sin? § 062 (r) "

o2 2

r) =
0x;0x r

82

3y _
D107 (r°) =12r

The Displacement (Love 1927) at r due to point force F; at r’ can be therefore written as

)R R s )
St " 0r01 192p(1 — o)~ 7 Oz ;0x; * Ox,0x
= Ui(r—r’) = %Fz 82;:61 (r) — 1927“;1 ~ ) F; 3%85?33@3@1 (r®
= Ui(r —1’) = %Fﬂji 82;3:1 (r) — 1927”;1 — o) F; axjaija:laxl r*
= |Ui(r — 1) = mﬂ'(%(l - U)aﬂle’l(r>6ji - 590]'3(2;15931(7"3»

Now note that we have F; = pkank. Therefore the above-boxed identity can be written as

02 o
= Ui(r — I") m('f‘)(sjﬂ’lk —

(r*)n)

Ph(24(1 - )

1
B 1927ru(1 — o) 0z ;0,202

In Stage III, we apply a force distribution F; = p;fpknk over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion). The displacement impressed on the material in stage IIT is

uf = / U;(r —r’)dS
S
Substituting the equation of displacement U;(r — r’) that we got earlier in the above equation we get

02 o* 3
(Mg — ———
0x;0x; (r)djims 0z ;0,707 (r

ulc = pka(24(1 —0) Yng))dS

1
/s<mm1—a>
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= |ud =

c pjk(Sﬂ

8T

pjk 3
/81;;8@ )ds - 19270(1 — o) / 3x38x1x18xl(r )ng)dS

4

We need to simplify the 2 integrals fs(#gm(r)nk)dkg and fs(m(rg’)nk)d& For this, we use the Gauss Divergence Theorem

twice once to convert the surface integral to volume integral and then convert the volume integral back again to surface integral but
2

with a different surface vector. The integral |, S(ﬁ(r)n@d&' can be written as

2 0
/S (G (r))dS = /V e

a4

82

~ | Lo

8x18m1 dS / axkawl( )n )ds

The integral fs(m(rg’)nk)ds can be written as
J K3

/S(axjﬁximlaxl (r*)ny)dS = /v

=

Tm(axjaxixlaml (r)av = /V %(ijaxixkaxl( ) B S(axjﬁxixkﬁxl(

4
0 r3))dV

84
| G
s 0X;0%;

1,07 r)ne)dS = /S(axjaxixkﬁxl (r)nu)ds

From the above 2 boxed equations, we can write the displacement u{ as

84

C pjk;(sjz

ot
pjk (r3)nl)d5’

7

8

/S O0x10xy, (r)ni)ds - 1927u(1 — o) 8%81@13@

Note that we earlier derived the following 2 identities

[

47
(g (r))mdS = —2 /O P (1)ldas(1)

82
8Iia$j

4
(/ dxk(dxl(r3))nld5) = 12/ r(l)(—(liéjk + lkdﬂ + 1]6;“) + 3lkljlz)dw(l)
S 0

Substituting the above 2 identities in the equation for the displacement uz-c, we get

uo = Pl 2/0“ r()lduw(1)) —

8T

pf;@
1927p(l — o

83:163:1( 8%1 8Ik8$l / 8$k8xl TL[ S

r3)n;)dS

(12 /47r T(l)(—(liéjk + lk(Sji + ljé]ﬂ) + 3lkljli)dw(1>)
) Jo

ka5j1 4 ka 47
= uZC =2 (/ T(l)lkdw<1)> — %(/ ’r(l)(—(liéjk + lk(Sji + ljé]ﬂ‘> + 3l}€ljli)dw(1))
0 0

4T

16mp(l — o

16mp(l —o

¢ — —71);1]; 47r7" — g ) —
= | = 1 / (DAL — o)lide(l))

p?k
16mp(l —o

4
(/ P () (=S5 + 165i + 1 60e) + 31l 1) das(1)
) Jo

Since pk. is constant throughout the volume of the inclusion, we can take p} inside of the integral. Therefore we have

o 1 4 T p]Tk 4m
o 1 4m r T p_?k: 4
=|uy = —m(/o r()2(1 — o) (pigli + pijl;)dw(l)) — m(/o r()(=lidjk + Ubji + 1j0ki) + 3lil;li)dw(1))

Due to balance of the angular momentum, the transformation stress matrix p? is symmetric, i.e

pij =15
Therefore we can write
B 1 ar A ar
= U = —m(/o r(D2(1 — o) (pile + il )dw(1l)) — m(/o r((= ik + Iebji + 1j0ki) + 3lljli)dw (1))

Now we can write

Therefore we can write

Pile = Plp0isle

pJTilj = pﬁ&kl]‘

S uf = —W(/f F)2(1 = 0) (58351 + plyGirds (1)) — Wﬁ’“a)(/f F)(= (L + Ui + k) + 3Ll L) deo(1))
. P, dn T dn
= uj = _m(/o r(D2(1 = o) (0s5lk + dikl;)dw (1)) — m(/o r(W(=(lidjr + ledji + 10k:) + 3liljli)dw (1))
o pka 4
- ul = 167r,u(1—o)/0 P = ) G150 + ) + (—(adsn + lebjs + L) + 3lsla))deo(1)

T
Pjk

4
= uf = _m/ r()((1 = 20)(8i5lk + dikly) + (Segti + dardy) — (Lidjk + Lebgi + 1;877) + 3l 151:)dw(1)
- 0

=uf =—

K3

T
Pk

16mp(l — o

) /47r r(D((X = 20) (5l + dinly) — djnli + 3lil;li)dw(l)
0
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To convert this into volume integral we note that the incremental solid angle is related to the incremental volume by the following

relation
r(1)dw(1) :/;3;2

Therefore the equation for displacement uiC can be written as

T
- uc o pjk / ((1 - 20)((2]1]@ + 5iklj) — 5jkli + SZlill)dV
14

CT 16mu(l — o) r(1)2

which is the first part of the Equation (2.15) of Eshelby’s Classic Paper. To derive Equation (3.1) and also the second part of the
Equation (2.15), we need to first state Hooke’s law

p]Tk = )\ez;méjk + ZMG}L

Substituting the above equation into the equation of displacement ulc that we derived earlier we get

(N Oji + 2uef) 47
uic = — 167‘(‘/1(1 0_) gk / T(l)((l — 20)(5z]lk + 5iklj) — (Sjkll + 3lkljll)dw(l)
- 0
1 47
=|uf = “Terai o) / r()((1 = 20)(Aef,n 0k + 2p€51.) (8ijli + Sinls) — (Aefumin + 20ty )0ikli + 3(Nef 65k + 2pel; )il ;) dw (1)
- 0

We can simplify the first term of the integrand in the above equation as
T(l)(l — 20‘)()\677;Lm5jk + QMG?k)((Sijlk + (Siklj) = 7“(1)(1 - 20)(A€?nm5jk6ijlk + 2N€?k5ijlk + )\emméjkéiklj + 2#6}}651‘1@[]‘)

=r)(1 - 20’)(/\6%7715]% + 2,ueka)(5ijlk + dily) =r()(1 - 20)(Aeﬁm5iklk + 2uez,;lk + /\eﬁm(Sjilj + 2p€5l5)
=r)(1 - 20)()\e£m5jk + 2,ue;‘-rk)(5ijlk + 6il;) =r()(1 - 20)()\e,:clmli + 2,ue;frklk + )\eZLmli + 2/16;‘-Filj)

= |r()(1 - 2(7)()\e£lm5jg€ + 2uefk)(5ijlk +ily) =r()(1 - 20)(2)\eﬁmli + Z,u(ez;glk + e};lj))

Similarly the second term of the integrand in the above equation can be simplified as
r()emmdn + 20e5)05kls = (D) (Nep,n 0k jnli + 2ue],81L:)

= r(D)(Aepndik + 2ue5;) 050l = (DAl 8550 + 2uefl:)

= r(l)()\e,Tnm(Sjk + QMeJ»Tk)éjkli = r(1)(3Xel 1; + 2uel,ly)

Similarly the third term of the integrand in the above equation can be simplified as
r(D) (B mik + 2ue)lklili) = r()(3XepnOiuliljli + 6pellilsl;)
T(l)(3(>\6mm5]k + 2M€]k)lkljll) = r(l)(S)\emmljljll + 6ﬂ6jklkljli)

. TiXs 2 . .
Since ljl; = =272 = == = r, we can write the above equation as

] () (3 Aemmbjk + 20€6)klil) = 7(0) (3Aemmli + 61 jklil;l;)

Therefore we can write the equation of displacement uzc that we derived earlier as

1 47
e} T T T T T T T
= U 1671'/1,(1 — 0') /0 T( )(( 0)( )‘emml + :u(ezklk + e]zl])) (3>‘emm + :uekkl ) + (3)‘emml + 6:ue]klk Jl ))dw( )
47
= uf = 167w(11 - / r(D((1 = 20) (e, li + 2p(efile + €fil;)) — 3Aeln T — 2uegyli + 3der Ty + 6pellil;li ) dw(l)
- 0
1 4
c T T T T T
=uy = — T67p(1— o) /0 r(D((1 = 20)(2Aep,, 1) + 2u(1 = 20) (el + €j;l5) — 2peggli + 6pejlil;li)dw(l)

Now note that we have el 1; = e}, l;. Therefore we can write the above equation as

1 A
=uf = “Terp(i—o) /0 r()(2el 1M1 = 20) — p) + 2u(1 — 20) (eklp + eﬁlj) + Guefklkljli)dw(l)

Now note that we can express the first lame parameter \ in terms of Poisson’s ratio ¢ and the second lame parameter y as

2uo

‘20

Therefore we can write
= A1 —-20) =2uc

= AN1-20)—p=2u0 —p=p20—1)

=>‘)\(1—20)—u:,u(20—1)‘

Therefore we can write the equation for displacement uf as

1 4m
(O T - - i) . T 111
= u; = T6mi(1— o) /0 (D)2, lip(20 — 1) 4+ 2u(1 = 20) (el + €j;l5) + 6pejylil;li)dw(l)
1 i T T T T
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Now note that we have el 1; = ekaéjkli, e;fklk = ekaéijlk, e]Tilj = e;fk(mlj. Therefore we can write the equation for displacement uzc as

1 47\'
=|uf = s / r()(—el05li(1 — 20) + (1 — 20) (€105l + €10inl;) + Belliljli)dw (1)
- 0

Note that e]Tk is constant throughout the inclusion volume. Therefore we take e;;, outside of the integral

T 4m
€L
= ulc = —m/o T(l)(—éjkli(l —20) 4 (1 — 20’)(5ijlk + ij(siklj) + 3lkljli)dw(1)
c < "
=|u; = —m/o r(1)((1 = 20) (035l + €x0irl; — djili) + 3Lkl l;)dw(l)

which is the Equation (3.1) of Eshelby’s Classic Paper. To convert this into volume integral we note that the incremental solid
angle is related to the incremental volume by the following relation

r(1)dw(1) :/;3;2

Therefore the equation for displacement uiC can be written as

c_ i / (1 = 20)(Gijli + ejwinly — jnli) + 3llila)
¢
174

T T 'R0 ()2

which is the second part of the Equation (2.15) of Eshelby’s Classic Paper.

da(day(da; (day(r)))) = 3 (5”:5’“”” — 5 Dt i 5ﬂfg’”j’“ i ‘5’“””]’)

7 Strain due to Spontaneous Change of Form of Inclusion

In the previous section, we stated that the Displacement at r due to point force F; at r’ is (Love 1927)

1K 1 P 0?
Cdmplr -1’ 167pu(l — o) Ox,;07;

Ui(r —17) |r — 1’|

In Stage III, we apply a force distribution F; = p]Tkn;€ over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion). The displacement impressed on the material in stage 11T is

1 p'kaij 1 82

c J T

=>u;, = — dS — —— [ pjr=——=—|r —r’|nidS
Ui drp Jg |r — r’\nk 167u(1 — o) /S Jkaa:jaxih' ol

Since pfk is constant throughout the surface S of the inclusion we can take pka outside the integral. Therefore we can write

T T 2
c _ Pi 1 Dik 0
= u; = ————ngdS — —1r’|ngdS
Ui 4 i /S |r — r’|mc 16mpu(l — o) Jg 0z,;0x; I =l

We have earlier proved using the Gauss Divergence theorem that the 2 integrals can be written as

1 0 A%
/g For S = ‘aTsk(/v o]

0 o3 93
—-r G o ___ 9 o
s 91,01, v —r’|ngdS D, 0mes (/V v —r’|dV) R (/V Ir —r’|dV)

Therefore the displacement impressed on the material in stage III can be written as

Pk Py
c J ik
=gl = —"9° o ]
U ol — o) VT g O
where iV

oo [

v |r—r’|
o= / [r — r’|dV
%

are the ordinary Newtonian potential and the biharmonic potential of attracting matter of unit density filling the volume V' bounded
by S. We also proved earlier that
V2 =20
Vi — 272 — —8m, insid'e S
0, outside S

The strain in the material on stage III can be written as

1,9 P vk 0 Pjk Pl
C_ Z( L (___ik .. Lk v J P
T4 T g Oz ( 16mp(l — o) Vi 47T;L¢’k) + ox; ( 167p(l — o) Vi 47r,u¢’k))
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C Pji Pi P
= ey = J .. ) — (2,4 _ 3 .
%l = 3ol — o) (Vijrr + ki) gy Ok Sﬂﬂﬁb,kz

P

c J

—N = —
€il 167 }1(1 — (7)

WV ikl —

T T
Dig D ,
S ® ki s D ki

Therefore the dilatation in the material shall be

T
B‘C:p]%kw“k'—i¢k‘
v 16mu(l—o) YT 8 87r/¢

T
C Djk

oL
€ = T6mp(l— o) )¢ugk 4N¢ki

Now we know that

V2 = 2¢
2

0
= &mamlw h 2¢

62 62 32
=2
= 0z 0z, (&riaxi ¥) 0x ;0 ¢
84 82

= 8x,8x28z]8ka - 28Ijaxk¢

- [Fum=7]

Therefore the dilatation in the material shall be

T T
c_ Pjk Pjk

T
o Pk g L
“i = 16mp(l — o) Vi 47m¢’1“ 8mu(l—o) 0.1k

Due to the balance of angular momentum, the stress tensor is symmetric i.e. pi = p{l Therefore we can write the above equation as

pﬁ-
8ru(l — o)

Repeated indices 4, k on the second term can be given in any other name like k, j. Therefore we can write the above equation as

. pkz
¢7Jk7 47TIU, ¢ ki

_ Pk e Pk g
87r,u(1fa)¢"7’C 47r,u¢’kl

ka ka ka
C J J J
C— Ik IR = TIR 4 (1—2(1—
€ii 87’1'/1,(1 — O') ¢1]k 47T/J,¢"]k 87‘(,&(1 — 0_) ¢Jk( ( J))
T T T
c Djk Pjk Pjik
Cii 8ru(l — o) 0.4k 4 u¢’Jk 8mu(l U)¢jk( o)
T
Pk
C J
=leb = — 2(1—2
6” 87T,LL(1 )(bdk( U)

We have earlier derived that the strain in the material in stage III shall be

Py p? P

c J ik Pk

= ¢ g & b 1

i 167u(1 — o) Wijh 8T o 8mp e

Now note that for isotropic materials, we have

p]Tk = )\eTéjk + 2ue]Tk,piTk = XeT'8iy, + 2uel, ph. = NeT oy, + 2puel,

Substituting the above relations in the equation for the strain in the material in stage III shall be

o (Nel'é, + Qll@fk) . (Nel'8p + 2ueiT,€)¢ . (Nel'dy, + 2”617,;)¢ g
i 167p(1 — o) " 8T ’ 8T e
AeTs; 2pel AeT6; 2pel AeT'§ 2uel
c_ (N 0%k _ A%k oy ik Mzk o ZHCE
=€ = (167T/L(1 — J)w ijkl + 167T,LL(]. — O’) wﬂjk}l) ( 8’/'1',& ¢,k ¢ ) ( 87T,LL ¢,/€z + 87T,LL ¢7kz)
xeT T el el el
i zk Ik
=€y = (= V,ijj i i+ = . i
€l (167TM(1—U)1/}’ ”l+87r( )1/) ki) — (8 qu i1+ ¢kl) (87m¢,l + 47T¢,k)
AeT T el el el el
c_ L Ne oy Gk Clk 4
= €1 = (167T}L(1 >w]jll + ST ( )¢ ij}l) (8 M(b i+ 87Tlu¢’ll) (477 Cb,kl + Ar (b,kz)
Now we know that "l/},jjil = 2¢ ;1 | and ‘ @it = ¢ |, we can therefore the equation as

el el el el el
c_ _ ik N Gk ko
== (87ru(1 —0) Pt + 8n(1—o0) Vast) 47w¢’ll (47r Pl 47 O.ki)
el el el el el
C_ (2% sy (R Sl gk -
~ (87ru(1 —0) O.i 47Tu¢’ll) (47r ) 4m @ ki 8m(l — U)Qp’”kl))
AeT el €T
C (28 pa(1-201-0))) — (L : :
= e = (gt =201 = 0)) ~ (o + B — )
A20 —1)eT el el el
C _ (2\&Y ) ( ik Ik o J .
= ey = ( STl — o) Git) = (GO + 4 Pk 701 — o) $.ijkt))
A2 —1)eT eT
C _ (A\eY )y zk
=|€q = ( 87T,u(1 7 0) ¢,ll) ( ¢ + (b ki — ( )'(/Jz]kl))
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If eT is a pure dilatation 1eT6 then we have

YR

1 1 1
e, = §€T5ik7€ﬁ = §€T5l1megrk = §6T5jk
Therefore the above boxed equation can be written as
A(20 —1)eT el el oy eTéin
c _ N ik o jk .
i = ( 8rpu(l— o) 1) = (g O+ o i 247 (1 )1/””“))
A(20 —1)eT el el el
¢ _ . _ o
= en = 87u(l— o) Git) = (gpdu+ 1500 24m(1 )w’””))
Since ¢ ;; = ¢4, we can write the above equation as
A20 —1)eT el el
c
=6l = (5L —0a)— (—ba— ————jji
€l ( 87T,U/(1—O') (b,l) (67r¢7l 2471_( )1,11]] l))
Now we know that |1 ;i = 2¢ 4 |, we can therefore the above equation as
A(20 —1)eT el el
c
= = (55—~ 0y g——a,
€il ( 871'/1/(1 — 0') ¢7 l) (671'(;5 il — 127_[_(1 — 0_) QS, l))
A(20 —1) 1 1
c T
= e = RS [ (S — i
G ((87r,u(1 - o’)) (67T 127(1 — o) N
3A20 —1)—4u(l —0)+2 3A20 —1) —2u+ 4uoc
= 65:(( ( ) M( ) ‘LL))ETQZSJ'[:(( ( ) 1% % ))GT(ZS,”

247p(1 — o) 247u(1 — o)

Now the first lame constant A can be written in terms of second lame constant g and poisson’s ratio o as

_ 2uc
1—20

= A20 —1) = —2uc
= 3A(20 — 1) = —6uc
= 3\(20 — 1) = 2u+4po = —6puc — 2u + dpo = —2pu — 2uc = —2u(l + o)

3M20 —1) —2p+4po _ 2u(l+o0)
247p(1 — o)  24mp(l - o)
N 3M20 —1) —2u+4poc _ (1+40)
247p(1 — o) - 127(1 - o)

Therefore the strain eg an be written as

(3M\(20 — 1) — 4u(1 — o) + 2)
247p(l — o)

(3A\(20 — 1) — 2u + 4puo)
247p(1 — o)

(1+0)
127(1 — o)

= e =( el =— eTd

el = (

1 (1+0)
C
= leb =

LT T 31— o)

T

8 Discontinuities across inclusion interface

The second derivative of a scalar function U in a given direction, with the direction specified by a unit vector n = (n;, nj, nk), can be
calculated by applying the directional derivative operator twice in that direction. Given that the direction vector is n = nzz—l—nj j —|—nkk
the first derivative of U in the direction of n is given by:

ou ou ou ou

o "ow Moz, T ™oy

To find the second derivative, we take the derivative of the above expression again in the direction of n:

U 9 aUMaUMiU
on? ~ on \"or; o o

Applying the directional derivative operator again:

82—U*n- n-a2U+nv FU +n FU +n; | ny; PU Jrn-aZUJrn FU +ng | n; P +n; U +n Al
onz '\ 0a? ! 0x;0x; *9x;0xs, T\ 0z 0, J@m? k@xj@a:k M\ 0x oz, ! 021,07 kamz

This can be simplified as:

Zznp q@x Bx

p=1g¢=1

Where p and ¢ run over the components 4, j, k. This expression gives the second derivative of the scalar function U in the direction
of the vector n. In indicial notation, the above formula can be written as

0*U U e
on2 0z, 0z v

To prove the theorem, we proceed step by step, ensuring that each part of the proof is mathematically rigorous. The theorem can be
formally stated as:
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Theorem (Poincaré 1899): Let U(r) be a potential function that satisfies Poisson’s equation in three-dimensional space,

| V2U(x) = —mp(r)

where p(r) is the mass density. If there is a surface S with normal n across which the density p(r) undergoes a discontinuity Ap, then
the second derivatives of the potential U(r) undergo a jump discontinuity given by

0?U
= —dmnin;Ap,
|:(9.%'1(9$j:| T 2P

where the bracket [-] denotes the difference in the second derivative as one crosses the surface S. Given Poisson’s equation:
V2U(r) = —4mp(r),

where p(r) is the mass density distribution, the potential U(r) is related to the density p(r) by the integral:

\r—r’l

Suppose that the density p(r) has a discontinuity across a surface S. Let p* and p~ denote the density values on either side of the
surface. The discontinuity in p is given by:

Ap=pt—p~.
Consider the surface S with a unit normal vector n at each point. We need to investigate the behavior of the second derivatives of
U(r) as r crosses the surface S. The second derivative of U(r) in the direction n;n; is:

U _ 0 (ou
83:1-896]- o axj axl '
To find the jump condition, we apply the divergence theorem over a small pillbox-shaped volume V that straddles the surface S.
The pillbox has faces parallel and perpendicular to the surface S, with height € in the direction normal to S. Integrating Poisson’s

equation over V, we have:
/ VU dV = —47r/ pdV
v v

Using the divergence theorem, the left-hand side can be rewritten as:

/ ViU dV = VU dA

where dA is the area element on the boundary 9V of the volume V. Let’s do the Evaluation on the Faces of the Pillbox. The
contribution to the surface integral comes from the faces of the pillbox parallel to the surface S. Let the area of these faces be A, and
the small height of the pillbox in the normal direction be e. Then, the surface integral is dominated by the contributions from the
faces perpendicular to n:
ou
% VU -dA=A [ ]
v on

where 2 % is the derivative of U in the direction of n. Let us find the Relation Between the Jump in Density and the Jump in the
Second Derivative. Now, consider the contribution of the jump in p to the integral:

+ —
/ pdV = Ac (”?) — AcAp.
Vv

{3(]} = —4m AeAp.
on

This leads to:

Simplifying, we obtain:

0*U

We have earlier proved that the second derivatives in arbitrary directions x; and x; are related to gig using the following relation
02U B 02U
on?  Ox;0x;

Therefore the above boxed equation can be written as:

0*U
= —dmnin; A
|:8l‘i8Ij:| TG ap

where n; and n; are the components of the normal vector to the surface S. We just proved the Poincare 1899 theorem which states
that the second derivatives of a potential function satisfying V2U = —4mp will have a jump

AU ;; = —4mApnin;

on crossing a surface with normal n,; across which there is a change of density Ap. Let us consider the Potential function U = ¢.
Note that V2U = V2¢ = —4r inside S and 0 outside S. There is a jump of density Ap = —1 across the surface S. Therefore we can
write using the Poincare 1899 theorem that

‘Qﬁ,ij (out) — ¢;;(in) = 4dmn;n; ‘

Let us consider the Potential function U = v ,;. Note that V2U = V21 ;; = 2¢;; = —4%(%). Therefore the Potential function
U = ;; satisfies V2U = —4mp with p = % There is a jump of density

Ap _ (Qb,ij (11’1) — ¢,ij (out)) _ 747Tninj _ 727%”].
2m 2m
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across the surface S. Therefore we can write using the Poincare 1899 theorem for the Potential function U = 1 ;; that

Y iiki(out) — @ i (in) = —4dnApngny = 8rn;njngny

= ’ Y ijr(out) — @ ik (in) = 8rnin ngng ‘

We have earlier derived that the strain in the material at stage III shall be

c ()\(20 —1)eT el T

) (R
A o) },i1) (47r b ki + ¢m ( )wljk‘l))

The trace of the strain tensor shall be

c_ AM20— 1)e” B el T
i = (m¢,u) - ( Pk + ¢ b S = )¢zgkz))
o AM20— 1)e” ) el T
i = (m%z) - ( P — S7(1 — )wukz))
Since | ¢r; = ¢, | and ‘ Yijki = Viijk = 205k |
c _ A(20 — l)eT B ez;c ‘ eTk ‘
i = (m%z) — (5 Gk — m%k))

Repeated indices 4, k in the second term can be renamed as j, k. Therefore we can write the equation as

o A20—1)eT o o
€ii = (m%i) - (;74’,]'1« - mﬁb,jk))
o A20 -1 1 1 _ A20—1)e" - 2(1-0)—1
€ii = (mQM) - ejrkﬂigk(% - (1 — J))) = ( 8tu(l — o) i) — ejrk(?,yk(m))
c_ AM2o—-1) N o, 1-20
=€ = (meTQM) 6%45,]1@(74“1 — 0))

Now the first lame constant A can be written in terms of second lame constant y and poisson’s ratio o as

_ 2po
1-20

= AN20—1) = —2uc
A20—1) 2uo B o

stu(l—o)  Bru(l—o)  4x(l—o0)

N AM20-1) o
8tu(l—o)  4n(l—o0)

Substituting the above equation in the trace of strain equation we get

1-20
47 (1 — o)

== i)

i ') — €).0 i )

We know that there is jump for both ¢ ;; and ¢ ;i (according to Poncaire’s 1899 Theorem). The jumps are

‘ A i = ¢ ii(out) — ¢ 4(in) = 47r‘

‘Aqﬁ,jk = ¢ ji(out) — ¢ ji(in) = 4mn;ny ‘

Substituting the above equations in the previous equation for the trace of strain we get

meT)(ﬁb,ii(OUt) = bii(in)) = ey (¢,x(0ut) — @ jx(in))(5 L-20

= ¢S (out) — e (in) = —( pr

)

. o 1—20
= | ef; (out) — eff (in) = —( el) — ejngmi( i

—0)

)

The strain tensor can be written in terms of hydrostatic and deviatoric components

1
T T 1 T
ejk = ge ij + ejk.

Substituting the above equation into the previous boxed equation we get

1

1-2
eg(out) — eg(in) =—( g eT) — (geTéjk +/ eka)njnk( e

(1-0)

)

1—-20
(1-0)
1-20 )T 1—-20

> eflout) = e i) =~ T = (g gy (o) ! hnyal )

@

)

= ¢S (out) — (i) = —(—7—eT) — (LeT5) wM%) S

30 el el 1-20. , 7 1—-20

- (1_0_) ?) - (?)((1_0_)) - ejknjnk((l_o,))

. el 3o 1-20, , 1 1-20
i R e R (e U e )




el 1+o, , o (1—20)

= ef (out) — e (in) = —?(1 — U) = ekt
We have earlier derived that the strain in the material at stage III shall be
A(20 — 1)eT el el i
C _ (2% I ) (Zik kg o IR
ein = ( 8l — o) b,it) (47T Prtt L Ok 70— o) Vijkt))

We know that there is jump for both ¢ ;i, ¢ ki, ¢ ri and ;5 (all 4 of them are according to Poncaire’s 1899 Theorem). The jumps are

‘ A¢ a1 = ¢ (out) — ¢ (in) = 4mnny ‘

‘ Agﬁ’kl = ¢’kl(0ut) — ¢7kl(ill) = 47rnknl ‘

\ A i = ¢ ri(out) — ¢ pi(in) = dmngn;

‘ A ik = ¢ ijri(out) — ¢ ik (in) = 8mnymjngny ‘

Therefore the jump in ef] shall be
T T

Acfj = e (out) — ¢ff (in) = (M(cb,u(out) — 6,a(in))) — (S£ (¢ p(out) — ¢ a(in)) + % (6 i (ont) — ¢ ki(in))
8ru(l — o) ' 4 ’ 4dr " '
eJTk .
+m(%jkl(out) — Y ijri(in)))
Substituting the boxed equations into the previous equations we get
A20-1) 1 el

c_ c c
Ae;; = e (out) — e; (in)

T T J
= ——"€e NN — € L.NEN; — ELNEN; + —————NN;iNEN
2:“(1 70) v ik Ik 7 (1 70) 2y

We have earlier derived that

A20—1) o
8ru(l —o)  4w(l—o0)
A20 —1) o
= = —
w(l—0)  (-0)
Therefore we have -
e
Aeg = eg(out) — eg(in) = —ﬁeTnml — e;f’,;nknl — e;",;nkni — ﬁnmjnkm

The strain tensor can be written in terms of hydrostatic and deviatoric components

1
T T 1T
€ = ge Oir, + ey,

1
T T /T
€l ge O+ ejy,

1
eka = geTéjk +/ 6;}6
Therefore we can write
. o 1 1 (zeT6; +" L)
Ae§ = e (out) — ef(in) = — = )eTnml — (geTéik + el ynpny — (geT(Slk +' el ynpn; + ?’(ljfa)]nmjnkm
c_ c o o T L7 /T L /T e"djn ‘eji
Ae;; = ey (out) —ej7 (in) = — = U)e ning = ge dikngny — e;pning — 3¢ dienin; — epngn; + mninjnknl + mmnjnknl
. o 1 1 el /eTk
Aeg = eiCl(out) - eg(m) = — 1=0) eTning — geTninl —! eﬁnknl - geTnmi —f eﬁnkni + mninjnjm + ﬁninjnknl
Ae§ = e§ (out) — ef(in) = — 7 eT'niny — 1eTrMLl el ngng — 1eTnln el npn; + Lnlng + inlnlnkm
il il il (1 —U) v 3 v ik 3 v Ik v 3(1 _0_) v (1 —O’) 1'%
AeC — € C T o 2 1 )T )T ‘ejk
e;] = e; (out) — e;7(in) = —e ninl(m 3 m) —"epniny — e ngn; + mnmjnknl
, 304+2(1-0)—1 ‘ely
Ae§ = €5 (out) — ef(in) = —eTninl(( 3((1 — 0)) )) el ngng —" el ngn; + ﬁjg)nmjnkm
c_ cC C (1+0) 1 ’ T r T 'ejk
Aej = e (out) — ej (in) = —me NgMy — €ipMEN — €NEN; + mni”jnkm
Now note that Aef] shall be
1 1
Ae§ = A(gecéil +'e§) = g(;ilAec + Ae§
We have earlier derived that Ae® shall be
T
Ae” = ej;(out) — e (in) = _3(1 — 0) = efknjnk(?)

Therefore Aeg shall be
1 el 140 1—20
Aefj = 352*1(—?(1 — J) = e?k”j”k(f)) + Alef]
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el 140 1—20

LT (-7
9 (1_0)511 ejkn]nkdzl(?)(l )

Aef = — )+ A'e§

Therefore we can write the change in the deviatoric component of the strain tensor A’e§ as

T
, c ¢ 1+o ;T 1-20
Alef] = Aefj + j(m)fsil + ejknjnkéil(m)
(1+40) ‘el el 140 1-20
= Ae§ = —meTnml —" el ngpng = ehngn; + ﬁja)nm]nkm + — 5 (1 Vou + e;‘-rknjnkéil(m)
(1+0) 1 17 1—20"'
=|Aef = —meT(”ml — 30u) ~" e = efnn; + ] € Lninngng + 300 e knnkdi

9 Elastic field in a Spherical and Ellipsoidal Inclusion

In this section, we shall analyze the elastic field due to the spontaneous change of form of an ellipsoidal inclusion within an isotropic
elastic solid. We assume that the equation of ellipsoid is
X2 vy? Zz?
2t tasl

Let’s assume a point inside the r’ = (z,y, z) within this ellipsoidal inclusion. We define the distance of the point r’ to the incremental
surface dS in the direction 1 = (I1,12,13) = (I,m, n) as r(1). Therefore r(1) is the positive root of

(@ + r(1)I)? N (y +r()m)? N (z +r()n)?

a? b2 c2 =1
(@2 +r(D)22 +22r(D)])  (y% +r1)?m? +2yr(hm) (22 +7r1)%n? + 22r()n)
= 5 + + =1
a b2 c2
2 m? n? zl  ym = zn R VL
= r(l)Q(a—2+b—2+C—2)+2r(1)(;+b—2+c—2)—(1—E—bj—g):o
Let us define the following quantities
2 m? n?
9=ty ta
xl  ym  zn
I=2*t,pta
22 g2 2
c=lrz e e
The above boxed equation can therefore be written as
é’gr(l)Q +2fr(l) —e= O‘
Therefore the solution of the above boxed equation shall be
(1) = —2f £ /4f2% + 4ge
= %
—f 2 e
=|r()= — %4/~ + -
W g 9P g
In the earlier section we derived that
T 41 T 4
=uf = fej%k/ r(D((1 = 20)(;lk + €x0il; — 05xl;) + 3lil;l;)dw(l) = 7%7%/ r(1)gik(1)dw(1)
! 8n(1—0) Jo ! / I / 8n(1—0) Jo /

Substituting the expression r(1) = %f + ,/L{;—; + g in the above equation we get

eT dr 2 eT dm (1 eT 4 2
= uf = —W’ig)/o (7f ; + )gijk(l)dw(l) = —Sﬂ(lﬂi 0)/0 fg;k( )dw(l) + Wi@/o ( Lz + §)gz‘jk(1)dw(1)

1?2 O]

Note that ( fglgz + eglg) is an even function. To prove that we just need to show that ( g(l)z + g( )y = ( FED e(_1)). That
is easy to show once we realize that f(-1) = —f(1), hence f(-1)2 = f(1)2. We can also easily show that g(-1) = ¢ e

—~
Q |~
~|=
— =
=
[V
lQ‘Cb
=
—=
e N?
N2
&
=
jol

hence g(-1)> = g(1)2. But g;;x(1) is an odd function. Note that Integration of the Product of an even function
odd function g;;,(1) shall always be zero. Therefore we can write

el 2 ” )
m/o ( g2 7 T )gzyk(l)dw(l)_o

Therefore we have

T 47
c_ Sk _fgijk(l) "
i = 8(1—0)/ dw(1)

N ulC / fgzjk )
1—0

Defining A\ = al—z, A2 = 73,A3 = 5 we can write f(1) as follows

:El ym  zn
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Therefore we can write the above boxed equation as

eT am ..
ulc _ jk / TmAmJijk (1) dw(1)
87(l—o0) J, g

Since the point r(1) = (z,y, z) inside the volume V is a fixed point, z,, can be taken out of the integral. Therefore, we can write the
above equation as

:pmeT 4m b (1
U? _ ik / mgwk( )dw(l)
8r(l—0) Jy g

xmeT 4 (1
uf = gk / Am gk )dw(l)
8r(l—o0) Jy g

The strain eg shall be therefore

eC — }(8/“10 8u’lc — §mle?k /47T )\'mgijk'(l) dW(l) + 6’””’6,}}‘5 /477 )‘mgl]k(l) dW(l)
T2 gy T By’ 16m(1—0) Jy g 167(1 — o) Jo g
el A (g (D) 4+ Asaran (1
= eg _ jk / ( lguk( ) + zgljk‘( ))dw(l)
167(1 — o) Jo g
We can write the relation between the constrained and stress-free strains in the inclusion as
65 = Siljke;‘-rk
where Sy;i is the Eshelby Tensor defined as
1 T (Ngijr (1) + Nigik (1)
Sitik = Y ey dw(l
lik 167(1 — o) /0 g w(l)
9.1 Spherical Inclusion
Let’s first compute the for a spherical inclusion where we have a =b = ¢
1 T (Ngin (D) + Xigin(1 1 T (Lgiie (D) + Ligie(l
Sijh = / (Mgije (D) + Aigujn( ))dw(l) _ / (Ligij (1) + Ligijn( ))dw(l)
167(1 — o) Jo g 167(1 — o) Jo a’g

Now note that we have
Gijk = (1 — 20—)(5ijlk + §1kl] — 5jklz') + 3llljlk

Jijk = (]. — 20)(5ljlk + 5lklj - 6jkll) + 3llljlk

Therefore we can write

1 /47r (ll((l — 20)(5ijlk + 5¢klj — 5jkli) + 3liljlk) + li((l — 20’)(5ljlk + 5lklj — §jkll) + 3llljlk))
167(1—0) Jo a’g

Siljk = dw(l)

1 /47T ((1 — 20)((5¢jlkll + (5ikljll + (Sljlkli + 6lkljli - Qéjklill) + 6liljlkll)
0

= SZ =
Lk 167(1 — o) a’g

dw(l)

~ Sy, —“_M(a--/4ﬂ Wl gty + 6, /% Ll oy + 6 -/477 Wi oty + 6 /477 Ll o) — 25, /M il o)
k= 167(1 — o) Y 0o a%*g " 0o a%*g Y 0o a%*g " 0o a%*g o 0o a%g

3 L
dw(l
+87r(1 —0) /0 a?g w(l)

Using the Routh Integrals we can reduce the solid angle integral f04ﬂ %dw(l) to simple integrals

/M Wlt o) = 5 /M i, (1) = 6(2 bc/w du
— = ——dw(l) = ma —
o a*g . o a’g M o (a®+u)A

47 e}
Ixly du
= /0 a2gdw( ) = ﬂabc/o @t u)h

~—

where A is given by the expression ) ) )
A= (a®+u)2(b* +u)2(® +u)?

For a spherical inclusion where we have a = b = ¢, the A shall be

A=(a®+u)?

/Oo du _/Oo du
o (@+wA  Jy (a2+u)2

du, we can use a standard technique for integrals of this form. Let’s set v = a®tan?(). Then,

Therefore the integral shall be

To solve the integral [~ m
du = 2a® tan(#) sec?(6) df. Substitute this into the integral:

7 du = - 2a” tan(6) sec?(0) df
/0 (a2 + u)5/2 “ /0 (a2 + a2 tan?(6))5/2 a* tan(#) sec”(6)

The term inside the integral simplifies as follows:

a*(1 + tan?(0)) = a*sec?(0)
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Thus, the integral becomes:

o 1 2 202 tan(f) sec?(0) % 202 tan(f) sec?(0) 2 (% tan(f) 2 (% 9
————du= df = o = = b = — 0 0)do
I e A e M 5 S = [ ) eost)

2 [0 2 [237°
S R A L
a® Ji a3 3], @ 3 3a?
The value of the integral is:
> 1 2
T du= -
/0 (a2 + u)5/2 T30
Therefore the solid angle integral f04ﬂ %dw(l) shall be
A 0o
——dw(l) = 0 (2wabe —_—
| ) = suterabe [

For spherical inclusion a = b = ¢, therefore the solid angle integral f047r %dw(l) shall be

47 00
lkll 3/ du 3 2 4
/0 andw() Ot (2ma o (a? +u)A) Oki(2ma 3a3) 3 Ok

Similarly, we shall have

am
lkli 47
dw(l) = —0k;
:>/0 aZg M 3"

am 7. 4
= / llll dw(l) = 1(51‘[
0

Using the Routh Integrals we can reduce the solid angle integral f047r l"szl’;ll dw(1) to simple integrals

4 l4

4m oo
l,‘l 'lkll 1 2 i 1 2 du
/o 7;29 dw(l) = 3 (0ikdjt + Sudj + dijou)a /0 7a4gdw(1) = 3 (Gikji + dudjn + dijdu)a (27“156/0 @+ uA U)QA)

N /47T lillljlk dw(l) _ 2(6ik5jl + 6i15jk + 5ij51k)7ra3bc /oo ( _ du
0 o @

a’g 3 + u)2A

where A is given by the expression . ) .
A= (a®+u)2 (b +u)2(c? +u)?

For a spherical inclusion where we have a = b = ¢, the A shall be

A=(a®+u)?

/°° du _/Oo du
o (a2 +u)2A o (a2 +u)?

To solve the integral fooo W du, we can follow a similar approach to the one used for the previous integral. Let u = a? tan®(6).

Then, du = 2a? tan(f) sec?(0) df. Substituting into the integral:

> 1 H 1
———du= - 2a” tan(f 2(0) do
/0 (a? + u)7/? “ /0 (a2 + a? tan?(9))7/2 a” tan(9) sec*(9)

The expression simplifies as follows:

Therefore the integral shall be

™

> 1 % 242 sec? 5 242 sec? 2 (% 2 (%
/ : du—/ a” tan(0) sec* () dG:/ a? tan(6) sec?(6) do — 7/ tari(ﬁ) do — g/ in(9) cos (6) do
0 0 0 0 0

a?4+u)7/2 7 (a2 sec2(0))7/2 a” sec”(6) ad sec®(0)

We can evaluate the integral fog sin(f) cos*(#) df using the substitution 2 = cos(#), dz = — sin(#) db:

The value of the integral is:

/Oodiuf 1 L2
o (a2 +u)2A Jy (a2+u)7/2  5ad

Therefore f047r lil;zl;ll dw(l) can be written as

41 3 00
Lililely 2(5ik5jl + 51'15]‘19 + 6ij(5;;9)7ra be / du 4mbe
—_ 1) = — (505 S5 - il
= /0 a2g dw( ) 3 . (@ tuA (5zk6]l + 6Zl6jk + 6115lk) 52
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For a spherical inclusion where we have a = b = ¢, therefore we have

47
Lililgl, 4m
~ /0 ;29 dw(l) = 7 (0idji + adjk + dijou)

Therefore the Eshelby Tensor S;;;;, shall be

- (1-20) ”/4” lily ' /4” Ll '/4” lils /4” Lili _ /4” Lily
S’ngk:_ 167(1 — o) ((5” ; ——dw(l) + ;% | a29dw(l)+51] ; 5 dw(l) + by, ; 5 w(l) 25]k @ w(l))

a’g ag a~g

3 Lililil
+87T(170’)/0 a29 dw(1)

(1-20) 4 4 1

= Sijk = m(éijékz + (M(Sﬂ i 5lj5m =4 6“66]2 25jk5il§) + m(éikéﬂ + 0 + 0ij0ur)
= Sujk = M(@jékl? + 5ik5j18§ — 5jk5118§) + ﬁ(&@jl + 03105 + 03501k
= Sk = M(@jskl S — Sjuba) + ﬁ_a)(amaﬂ + Gudsn + 8i500)
= Sagke = (G001 + 0ukd51) (((51(1_—23 * 10(11— ) 5”5%(10(11— o) ((51(1_—22)
= Sitji = (0i50m + 5ik5jl)(w) + 5il§jk(w)
= S = (61,60 + 6ik5jl)(%) - 52-15jk(:,)10057::))
o | Susn = (61560 + m%)(%) + 6iz6jk(%)

Notice that there is no term of a, b, ¢ in this equation. We can therefore say that the Eshelby tensor does not depend on the radius
of the spherical inclusion.

9.2 Ellipsoidal Inclusion

Let’s now compute the Eshelby tensor for Ellipsoidal Inclusion. The Sy111, 51122, S1133, S1212, S1112, S1223, S1232 components of the
Eshelby Tensor shall be

_ 1 T (Mg (D) + Aigin (1) M (g (D) + 1giia (1)
S = 167(1— o) /0 ; dw(l) = /0 = dw(1)
1 AT (Argraz (1) + Aigiaz(1)) 1 (1g122(1) + 1g122(1))
S1122 = dw(l) = dw(1)
1677(1 —0) /0 g /o ag
(A1g133(1) + A1g133(1)) T (1g133(1) + Lgrss(1))
S1133 = dw(l) = dw(1)
1677( —0) / g /0 aZg
T (Aagi12(1) + >\19212( ) (7 g112(1) + L ga12(1))
S1212 = / dw(1) :/ b a duw(1)
1 — 0 0 0 g
41
Sii1e = m /0 (Arg112() ; /\19112(1)) do(l) = = 11_ y /O (19112(1);;9112(1))dw(l)
L 1 4T (Nagr23(1) + A1gazs (1)) () — 1 1T (2 g123(1) + L ga2s(1)) "
S122s = 167(1 —cr)/o g duw(l) = 167(1 — a)/o g du(1)
_ 1 i (A2g132(1) + A1g232(1)) - 1 A (pz9132(1) + £9232(1))
S1232 = 67(1— o) /0 2 P & dw(l) = T67(1=0) /0 b ; dw(l)

Now note that we have
Gijk = (1 — 20)(5ijlk + (Si}glj — 5jkli) + 3Ziljlk

Therefore the components of the 3rd order tensor g111, 9112, 9122, 9123, 9132, 9223, 9232, 9133, 9212 shall be

g111 = (1 — 20)((511[1 + 01101 — (51111) + 31111l = (1 — 20’)11 + 3l:1)’

= g1 = (1-20)1+ 3%

gi12 = (1 — 20’)(51112 + 512l1 — 51211) + 3l%lg = (1 — 20’)[2 + 31%[2

= ‘ g112 = (1 —20)m + 31*m ‘

g122 = (1 — 20’)(512l2 + 12l9 — 622[1) + 3l1lsly = —(1 — 20’)[1 + 3[1[%

= ‘ gi2a = —(1 — 20)1 + 3Im? ‘

9123 = (1 — 20) (01203 + d13l2 — d23l1) + 3lilals = 3l1lal3

= [ 122 = 8lmn|

g132 = (1 — 20)(013l2 + d12l3 — d32l1) + 3l1l3le = 31213

- [ =8

g223 = (]. — 20’)(52213 + 52312 — 623l2) + 3121213 = (]. — 20’)[3 + 3[2[213

= ‘ ga23 = (1 —20)n + 3m?n ‘
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go3z = (1 — 20’)(62312 + 52213 — (532[2) + 3121312 = (1 — 20’)13 + 3121312

= ‘ 9232 = (1 — 20)n+ 3m?n ‘

g133 = (1 — 20’)((513[3 + 0133 — (533[1) + 3lil3l3 = —(1 — 20’)[1 + Slllg

:>‘9133 =—(1- 2(7)l+3ln2‘

g212 = (1 — 20’)((521l2 + 092l — 512l2) + 3lslily = (1 — 20’)[1 + 3l1l§

= | g1 = (1 - 20)1 + 3Im?|

Before we compute the components of the Eshelby Tensor we would like to state that all integrals of the form f04 T limd nkdj“’ shall
vanish if any one of the 7, j, k are odd, i.e we have

4

o d

/ Pmink & = 0 if any of the 4, j, k is odd
0 g

Therefore the S1111 components of the Eshelby Tensor shall be

1 M (1g111(1) + lgina (1)) 1 g 1 (L= 20043
) /0 dw(l) = /O dw(l) = /0 dw(1)

167(1 — o ag 87(l — o) ag 8r(1— o) ag

Sllll =

1 4m (1 _ 20_)[2 1 am 3[4
_ Dt [ —5-dw(l
= Si111 (1 — o) /0 aZg dw(l) + 87(l— o) /0 a2gdw( )

(1—20) /4“ 12 dw(1) N 3a? /4“ 1 dw(1)
8n(l—o0)Jy a® ¢ 8n(l—o0)Jy a* ¢

=[S1111 =

Therefore the Sy122 components of the Eshelby Tensor shall be

1 4 (1g192(1) + 1g122(1)) 1 4 1g192(1) 1 AT 1(—(1 = 20)1 + 3lm?)
= = dw(l) = dw(l
S1izz 167(1 — o) /0 a’g duw(1) 8n(1—o0) /0 a’g w(l) 87(l — o) /0 ag w(l)
1 4T (1 - 20)12 1 4T 312m2
= Suz 87(l—o0) /0 a’g dw(l) + 8n(l—o0) /0 a’g duw(1)

(1—20) /4” 12 duw(1) N 302 /4” 12 m? dw(l)
0 0

8r(1—o0) a? g 8r(1—o0) a2 g

=|S = —
1122 22 g

Therefore the Sy133 components of the Eshelby Tensor shall be

1 4T (1g133(1) + 1g133(1)) 1 4 1g133(1) 1 4T I(—(1 = 20)1 + 3In?)
— — dw(l) = dw(1
S11zs 167(1 — o) /0 a’g duw(1) 8m(1 — o) /0 a’g w(l) 8n(1—o0) /0 ag w(l)
1 4T (1 - 20)12 1 4T 3122
S w0 s, O

= |S1133 = —

(1—20) /4’* 12 duw(1) N 3¢? /4’* 12 n? dw(l)
0

8r(1—o0) a? g 8r(1—o0) a2 g

Therefore the S1212 component of the Eshelby Tensor shall be

1 i mgii2(1) 1 i lg212(1)
= dw(l dw(l
S1212 167(1 — o) Jo b%g wl) + 167 (1 — o) /0 a’g w(l)
1 (1 — 20)m + 31%m) 1 (1 = 20)1 + 3lm?)
= S22 = e /0 b2g )+ o= /0 a2g d(l

= Si212 =

(1—20) ¥ m?2dw(l) 3a? T Rm2do)  (1-20)  [* 12 dw(l) 302 412 m?2 dw(l)
167(1 — o) b2 * 0 - 0 a? - 0 a2 b2 g

16m(1 — o oy 16m(1 — o a2 b g 16m(1 — o a? g 167(1 — o a? b2
0

= | Si212 =

(1-20) [ mPdo(l)  3(a*+b*) [P mPdo(l) (1-20) [*71*dw(l)
“orti o) “fortr o1

167(1 — o g 167(1 — o a? b g 167(1 — o a g
0

Therefore the S1112 component of the Eshelby Tensor shall be

_ 1 T (lgna® +lgne®) o1 T lgua(D)
Sz = 167(1 — o) /0 a’g dwl) = 8m(l — o) _/0 a’g duw(l)
1 T 1((1 = 20)m + 312m) (1—20) [ Im 3 T B,
- - 2 s+ —2 [ T
= S 8m(l — o) /0 a?g duw(1) 8m(l — o) /0 a2gdw( )+ 8n(l—o0) /0 a’g du(1)

Now note that both the integrals on the RHS of the previous equation have [, m raised to odd powers. As we previously stated, all
integrals of the form f047r I'm?n* 4« ghall vanish if any one of the i, j, k are odd. Therefore we can write

g
47 47 13
l
/ LY :0,/ (1) = 0
0 0

aZg

Therefore the S1112 component of the Eshelby Tensor shall be

(1 —-20) /4” Im 3 /47r Pm
= S oo + — 2 M aw(1) =
Sti12 St —0) Jy a’g w(l) + ; w(l) =0

=[Sz = 0]

35



Therefore the S1203 component of the Eshelby Tensor shall be

1

m

S =
T T §

=

3 4 Im2n 1
- 1
= S = ey /0 vy “OF iy /0

T (A2gr23(1) + A1gazs(1)) _ 1 AT (Bgra3(1) + S g223(1))
i, g w0 = =7 |, g ol
1 T mgias(1) 1 7 1g2a3(1))
b%g du(l) + 167(1 — o) /0 ag duw(1)

S1223 = 167(1—0) J,

(1 - 20)n + San))dw(l)

3 4T Im?2n (1-20) [* In

=S = dw(l) + ——— —

227 16n(1 — o) /0 b%g wl) + 167(1 — o) /0 a’g

Now note that all the 3 integrals on the RHS of the previous equation have [, m raised to odd powers. As we previously stated, all

integrals of the form f047r U'min shall vanish if any one of the i, j, k are odd. Therefore we can write

k dw
g

dw(l) +

aZg

3

4 2
m=nl duo()

167(l—0) Jo a?%g

Therefore the S1203 component of the Eshelby Tensor shall be

3 4T Im2n (1-20) [* In
S = dw(l) + ——— -
o122 167(1 — o) /0 b%g wl) + 167(1 — o) /0 a’g w(

-~ [Sun=1]

Therefore the S1232 component of the Eshelby Tensor shall be

+ A19232(1)) deo(1)

1

167(l—0) Jy a?g

S =
1232 167(1 —o

1

1 T (Aagiz2(1)
i,

g

T 16m(1—

4 1

g

g

" g2 (V) dw(1)

T mgl32(1)d (1)

=S =
PR =i —0) ), g YT T

— o)

aZg

(1 = 20)n + 3m>n) dw(l)

3 47
=5 =
2327 16m(1 — o) /O

= Si232 =

3 /4” Im2n
16m(1—0) Jy, b3g

Im2n 1
1
vy WO+ 5 /0

— % 4m n
dw(l) + 1((3171_(12_3)/0 Oéfgdw(l) +

aZg
47 2 l
3 mon dw(l
167(l—0) Jo a?%g

)

47 2 4 47 2
Im*n In m=nl
/O () o,/0 e =0 [ w0
4 2
1) + 3 mnldw(l):O

) /047r (grg132(1) + ﬁgzsz(l))dw(l)

J

Now note that all the 3 integrals on the RHS of the previous equation have [, m raised to odd powers. As we previously stated, all

integrals of the form f047r U'min

Therefore we can write

= Sia32 =

Let us define the terms

1o

k dw
g

a g

4 2 4
I l
/ T (1) = o,/ (1) = 0,
0 0 0

b2g

3 /47r Im?n
dw
16m(1—0o) Jg  b3g

a? g

- [Suan=1]

(1-20) 3

(1-20) [* In
M+ 167(1 — o) /0 @dw

A

m2nl

aZg

©= 8r(l—o0)’ - 8r(1—o0)

a* g

)+

shall vanish if any one of the i, j, k are odd. Therefore we can write

dw(l) =0

4

2
3 mnldw(l):0

167 (

1—-0)Jy d%g

T2 dw(1) 1A dw(1) 412 m2 dw(1) AT 12 02 dw(l)
= 777101(1: 777[ab: ?b72771a(;: 5 T T
0 g

a?2c?2 g

Therefore the S1111, S1122, S1133, S1212 components of the Eshelby Tensor can be written as

The rest of the nonzero terms can be found by cyclic permutation of the above formulas. Notice that we should also let a — b — ¢
together with 1 — 2 — 3. Using the Routh Integrals, The I,, I, I. terms can be written in terms of standard elliptic integrals,

‘ Si111 = RI, + Qa*I,,

’ Si120 = —RI, + Qb I,

| Suss = —RIL + QL.

51212 = 5

R
(I, + ) + %( 240

S1232 =0

b2

hff”ﬁwm:
0 g

o° du
2mab _
e C/O 2 +u)A

(a2 _ b2)(b2 _ 02)1/2
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47 12 oo
1? dw(l) du 4drabe ) a? —c? a? —b?
I, = — —— = 2mab = here 6 = —— |, k=1 5.
= @ = | s = e PV F(G, ) — @R el e ( o ) Ve
4mabe , a? — 2 a? — b2
[F(8,k) — E(6,k)] |, where 6 = arcsin ( 72 ) k= P




n2 ) > du 4dmabe . a? — b? a? — c?
I = /0 0—2 = 27rabc/0 @1 wh = R CEIE [F(9,k) — E(0,k)] |, where 6 = arcsin ( ) k=1 5—.

Using the Routh Integrals, The I, Iy, I.. terms can be written as

41 14 [ee] 47 )
* dw(1) du m? dw(1) du
I, = — > =27 —— Iy = — > =27 —_—
“ /0 at g abc/o (@+u2A™ " Jy b g abc/o (0% +u)?A

w(l) /°° du
Iee = = 2mab —
[t e | s

Using the Routh Integrals, The Iy, I4c, I terms can be written as

T2 m2dw(l) 2 o du T2 2 dw(l) 2 > du
Iop = ——5 ——— = -7abc e = —— ——— = -mabc
g a?b® g 3 o (a2 +u)(b?+u)A 0 a*c g 3 o (a2 +u)(c?+u)A

Tom?n? dw(l) 2 e du
Iye = -5 5 ——— = ymabc > -
o b2 g 3 o (B +u)(c2+u)A

Qﬁ‘ 3

The I terms also satisfy the following properties:

4 12 4 2
A =/ Cdolh) | [ mdwl) +/
0 0

a2 g o b g

w(1) /4“ ?om? P dw()_/‘*“ dw(l)_/‘“r B
g 0 (a2+b2+a2) g Jo I g Jo wll) = dm

=L+ 1+ 1 =4r|

47 74 4T 712 2 a7 32 .2 4T 12 4m 12 4T 12
[* dw(l l dw(l l dw(l ¢ ,d l dw(l l dw(l
aafaa+b21ab+czfac:az/ fiubz/ JLﬂ%z/ JL&Z/ Y w<>+/ o2 w<>+/ E @)
o a* g o a*b? g 0o a*c* g 0o a? g 0 0o a* g

mm‘ 3

a? g

4T 12 4T 72
l d ¢ dw(l
:>a21aa+b21ab+02]ac:/ (12+m +n ) UJ() :/ 72M :Ia
o a? g o a° g

=0 Lo + VL + P Loc = 1,

4 74 4w 72 2 4m 72 2 am 72 g2 2 2 4w 72
[* dw(l l dw(l l dw(l “ 1 dw(l l dw(l
Iaa+lab+1a5=/ w()+/ = —w()Jr/ —= L():/ (5t nQ)L()—/ (g2
0 0 0 0 0

- 7 7_’_7
at g a2 b2 g a?c? g a? v ¢ g

a a g
4T 72
l 47
= | Lo + L + Lo = Zdw(l) = &
L+ /O () =

47 l2
Proof of / —dw(l) =
0 a

3a?

For direction cosines, the integral over the solid angle can be expressed in spherical coordinates where | = cosf, with 6 being
the polar angle. The differential solid angle element dw in spherical coordinates is given by: dw = sin 0 df d¢ where 6 varies from 0 to
7w and ¢ varies from 0 to 2w. Thus, the integral can be rewritten as:

4 12 27
/ —dw = 2/ / cos® 0 sin 6 d d¢
0 a

Let’s evaluate the integral step by step. First, integrate with respect to 6:

/ cos? 6 sin 6 do
0

Let u = cos#f, so du = —sinfdf. The limits of integration change from # = 0 to § = m to u = 1 to v = —1. The integral

1
becomes: — fl_l u?du = fll u? du. This integral evaluates to: {%} = % — (—%) = 3. Now, integrate with respect to <Z):f027r dp = 2w
-1

Multiply the results of the two integrals: fo 1—2 dw = a% X % X 21 = 3a2 So, the result of the integral is:

47 12
l 4
/ —dw=
0o @ 3a

47 12
l 4
T I I = dw(l) = —
= {11+ l12 + 113 /0 a2 w(l) 302

Therefore we have

5 b/oo du 2 b/°° du
e | @ wea 3T @ 1w fuh

o0 o 2 2 2 2 2
+2mbc/ du :mbc/ (6(b* + u)(c® + u) + 2(a® + u)( + u) + 2(a® + u)(b* + u))
3 o (@ +u)(e®+u)A 0 3(a? +u)?2A
30’11 + b 119 + 213 = 314
I— 1,
hy= 35—

and the standard elliptic integrals are defined as

0
dw
F0,k) =
6, %) /0(1—I<:2$in2u))1/2

2
E(G,k):/ (1 — k2 sin® w)Y2dw
0
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9.3 Elliptic Cylinder Inclusion

For an elliptic cylinder inclusion (¢ — o0). The components of Eshelby tensor are

1 b2 + 2ab b
= 1—-2v)——
S1111 2(1—1) [(a+b)2 +( V)a—i—b}
1 a® + 2ab a
S2222 = 2(1 —v) [(a+b)2 +(1_2y)a+b}
Sz333 =0
1 b2 b
- (12
Suz = 53— [(a+b)2 ( V)a+b]
1 2va
S2233 = 20— v)a+b
1 a? a
= —(1—-2
Sa211 ) [(a+b)2 ( V)a+b]
S3311 = S3320 =0
1 a® + b? (1-2v)
S1212 = 2(1—v) [2(@—1—1))2 T }
1 2vb
Stiss = 20— v)a+b
a
Sa323 = CED)
b
S3131 = 20+ )

9.4 Flat Ellipsoid Inclusion

For a flat ellipsoid (a > b>> ¢). The I integrals in this limiting case reduce to

An(F(k) — E(k))be
I, =

a? — b?

E(k F(k)— E(k))bc
S
I3 = 4w [1 — E(Ck)}

Iy = 247Tb2 [E(Ck) — Q(F(kiQ—Eb(Qk»bc]

dr E(k)  (F(k) — E(k))bc

12321)2{1—2 (C)_|_( (312_1)(2 ) ]

Iy — ‘% {1 _ E(Ck) - (F(kc)ﬂ—_b;gk))bc}
I3z = ;%

where E(k) and F(k) are complete elliptic integrals defined as

F(k):/2 _dw

0 1 —k2sin®w

E(k)=/2 V1 — k2sin? w dw
0

9.5 Penny Shaped Inclusion

We have a penny shaped inclusion when a = b. We can compute the S1111, 51122, 51133, S1212, S1112, S1223, S1232 components of the
Eshelby Tensor by computing the values of I, Iy, 44, Iap, Lo Which were defined in the previous subsection.

Using Routh Integrals we can reduce the solid angle integral f04 T 12m2 nzkd?w to simple integrals.

4w 12 e’} 4T 14 [e’s}
% dw(1) du I* dw(1) / du
I = —_— = 2 B —— ICLCL = —_— = 2 B ———=
a /0 2 g wabc/o @+ WA’ /0 & g mabe . @ ruA

T2 m2do(l) 2 o du T2 n2dw(l) 2 >~ du
Ln= | =20 = e . . A . .
o a? b g 3 o (a2 + ) +u)A g a?c? g 3 o (a2+u)(+u)A

where A is given by the expression

N|=

A=(a®+u)?B+u)? (A +u)? = (a®+u)(c® +u)

[NIE

=|A = (a® +u)(c® +u)
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The S1111, S1122, 51133, S1212, S1112, S1223, S1232 components of the Eshelby Tensor for Penny Shaped Inclusion are

(13 — 8v) ¢
S1111 = S22 = 3(2(1—V))a
(1 —2v)c
Sam =1- G0t
T8 —1) ¢
51122 = 52211 = ?)é(l—uia
mT2v—1) ¢
S1133 = S2233 = 8((1—u))a
v w(dv +1) ¢
Ss311 = S3322 = T {1— ( 5 )a}
G m(7-8v)c
PR2T30-v)a
B 1 m(v—2)c
53131 — 52323 - 5 |:1 + 4(1V)CL:|

10 Eshelby’s Tensor for 2-Dimensional Inclusions

This derivation focuses on Eshelby’s tensor in the context of 2-dimensional (2D) elliptical inclusions in an isotropic elastic medium
under plane strain conditions. Consider a 2D elliptical inclusion in an infinite, homogeneous, isotropic elastic medium. The
inclusion is characterized by an eigenstrain e*, which is the strain the inclusion would undergo if isolated from the surrounding
matrix. The 2D elliptical inclusion is defined by:

2 2
ry | T3
—+ =<1
a? b2 -

where a and b are the semi-axes of the ellipse along the x; and x5 directions, respectively.
For an isotropic elastic medium, the stress-strain relation (Hooke’s law) in 2D under plane strain conditions is:
0ij = Cijrier

where o;; is the stress tensor, ey is the strain tensor, and Cjji; is the elastic constant tensor given by:

‘Oijkl = AijOp1 + p(dirdj1 + 0iadjk) ‘

*

Here, A and p are the Lamé constants. The inclusion undergoes an eigenstrain e;;, leading to the following stress and strain fields

inside the inclusion:

‘mj = Cijn(ers — exy) ‘

The goal is to determine the Eshelby tensor S;;x;, which relates the elastic strain e;; inside the inclusion to the eigenstrain ej;:
eij = Sijki€ny

The Green’s function G;;(z) represents the displacement at point  due to a unit force applied at . For an isotropic, infinite elastic
medium in 2D, the Green’s function in Fourier space is:

9ij (k) = —3

where z = % The Green’s function in real space is then:

Gij () 1 /M(zz);l dk

= 4n? k2

The auxiliary tensor Dy relates the gradient of the Green’s function to the eigenstress inside the inclusion:

Dijjri(z) = / Gijpi(x— ') dV(a")
Vo

Using the Fourier representation of the Green’s function:

Dijri(x) = —ﬁ /exp(—ik . x)%@(k’) dk

where the integral Q(k) is defined as:
Q(k) = / exp(ik - ') dV (z")
Vo

where 1} is the volume (in this case, area since we are in 2D) of the inclusion. For an elliptical inclusion, the domain Vj is given by:

2 2

Ty | T3
—+ =<1
a? b2

Here, 1 and x5 are the coordinates within the inclusion, and a, b are the semi-major and semi-minor axes of the ellipse, respectively.
We perform a change of variables to transform the elliptical domain into a circular domain, making the integral easier to handle.

Define new variables: "
r ;L2
X'=— Y =—

b
X/2+Y/2 S 1
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In these new variables, the elliptical domain becomes:



which represents a unit circle in the X’Y’-plane. The differential volume element transforms as:
av(z') =a-bdX'dY’

Thus, the integral Q(k) can be rewritten in terms of X’ and Y":

mm:@/‘ exp (iky - (aX') + iky - (BY")) dX' dY’
X’2+Y'2§1

Here, k1 and ks are the components of the wavevector k in the z; and x5 directions, respectively. Expressing k-2’ in polar coordinates:
kE-z' = kix1 + koxo = akle’ + kaY/

Let us define
)\w = ak:l, )\y = ka

Then we have

‘hf:&X+MV

We now express X’ and Y’ in polar coordinates (R, 0):
X' =Rcosf, Y' = Rsinf

Therefore we can write

‘k'x’ = R(A\y cosf + A\, sinh) :R/\cosqb‘

where ¢ is the angle between A = (A;, Ay) and (X', Y”). Integrating Over the Elliptical Domain. The integral Q(k) now becomes:

1 2m
Q(k) :ab/o /0 exp(iRAcos p)RdO dR

The integral over 6 can be recognized as a standard Bessel function of the first kind Jy:
2w
/ exp(iRA cos ¢) df = 2w Jo(RA)
0

Thus, Q(k) simplifies to:

1
Qk) = 27rab/0 RJy(RN)dR

The integral over R can be evaluated using the known result for the integral involving the Bessel function:
! 1
/0 RJy(RN)dR = F(sin/\ — Acos )

Substituting back, we get:
1
Q(k) = 2mab - F(sin)\ — Acos )

Finally, the expression for Q(k) is:

2mab .
Q(k) = T(SIHA — ACOS)\)

Here, A = /(ak1)? + (bk2)2.

Let’s now do the Eshelby Tensor Derivation. Substituting (k) back into the expression for D;ji; and using polar coordinates
to evaluate the integrals:

abe [ (22)7 2k
D;; =—— ——— (sin A — Acos\) df
k() 277 3 (sin cos \)
For a circular inclusion (where a = b):
12 (22); 22
Diji = —=— M do
2m Jo K

The Eshelby tensor S;jx; for Circular Inclusion is obtained using:

1
Sijmn = _§Cklmn (Diktj + Djkii)

Substituting the expression for D;j;:

14

1
. 7 5. - _ 8. S, — 95
Szjmn 2(1 — I/) 6lj6mn + 16(1 — I/) [(6 8”)<5znéjm + 6]716%771) 61j6mn}

For a circular inclusion, this simplifies to:

4v —1 3 —4v

Sijmn = m(sij&nn + m(éinéjm + 6jn6im)

The Eshelby tensor S;jm, for a 2D inclusion (circular or elliptical) in an isotropic elastic medium has been derived rigorously. This
tensor allows us to determine the strain field inside the inclusion given the eigenstrain ej;. The derivation used the Green’s function
approach, combined with Fourier transforms, change of variables, and integration techniques to arrive at the final expressions.
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11 Derivation of the Green’s Function for Anisotropic Medium

To begin, we derive the Green’s function G;j(x — 2’) for an infinite, homogeneous, and anisotropic elastic medium. This Green’s
function represents the displacement in the i-th direction at point z due to a unit point force applied in the j-th direction at point
x’. We start with the Equilibrium Equation for an Infinite Body. The Green’s function satisfies the following equilibrium equation:

82ka (.T)

Cijut O0x;0x;

where Cjj;p; is the fourth-order stiffness (elasticity) tensor, and d(z) is the Dirac delta function representing the point force at the
origin. To solve this equation, we take the Fourier transform. The Fourier transform f(k) of a function f(z) is defined as:

fk)= | fla)e™™ da,
R3

with the inverse Fourier transform given by:
1 A .
f@) = == | Fk)e™ dk.

(2m)3 Jpo

Applying the Fourier transform to the equilibrium equation, we have:

‘ Cijrikikigem (k) = im ‘

where g¢;;(k) is the Fourier transform of G;;(x). The equation simplifies to:

| (22)ikgtom (k) = dim |

where (22); = Cijrikjki. Taking the inverse of (zz), we find:
9ij (k) = (22);;'-

Thus, the Green’s function in Fourier space is:
(22);"

j

9i;(k) = T2
The real-space Green’s function G;;(x) is obtained by taking the inverse Fourier transform:

Gij(z) = # /R g (W) b,

Substituting the expression for g;;(k):

1 (22);' sk
Gl](l’) = (271')3 /]Rd ]{?2] € dk

To evaluate this integral, we switch to spherical coordinates in Fourier space:
ky = ksinfcos¢, k, =ksinfsing, k, = kcos0,

with the volume element given by k2 sin 6 dk df d¢. The integral becomes:

1 > sin(kR) _
Gul) = s [ L

where R = |z| is the distance from the source point. After evaluating the integral, the Green’s function in real space is:

1
Gij(r) = ﬁ(zz)ijl

For isotropic materials, this can be further simplified using the Lame constants \ and pu:

oy b (A8 s (At T
Culn) = g {<A+2u> Yt (A+2u) R?

This Green’s function represents the displacement field in an infinite, homogeneous, and isotropic elastic medium due to a point force.

12 Derivation of the Auxiliary Tensor D; ;i

Using the derived Green’s function, we now derive the auxiliary tensor D;;y; that relates the constrained displacement gradients to
the eigenstress inside an inclusion. The auxiliary tensor D;jx, is defined by:

ug (z) = —0op; Dijri ()

where uf ,(z) is the constrained displacement gradient, and o}, j is the eigenstress. The tensor D;jy,; is related to Eshelby’s tensor Sy

* _ .C
Sijmnemn - eij7

where the constrained strain ef; is given by:
1
eij = B (uf ; +uss) -
The constrained displacement gradient can also be expressed using the Green’s function as:

ug () = / oG — 2') dS(a")
So
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By comparing this with the earlier definition, we identify:
Dij(z) = —/ nyGi,j(x — ') dS(2'),
So

or equivalently:

Dijii(z) = — [ Giji(z — 2" )ng, dS(z')
So

Using Gauss’s theorem, this surface integral is converted into a volume integral:

0

D, = | 275Gz -2 ).
(o) = [ GGl o) V()

This simplifies to:

Dijkl(x) = / Gij,kl@f — :C/) dV((t/)
Vo

where Gy ki (z — z’) is the second derivative of the Green’s function. Substituting the Fourier-transformed Green’s function into the
expression for D (), we get:

. (3255 ,
Dijjra(x / 92,02 l G /exp [—ik - (z — 2)] 2 dk| dV (z').

Taking the second derivatives with respect to x; and x;, we obtain:

1
Dijri(x / / —iky) (—ik;) exp [—ik - (z — 2)] (z2)y dk dV (z').
271' Vo k
Simplifying, this becomes:
(ZZ) 1kkkl
D; ik - (x — G R ke dV (2
jkl 27‘(‘ ,/VO /exp —1 1' €z )} ) (.’E)
Recognizing that kipk; = |l<:|2zkzl7 where z; and z; are the components of the unit vector in the direction of k, we rewrite the equation
as:
1 ) (zz);lzkzl
Dijri(x) = OmE /VU /exp [—ik - (z — 2")] —%—— dkdV (z')

The function Q(k) is defined as the Fourier transform of the characteristic function of the inclusion Vj:

Q(k) = /V exp [—ik - 2'] dV (2')

For an ellipsoidal inclusion, the region Vj is defined by:

B2 2 T
where a, b, and ¢ are the semi-axes of the ellipsoid. The Fourier transform Q(k) can be computed as follows. Let:
¥ =aX, Yy =0bY, 2 =cZ,

where X, Y, and Z are dimensionless variables that satisfy X2 4+ Y2 + Z2 < 1. Thus, the region V; can be expressed as:

Vo={(X,Y,2)eR*: X?> +Y?+ 22 < 1}

The volume element transforms as:

dV (z') = abcdX dY dZ.
The Fourier transform Q(k) is then given by:

Q(k) = abc / exp [—i (aky X + bkyY + ck,Z)|dX dY dZ
Vo

This integral can be separated into three independent integrals over X, Y, and Z:

Q(k) = abe < [ 11 exp(—iakxX)dX> ( [ 11 exp(—ibkyY)dY) < [ 11 exp(—ick:ZZ)dZ>.

Each integral is of the form:

1 .
[ emcingie = 25,

-1

00 — abe (2s12](£km)> <2sizlizky)> <2si:}$kz)> .

Alternatively, the Fourier transform can be expressed in spherical coordinates:

Q(k) = C;—l;c (477 (Sli\l)\ — cos A))

where A = \/a2k§ + b?k2 + c?k2. Substituting the expression for Q(k) into the formula for Diji(z), we get:

where A\ = ak,, bky, or ck,. Thus:

Dijri(r) = — (sin A — Acos \) exp [—ik - x] dk.

Lbc/ (zz)” 2L2
272 A3
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To simplify the integral, we switch to spherical coordinates in Fourier space:
ky =ksin®cos®, k, =ksin®sin®, k,=Fkcos®,

where \ becomes:

A= k\/a2 cos2 O + b2sin? Osin @ + 2 cos® d

The integral expression for D;jx;(z) then becomes:

abc I (22); Yoz ik .
Dijri(z 27T2/ / 5?]’/2 (sin A — Acos \) e~ **®k2 sin & dk dO dP

where 8 = \/ a2 cos?© + b2sin? Osin® ® + 2 cos? d. To further simplify the expression for D;j1, we integrate over the angular
coordinates ©® and ®. This yields:

abc 27 (22) 22 sin @ sin(kM) ik
Dijui(z) = / (/ / Jﬂ3/2 @dq)) k? < e cos(kv\)) e m ik,

This integral simplifies further when evaluated within the ellipsoid due to its symmetry, leading to:

b 27 (22)5: 2K
Diju = ac// ﬁ3/2klsinq>d@d<1>

After evaluating the integral, D;;; inside the ellipsoid becomes a constant tensor, and the final expression is given by:

Dij = ﬁ/exp [—ik - 2] (22);;' 2 2Q (k) dk

Thus, the auxiliary tensor D;jy; for an ellipsoidal inclusion is a constant value inside the inclusion, given by:

2™ (22) (22)i; 22 az
Ukl 47‘(‘/ / ﬁ3/2 sin ® dO© do

This derivation shows that the auxiliary tensor becomes a constant within an ellipsoidal inclusion, providing insights into the behavior
of materials with embedded inclusions and forming the basis for understanding internal stress and strain fields within such materials.

13 Derivation of Inclusion Energy in an Infinite Solid

We start by defining the elastic fields inside the inclusion (denoted by superscript I) and outside the inclusion in the matrix (denoted
by superscript M). These fields include stress (o;;), strain (e;;), and displacement (u;). For a homogeneous infinite solid, these fields

are given by:
M c M c M c

For Matrix: e;; =ej;,, 0,7 =05, u; =u;
. . I _ _c * I _ ¢ * I _ ¢ * .
For Inclusion: €ij = €5 — €y 045 =045 — 044y Uy = U — €55

The total elastic energy E stored in the solid due to the inclusion is given by the sum of the energies inside and outside the inclusion:

1 1
E:f/ J{jei[jdVJrf/ ZJ\fMdV
2 Jv, 2 vo-w

Rewriting F in terms of displacements:

1 1
B= [ ohtud,vugaveg [ oMl +ulav
4 Vo 4 Voo =Vo

Due to the symmetry of the stress tensor:

1 1
E:f/ olul  dv + / oMyt av
2 Vo J ] 2 Ve — Vo J 70

Oijtiij = (Oijuj).i = 0ijitly

Using the identity:

And assuming there are no body forces (so 0;;; = 0):

1
E:f/ (oluf)idV + = / (oifuy") i dV
2 Vo 2 Voo —Vo

Using Gauss’s theorem, these volume integrals are converted to surface integrals:

1
E=-= / Ufjujjn‘;“t ds — / UMuIV[nO“‘E ds + - / UMu;Mnoo as
2 So 2 S

oo

As S, tends to infinity, the surface integral over S, vanishes:

E:l/ (O'IUI—O'MUM)n?UtdS
So

9 ij ij
Since the traction across the interface Sp must be continuous (o{] ndut = O'ZAJ/I nout):
E—1 ol (uf — u)not ds
9 LA J
So
: I _ M _ _ % .
Given that u; — Ui = —ef T

1
E:—f/ ofjnf“t ek dS
2 Js,
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Transforming the surface integral back into a volume integral:

1 1,
E:_i/ jk% dV = ) zj/ U{] v
Vo Vo

For an ellipsoidal inclusion, where the stress inside is uniform:

Fw

20'”6”‘/2)

Thus, the total inclusion energy in an infinite solid is:

We know that the stress 0‘ i in the inclusion shall be

C
€ij — Cij

As we derived earlier, the strain e . in the material is given by

c ()\(20 —1)eT el

el = zk J _
(%] 871',&(1 —O') (b ) ( ¢ i + ¢ ki 71'( )/(/)Z]kl))

As we derived earlier, the trace of the strain tensor e 7 shall be

A(20 — 1)eT el el et
= bii) — (ﬁéﬁ,ki + ﬁﬁb,ki - ﬁw,iikl))

© N (1 — o) (1-o0)
A(20 —1)eT el et
c ik 1k
=i = (g7 %) —(5=Pki — g7 Vi
i = ( 8ru(l — o) G.ii) (277 & 87(1 — o) Vain))
We have earlier derived that ¢ ;; = —4 inside the inclusion. We also derived that 1) j;r; = 2¢ 1. Therefore the above boxed equation
can be written as
A1 —20)eT el ek
= (Q) (i — —E—on))
2u(l — o) 2 4dm(1l — o)

Repeated indices k, ! in the third term of the previous equation can be written as k, 1.

G = A2 (G o)
= e = (et — houilr ~ )
= e = (U — o A=)
= | = (G — o)

Note that we have
A1 —20) =2uc
A1—-20) o

u(l—0)  (1-0)

Therefore the trace of the strain tensor e - shall be

c_ o _ o T T 1—20
€ =¢€; = (170_)6 elk¢7kl(4ﬂ_(170))

Therefore we have

c 1 _, 0 o g, 1-2
C e _((1_0) e elk¢,kl(4ﬂ_(l_o_))
= 6C’ o 6T _ ((210_03]-))6T 7€ﬁ¢,kl(4;(1736;))
9 1 1-2
| (€0 = €My = T st 2

For uniform expansion, we have e}, = %eTélk. Therefore we can write the above boxed equation as

(20 — 1) 1 1-20
(eC — GT)5ij = 7@’1—‘5” - geTélk¢7klaij(m

Ty )

(20 —1) 1 1-20
= (ec — eT)(;ZJ = 7€T5ij — §6T¢7kk5”(m

(1-o0)

Inside the inclusion, we have ¢ p; = —4m. Therefore we can write the above equation as

)

1—20

(20 = 1) )
3(1 —o)

(I1-o0)

(20 —1)  (1-20)
1=0) "30=0)¢ %

= (ec — eT)(Sij = T(SU + eT(SU(

= (e“ —e")di; = (
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c T (60 —-3)+(1—-20), 1 (40 -2) 1 220 —1) 1

(e —e)oy =y )¢ % =33 =5)¢ % T 3oy ¢ %
2(20 — 1)
c_ T T
(e e ) J 3(1 o O') J
Similarly, we also have
A20 —1)eT el el el

C_ T _(2\2Y )" oy (Zdkg o IR Pk oy T

€ij — €5 ( 87r,u(1 — 0_) ¢7U) (4ﬂ_ ¢J€] + A ¢Jﬂ 87T(1 — (7) wﬂ]kl) €5

T

For uniform expansion, we have e;; =

éeTélk. Therefore we can write the above equation as

A(20 — 1)e? 1 1 1
c_ T T T T T
C ol = (2 ) — (——Ginb €T+ ——ipd g€t — ————th 1110 _ 2T
i % (87T,u(1 —0) is) (1271' ik P,kg € 127 RO kIC 247(1 — o) Yughidiwe™) 3¢ %
A(20 —1)eT 1 1 1 1
c_ T ; T s T T T
e~ ey = 8ru(l —o) 2 (1271' K 127 91 247(1 — o) Vakre”) 3¢ %

Now note that we have ¢ ;; = ¢ j; and ¥ ;jkr = 2¢;;, therefore we can write the above equation as

A(20 —1)eT
8ru(l —o)

T
j

C

ij = (

e

1

A(20 — 1)6T¢ oL
) 6

8ru(l — o)
_ AM20—-1)
N (8ﬂu(1 —0)

_ T
ij

= (

e"9.i5) — (

1
b.ij) — (@%JET -

s

(2(1 -

1

1
T T
— b —ZeTs
127(1 — o) is€") 36 "

1
127(1 - o)

o)—1)
127(1 — o) ise’ -

1
z T(;ij

)¢,ij€T - 36

1
geTéij

A20 —1)

T
8mu(l — o)

i = eTi) — (

1—-20
127(1 — o)

1
)b el — geTﬁij

Note that we have

A(20 —1)

—2uo

A20 —1)

g

- 8ru(l—o)

4dr(1l — o)

Therefore the above boxed equation can be written as
=

g

W= %4

30+1—20

= 127(1— o)

127(1 — o)

1
)el¢ij — §€T5z‘j =—(

1—20

1
)€T¢)7ij — g@T(Sij

140

1
T T
— = YeThi— =eT6;
127(1 — U))e " 36 /

=

1
— geTéij

o)

eTéij)éij + 2#(7

(

127(1—0)°

2A(20 — 1) 1

Ts
31 —0) © %

6m(1 — o)

140 2
( ) T — ?MGET&']‘

Note that we have

A20—-1)=

—2uo

2X(20 — 1)

4o

=

3(1—-o0)

3(1—-o0)

I

ij as

Therefore we can write the stress at the inclusion o

4o
3(1-o0)

Ts..

4o 2
_(3(170) t3
4o +2(1-0)
= 3(1-o0)

~ p(l+o)
Y 6m(l—o0)

Juel8;; —

JH

2
'ueTcS

€T¢,ij - 3

iJ
pl4o) ¢
6#(170)6 0.ii

p(l+o)

Ty ..
67r(1—0)e 0.ii

€T(S7;j —

2(1+0)
3(1—o0)

T

I e

o =

p(l+o)

A Ty
Y 6m(l— 0’)6 O.is

We derived earlier that the total inclusion energy in an infinite solid is:

L g
FEy = —§0ijeiTij
For uniform expansion, we have 65 = %eTJij. Therefore the total inclusion energy in an infinite solid shall be
1 1 1 1
Eoo = —ioi]j(geT&j)Vb = _éain(sijeTVO = _go—ilieT‘/O
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Now note that

| __2040) pp p(io)

—_— T ..
%i T 731 0) 6r( —o)C P

Now we know that d§;; = 3 and ¢;; = —4w. Therefore U{i shall be

_ 2(1+0) 21+ 0)
i e A = L
. 21+0) 20+0)
=0u=—( 5y 30—

6(1+0)—2(1+0)

o=y e
= O’{i = mMeT
Therefore the total inclusion energy in an infinite solid shall be
s
= | Fs = mM(eTVVO

14 Derivation of Inclusion Energy in a Finite Solid

We begin by considering an inclusion in a finite solid. The stress-strain fields in this case can be solved by superposition. Suppose the
finite solid assumes the stress-strain fields of an infinite solid containing an inclusion. Then, to maintain equilibrium, a set of traction
forces T; must be applied to the outer surface Seq¢ of the solid.

To obtain the solution for a finite solid with zero traction on its outer surface, we need to remove Tj on Sc.¢. This is equiva-
lent to applying a canceling traction force F; = =T} on Sey¢. The resulting elastic fields due to this canceling traction force are called

“m

image fields, denoted by the strain e;7", stress 025”7 and displacement u{™ fields. Thus, the elastic fields inside the matrix and the
inclusion are given by:

M _ _c m I _ _c * im
€ =€yt ey €ij = €ij — €5 T ey,

M _ _c im I _ _c * im
0,5 =0 -+ 03 055 = 045 — 045 + 045

M _ ¢ im I _ ¢ * . im
u; =u; +up ui—ui—eijmj—i—ui .

The image fields satisfy the following conditions:
Mn( ) }7( Mn( ) hn( ))
e;; (@ 5 w5 (@) + ujly (x

o () = Cijrepf (x)

where Cjjp; is the stiffness tensor of the material. Similar to the infinite solid case, the total elastic energy E in the solid can be
expressed in terms of surface integrals:

1

I.1 M, M t M, M

E=- (aijuj — 0,5 U )nf“ ds + 0 U ng™t ds.
2 SO ext

Using the free traction boundary condition on the outer surface Seu, aij\f ng** = 0, the second integral vanishes, leaving:

1
E = 5/ U{j (u§—u§”)n§’“td5’
So

Substituting u]I» — uéVI = fe;kxk, we obtain:

1 I

E= 75/3 o€ parnd™ ds.
0

This is the same as the energy expression for an infinite solid except that the stress field inside the inclusion now contains the image

component. Let Uiljfoo denote the stress field inside the inclusion in an infinite medium. Then the stress inside the inclusion in the

finite solid is:

ol(@) = 0 + ol (x)

The inclusion energy in an infinite solid is given by:

Ly
(o'e} ;00 sk
E ——50'” eij[/o

where Vj is the volume of the inclusion. In the case of a finite solid, the inclusion energy E becomes:

00 1 im *
E=E —Q/V()o;;neijdv.

Converting the surface integral into a volume integral and averaging the image stress inside the inclusion:

1—
E = E>* — —gi™e;}

S0 e Vo = EX + B

where E'™ is the image contribution to the total inclusion energy, defined as:



and Uf}" is the averaged image stress inside the inclusion:

I —
where o] = 0,2 + ol

15 Derivation of Inclusion Energy of Finite solid with applied tractions

Before deriving the Inclusion Energy of Finite solid with applied tractions, we first need to prove the Colonetti’s Theorem. Let us
consider a solid with volume V' and outer surface S. We define two stress states:

e State 1: Purely internal, generated by an eigenstrain (or some inhomogeneity) inside the solid.
e State 2: Purely applied, generated by external tractions on the surface of the solid without any internal eigenstrain.

The total elastic energy in each of these states can be expressed as:

where 0;; and €;; denote the stress and strain tensors, respectively. When both states are present, the combined stress and strain
fields can be written as: ) _ ( :
142 1
zg + U
L2 () ()
€ij €ij. T €

(2)

Thus, the total elastic energy in the combined state is:

pos Z 1T (0 00) gy
9 v z] ij

Expanding the integrand:

) ij ) ZJ

E(1+2) _ }/ {0(1)6(1_) () ()+U(2) M) 4 @ ()} dv
2 Jy K
This can be separated into the sum of energies for individual states and an interaction term:
gl+2) — p) L g 4 p(1-2)

where the interaction term is:

1
E(-2) _ 5/ ( 1(31) (2) +0(2) (1)) dv
14

1]

Colonetti’s theorem:

Colonetti’s theorem asserts that this interaction energy E('~2) is zero. To prove this, we proceed as follows. We first express
Stress in Terms of Strain
0ij = Cijki€hi

where Cjjy; is the stiffness tensor of the material. This allows us to write:

@A) _ = Cijn (2) (1)

z] z] kl€p El]

and similarly:
1) (2) _ 1) (2)
045 €5 = Cijri€y €ij

Since Cjj; is symmetric in (i5) and (kl), it follows that:

U 1] )

12 _ @ (1)
ij

We shall now Simplify Interaction Energy. Using the above equality, the interaction energy becomes:
E0-2) = / e el qv
ij i
1%

Given that O'i(;) is purely internal (i.e., it satisfies Ufjl)z

integral:
E(1=2) :/( 1)y, ) dv = /nza u2) ds
14 S

= 0), we can use Gauss’s theorem to convert the volume integral into a surface

(€3]

. . .. . 1 .
Here, n; is the outward normal to the surface S. Since o; ;s internal, the traction t; = al(j)ni on the external surface is zero:

(1) ;=0 onS

Thus:
E(I—Q) =0
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This concludes the proof of Colonetti’s theorem, showing that the interaction term between internal and applied stress fields vanishes,
meaning there is no cross-term in the total elastic energy between these fields.

The total elastic energy E in a finite solid due to an inclusion under applied tractions can be expressed as the sum of the elas-
tic energies due to the applied tractions E4 and the elastic energy due to the eigenstrain in the finite solid E¥":

E=FE*+EF

The elastic energy due to the applied tractions is given by:

1
A A_A
EA = 5/ o€ dV

Here:

A

1. o} is the stress field due to the applied tractions.

2. efj is the strain field corresponding to 0‘{3».
This expression comes from the standard formula for elastic energy density %Uijeij, integrated over the volume of the solid. The
elastic energy due to the eigenstrain in the finite solid is given by:

1 —
=g )

]

Where:

1. JZ-IJTOO is the stress field due to the inclusion in an infinite medium.

2. @ is the averaged image stress field due to the boundary effects of the finite solid.

3. e}; is the eigenstrain in the inclusion.

4. Vp is the volume of the inclusion.

This expression represents the interaction energy between the eigenstrain and the stress fields in both the infinite medium and the
finite boundary. The enthalpy H is defined as the difference between the total elastic energy E and the work done by the loading
mechanism AWy e

H=FE-AWry

The work done by the loading mechanism can be split into two parts: the work done due to the applied tractions alone AWf‘M and
the interaction term AWLA&F :

AW = AW, + AW?J;[F

The work done by the loading mechanism due to the applied tractions is:

AW, = / opusng™ ds

ext

By applying the divergence theorem, this surface integral can be converted into a volume integral:

AWy = /V ofyery dV

Recognizing that this is twice the elastic energy E4 stored in the system due to the applied tractions, we have:
AW, =2E4

The interaction term between the applied tractions and the eigenstrain-induced fields is given by:

(V]

AWPE :/ ochul'ng*t ds

ext

This represents the work done by the applied tractions on the displacements generated by the eigenstrain uf . This interaction term
can also be expressed as an integral over the inclusion volume Vj:

AW = /V ope; dV
0

Since the stress field 0;‘} is assumed to be uniform over the inclusion, this integral simplifies to:

A—F __ _A_x
AWLM —O'UGUVQ

To further explore the interaction energy, consider the integral over the matrix volume Vj; =V — 1}

A—F __ A _*
AW 7/ o€ dV
Vm

Using Gauss’s theorem, the volume integral over Vj; can be converted into a surface integral over the inclusion boundary Sp:

LV} )

— F,M F,M
AW = /S (JA-U;’ —o}7 u;.‘) ng*t ds
0

F.M

Here, u;™ and O'Z-’M are the displacement and stress fields in the matrix due to the inclusion. The integral in the previous equation

can be transformed back into a volume integral over Vj:
AW =— / oler; dV
Vo

Recognizing that this is negative of Equation 3.64, we conclude:

A-F __ * _A
‘AWLM = —¢;;0;;Vo ‘
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16 Ellipsoidal Inhomogenity

16.1 Application of Eshelby’s Inclusion Solution to Inhomogeneities

Eshelby’s solution, originally developed for inclusions, is applicable to various problems such as inhomogeneities, cracks, and
dislocations. This is achieved using the Fquivalent Inclusion Method, where an eigenstrain is selected to model the specific problem.
This method is particularly effective for ellipsoidal inhomogeneities, where the stress and strain inside these inclusions remain constant.

Example Problem: Liquid-Filled Void in an Infinite Solid

Consider a situation where a volume V; is excised from an infinite solid and replaced with a liquid under pressure py. The task
is to determine the stress, strain, and displacement fields within the surrounding matrix.

In principle, the problem could be addressed using Green’s functions, as shown in the equation:

ui(z) = /pofskjnkéij(x,x/)dx’

where Gij (x,2') is the Green’s function for an infinite body with a cavity. However, since the exact expression for G;j;(z,2’) is
unknown, this direct method is impractical.

Eshelby’s Equivalent Inclusion Method

*
ij

within the inclusion matches that within the liquid (i.e., O'ilj = —podi;). Given the constant stress and strain in both the inclusion

and the liquid, the required eigenstrain can be determined using Eshelby’s tensor S;;x;. The stress inside the equivalent inclusion can
be expressed as:

A more feasible approach involves replacing the liquid with an inclusion whose eigenstrain e?; is chosen so that the internal stress

I _ ¢ * c * o * *
0,5 =05 — 05 = Cijra(er — ex) = Cijka (Sktmn€rnn — €1)

This leads to the equation:

‘ Oijk:l(sklmn - 6’{777L6ln)e:nn = _p05ij

From this set of six equations, the six unknown components of the equivalent eigenstrain €7; can be solved.

Elastic Energy Considerations

Once the eigenstrain is known, the displacement on the void surface Sy can be computed:
*
Ui = uj = Sijriep T

The elastic energy inside the matrix, which must be identical to that in the case where the equivalent inclusion replaces the liquid, is
given by:

1 *
E=FEr+Ey= *igilj@ijvo

where Ej is the energy in the inclusion and Fj; is the energy in the matrix. Specifically:

1 I I 1 I ’ *

And the matrix energy is:

1 1 )
Ey=FE-Er= _ia{jegj% = ipOSijkleleO

This section thus lays the groundwork for extending Eshelby’s methods to more complex scenarios involving inhomogeneities, using
the equivalent inclusion approach to simplify the analysis of elastic fields.

16.2 Transformed Inhomogeneity

We consider an inhomogeneity within an elastic matrix, where the inhomogeneity has different material properties (represented by a
stiffness tensor ;) compared to the matrix (with stiffness tensor Cjj;). The inhomogeneity undergoes a permanent transformation
described by an eigenstrain e;’;. The goal is to determine the stress, strain distribution, and total elastic energy in the solid. The
stress inside the inhomogeneity is given by:

/ ‘¢ /%

_ v Ic "%
045 = 045 — 045 = z’jkl(ekl —epr)

where e} is the total strain inside the inhomogeneity, and e} is the eigenstrain specific to the inhomogeneity. To simplify the problem,
we introduce an equivalent homogeneous inclusion, which is assumed to be ellipsoidal, having the same material properties as the
matrix Cjjx;, but subjected to an effective eigenstrain efjf 7 that ensures the stress and strain inside the equivalent inclusion are
identical to those in the inhomogeneity. The stress inside the equivalent inclusion is given by:

— 5C€ * - c %
Oij = 045 — 045 = k(€5 — €r1)

where e, is the eigenstrain for the equivalent inclusion. For the equivalent inclusion to correctly represent the inhomogeneity, both
the stress and total strain must match between the two systems:

ro_ e _ _c
Oi; = 0ij and €i; = €5

Thus, substituting the stress and strain equations into these conditions yields:

z{jkl(e;ccl - 6;:1) = Cijkl(eczél —en)

C

Since 6;; = ej;, we substitute e}, = Skimner,, into the equation to get:

! * Ik . * ok
Cijkl(sklmnemn —ep) = Cijkt(Skimn€mn — €x1)
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Rearranging the equation, we obtain the relation between the actual eigenstrain e} and the effective eigenstrain ej;:

/ * / 1%
(Clirt — Cijr) Skimn + Cijri)ern = Ciimer

This equation allows us to solve for the equivalent eigenstrain e,,, in terms of the eigenstrain e} of the transformed inhomogeneity.

The stress and strain fields in the matrix and inclusion can now be computed once the effective eigenstrain e

strain inside the inhomogeneity and the equivalent inclusion are identical:

/c

— [ — .. *
€ij = €ij = PijkiCr

The stress inside the inhomogeneity and the equivalent inclusion are also identical:

/ * *
05 = 0ij = Ciji(Skimn€rnn — €k)

*

~n 18 known. The total

The elastic energy inside the matrix must be identical in both the transformed inhomogeneity problem and the equivalent inclusion

problem:

1
EM = —50'1‘]'6%‘/0

The elastic energy inside the inhomogeneity F} and the equivalent inclusion E are given by:

1 1 R

E} = 5oleliVo = 501,(els = ei)Vo
1 1 .

E[ = idijeijO = 50'2']‘(6% — eij)Vo

Thus, the total energy for the solid with a transformed inhomogeneity is:

1
E = E} + EM = —502']'622%

This derivation rigorously connects the stress, strain, and energy fields for a transformed inhomogeneity with those of an equivalent

inclusion, providing a comprehensive framework for analyzing such problems in elasticity.

16.3 Inhomogeneity under Uniform Applied Loads

Consider a solid containing an inhomogeneity with no eigenstrain. The solid is subjected to external loads, and if it were homogeneous
(without the inhomogeneity), the stress and strain fields would be uniform throughout the solid. The primary question is how the
presence of the inhomogeneity affects the stress and strain fields. To solve this problem, we construct the stress and strain fields by

superimposing two sets of fields:

1. First Set: Suppose the solid with the inhomogeneity is subjected to a uniform strain ef;. The stress fields inside the matrix

and inhomogeneity are given by:

A A Al
o;; = Cijrie and o5

e A
j *Cijkzekz

However, this stress field does not satisfy equilibrium conditions unless a body force T; = (o

So of the inhomogeneity.

A A
ij —0i

zj)”i is applied on the surface

2. Second Set: To restore equilibrium, apply a body force F; = =T on Sy. The corresponding stress and strain fields due to this

’
(6]

’
C
body force are of; and ef;.

The elastic stress field inside the inhomogeneity, resulting from the superposition of these two sets of fields, is:

I A ¢ v A ¢
o5 =0 +oi; = Ciiplep + ey)

The total strain field inside the inhomogeneity is:

I A I
€ij = €5 T €ij

At the same time, consider an equivalent inclusion with eigenstrain €5
stress field inside this inclusion is:
I _ _A c * = A c *
0ij = 055 + 05 — 03 = Cijri(er + €y =€)

The total strain field inside the inclusion is:

I _ A c
€ij = €ij 1 €5

in a solid under the same uniform applied load. The elastic

To ensure that the elastic stress and total strain match between the inhomogeneity and the inclusion problems, the following conditions

must hold:

A ' A
Ciin(en + e5) = Cijriler + €t — k)

A c
ijte

A d
e Te;=¢ ij

From the second equation, efjl- = ef;, which when substituted into the first equation gives:

A A
Ciin(en + ei) = Cijriler + € — k)

This can be rearranged to solve for the effective eigenstrain ej;:

(O’L(jkl - Cijkl)Sklmn + Oq;jkl)e:;m = (Oijkl _ Cz{jkl)el?l

This equation expresses the equivalent eigenstrain e},
!
and Cjjp.

n

Application of the Feynman-Hellmann Theorem:
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The Feynman-Hellmann theorem is applied in the context of deriving the total elastic energy F and enthalpy H of the inhomo-
geneous solid. This theorem relates the variation in the total energy of the system to the variation in the applied field.

Specifically, the Feynman-Hellmann theorem leads to the following result for the change in enthalpy AH due to the presence of
the inhomogeneity:

1
AH = i(cz(jkl - Cijkl)eiAjeélVO

where Vj is the volume of the inhomogeneity, and eél is the strain field within the inhomogeneity, which includes contributions from
both the applied strain e,?l and the correction due to the presence of the inhomogeneity itself. The Feynman-Hellmann theorem in
this context is derived by considering the total energy E of the system as a function of the stiffness tensors and the applied strain.

The theorem states:
OF oF 1 A

= —F = —(0,;,;€
8C’ijkl 86,‘?[ 2 * -kl
This expression allows us to compute the change in energy due to a small perturbation in the applied strain or stiffness tensor. In
this case, the enthalpy H is related to the total energy by:

OE

N g
0Cjk1

AC;jk1

Substituting the stress-strain relation into this expression gives the final form of the change in enthalpy as:
1
AH = S0CijuegeinVo

where 6Cjj = C’l{j w1 — Cijkt is the difference in the stiffness tensors of the inhomogeneity and the matrix. To compute the total elastic

energy of the system, consider a reversible path where the inhomogeneity is subjected to a uniform strain ef‘j. The elastic energy for
this state is given by:

1 1 4 1 1 /
E| = iagef‘jVM + 50{‘} e;‘;VO = iagef‘jV + 5(03 — US)G%V@

Where Vj; is the volume of the matrix, Vj is the volume of the inhomogeneity, and V is the total volume of the solid. Gradually
removing the body force results in a final energy Fs, which is the desired solution. The total elastic energy E of the inhomogeneous
solid is given by:

E=F,=E + AWy,

where AW, represents the work done during the transformation. This accounts for both internal and external work contributions.

Using the relation between the equivalent eigenstrain and the applied strain, the total elastic energy and enthalpy of the system
can be derived, yielding the following final expressions:

1 1 & /
E = 503—6{}‘/ - 5(023' - Ug)efjvb

The enthalpy H is obtained by subtracting the work done by the external loading mechanism from the internal energy:

H=E—-AWpy |

This rigorous derivation, combined with the application of the Feynman-Hellmann theorem, provides a comprehensive framework for
understanding the stress, strain, and energy fields in an inhomogeneous material subjected to uniform loads.

17 Cracks

17.1 Ellipsoidal Void
17.1.1 Stress and Strain Relations for an Ellipsoidal Void

Given that the stiffness tensor C’;j . of the inhomogeneity approaches zero, the inhomogeneity becomes a void. The stress field inside
the void must be zero, so the stress-strain relation becomes:

A ' A
0= Cijpiler +ef) = Cijraler; + ek — exy)

This equation reduces to:

A c _ %
€t € = €y

The applied strain 6731 plus the strain inside the void ef, must balance with the eigenstrain ej; of the equivalent inclusion.

17.1.2 Eigenstrain in the Void

The equivalent eigenstrain, which generates no stress inside the void, is related to the applied stress:

1
* A
e =——0
) kl
J C’ijkl

The total strain in the void, given by the eigenstrain of the equivalent inclusion, is:

I A c __ %
ij = €ij T €ij = €

(&

This ensures zero stress within the void since the total strain equals the eigenstrain.

17.1.3 Enthalpy Calculation

The change in enthalpy AH of the system due to the presence of the void is given by:

1
A %

1 /
AH = *(Cz{jkz - Cijkl)eflj@ilvo ~ 73

2

A

The eigenstrain e]; can be explicitly solved using the applied stress o}, reinforcing that the stress inside the void cancels the applied

stress.
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17.2 Penny-Shaped Crack

A penny-shaped crack is modeled as an ellipsoidal void where the axis ¢ approaches zero while the other two axes, a and b, are equal,
i.e., a =b and ¢ — 0. This configuration leads to a circular disk-like crack in an infinite elastic medium.

17.2.1 Eshelby’s Tensor for Penny-Shaped Crack

Derivation of Eshelby’s Tensor Components:

(_l

Eshelby’s tensor S;;x; relates the eigenstrain e}, within the inclusion to the resulting strain e5; in the material:

c _ Q.. *
€ij = OijklChl

For an ellipsoidal inclusion, Eshelby’s tensor is generally a function of the aspect ratios of the inclusion. In our case, for a penny-shaped
crack where ¢ — 0 and a = b, the non-zero components of the Eshelby tensor are determined as follows:
1. Component Si;11: Consider the geometry where the crack lies in the x1-x5 plane. The component Sy111 is given by:

m(13—8v) ¢

1 = 320-v) a

This expression is derived by evaluating the Eshelby tensor in the limit as ¢ — 0, which simplifies the general expressions for the
tensor components.

2. Component Si133: Similarly, for the component S1133, which relates the eigenstrain in the x3 direction to the resulting strain
in the x; direction, we have:
(7 —8v) ¢
16(1—v)a

The derivation follows by considering the effect of the eigenstrain in the x3 direction on the strain in the z; direction for the
penny-shaped crack.
3. Component Si512: The component Si212, which is related to shear deformation, is given by:

S1133 =

(3 —4v)

C
22510 @

This component is derived by analyzing the shear response of the material due to the eigenstrain in the z1-x2 plane.

17.2.2 Eigenstrain and Stress in Penny-Shaped Crack

* .
T

Derivation of Eigenstrain ¢

For a penny-shaped crack under an applied tensile stress o4, the eigenstrain components are related to the applied stress and
Eshelby’s tensor:

2u 13pme
J— A = _— * ...
711 < v 16(1—u)a> ‘nt

To derive this, we start by considering the stress-strain relationship in the material:

0ij = Uijkl€kl

where Cjj;i; is the stiffness tensor for the isotropic material. The total strain e;; in the material is the sum of the applied strain e

i
and the eigenstrain e7;. Therefore, the stress is:

0ij = Ciji(efy + €x)

Given that the stress inside the crack is zero, the applied stress must be balanced by the eigenstrain-induced stress:

O'A

*
ij = —Clijrier

Now, for the penny-shaped crack, the eigenstrain component ej; is derived considering the symmetry and the specific components of
Eshelby’s tensor:

A ( 2u 13ume

—on=\-1— T6(1 = V)a> e}; + (other terms)

where p is the shear modulus, and the terms involving Eshelby’s tensor components are included to account for the interaction between
the applied stress and the eigenstrain.

17.2.3 Limiting Behavior of Eigenstrain e3,

As ¢ — 0, the eigenstrain e} in the direction normal to the crack tends to infinity, but the product e3s;c remains finite. This leads to:

2(1 — V)a A
€33 = TU%

This expression is derived by considering the balance of forces and the boundary conditions on the crack surface, ensuring that the
stress inside the crack is zero.

17.3 Energy Considerations and Griffith Criterion

Derivation of Enthalpy Change AH:
The change in enthalpy AH due to the presence of the crack is calculated using the energy associated with the eigenstrain:
1
AH = */ 0ij€ij dVv
2 Jv

Substituting the expression for o;; and integrating over the volume of the crack, we get:

4(1 —v)
AH = _T(O—é%)2a3
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This result quantifies the energy difference between the cracked and uncracked states.
Derivation of Griffith Criterion:

The Griffith criterion for crack growth is derived from the Gibbs free energy AG, which includes the enthalpy change AH and
the surface energy ~ associated with the crack surfaces:

AG = AH + 2rvya? ‘

To find the condition for crack growth, we set the derivative of AG with respect to a to zero:

dAG  dAH n d(2mya?)

= =0
da da da
dAH
—— +4mya =0
da
Substituting the expression for AH, we obtain:
8(1—v), 4

_T(O—SS)Q(]? + 47T’7a = 0

Simplifying, we get the critical stress 0543 required for crack propagation:

A_ [ THY
738 = (1-v)a

This is the Griffith criterion, which determines the stress at which the crack will grow, leading to material failure.

17.4 Slit-like Crack
17.4.1 Derivation of Eshelby’s Tensor in the Slit-like Crack Limit

Given the geometry of the slit-like crack, the limits ¢ — oo and b — 0 are applied to Eshelby’s tensor for an ellipsoidal inclusion in
an isotropic medium. The Eshelby tensor components are given as follows:

1 b% + 2ab b
= 1-2
St 201 — ) [(a+b)2 +( l/)a—i—b}
a® +2ab a
Si122 = (1—-2v) b
22 2(1 —v) a+b
a
52211— 1—1/ [ 1—2u)a+b]
As b — 0, these simplify to:
1
S1111 — m
2
a
52222 = oA T N D)
1-2v
S1120 — *m
1—-2v
Sao11 — 30— 1)

17.4.2 Equivalent Eigenstrain

For the slit-like crack, we assume that the eigenstrain tensor components are given by ej; and e3,, with all other components being
zero due to the geometry and loading conditions. The equivalent eigenstrain in the limit b — 0 and ¢ — oo is obtained by solving the
following system of equations:

_gA___2+ab . e
11 — (1—1/)(04-'—[))2/1) 11 (1 —V)(a+b)2u 22
B ab y ab+2®
—ty = - - -
22 (1 . Z/)(a, _|_ b)gy’ 11 (1 . y)(a + b)g/u’ 22

Taking the limit b — 0 and assuming o} = 0, we have:

0 2u bp
=— el — e
1-v " (1-v)a *
bu bu
_ A — * *
722 (1- V)aen (1- I/)CL622

Defining e* = lim;_,¢ €550 and allowing e]; to remain finite, we solve these equations to obtain:

1—v)a
e*:( ) 512
o

(1—v)osy

2u
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17.4.3 Griffith Criterion for Slit-like Crack Growth

Using the derived eigenstrain, the total enthalpy per unit length of the crack can be computed as:

— v)m(ogy)%a®
2p

AH/c= 7(1

The driving force per unit length for crack growth is then:

78AG/C _ (1 —v)m(odh)?a

ftot = da 1

747

Setting the critical condition fi, = 0 gives the Griffith criterion:

oA Apry
2 (1-v)ma

17.4.4 Stress Intensity Factors and Crack Tip Fields

To evaluate the stress intensity factors, we consider the stress field near the crack tip, denoted by r (distance from the crack tip) and
0 (polar angle). The stress field is singular as r — 0 and follows:

Ky 5 g 1 36
Opp = —— | —CcOS = — = cos —
2mr \ 4 2 4 2

Kr (3 0 1 39)
Oy = — COS = + — COS —

2r \ 4 2 4 2

Org = Ky lsing—i—}sin%
0 4772717 2

[\)
;
<

The stress intensity factor K; is then defined as:

‘K[ZO‘TT 2mr asr—>0‘

For the slit-like crack under uniform tension, the stress intensity factor simplifies to:

S )
K; = \/maoyy

17.5 Flat Ellipsoidal Crack

A flat ellipsoidal crack represents a case between the two extremes of penny-shaped and slit-shaped cracks. This type of crack has an
ellipsoidal shape where a > b and ¢ — 0. The goal is to understand whether the crack will tend to become more elongated (slit-like)
or less elongated (penny-shaped).

17.5.1 Eigenstrain Calculation

Let us consider a simple tensile stress applied in the 0343 direction, with all other components of the applied stress being zero. The
key idea is to keep the product ej;c constant as ¢ — 0. The solution for the eigenstrain e* is given by:

*_(1_I/)b A
© T LB 7

where E(k) is the elliptic integral of the second kind, defined as:

w/2
E(k) = / V1 — k2 sin? w dw
0

and k is given by:
k=1/1——
The eigenstrain e* is a function of the applied stress 4}, Poisson’s ratio v, the semi-minor axis b, and the elliptic integral F(k).

17.5.2 Enthalpy Change Calculation

The extra enthalpy due to the presence of the crack is calculated as:

1 4 2
AH = —50'?36§3 . gabc = —gafge*ab
Substituting the expression for e*:
AH = 2r(1-v) ab?

3u W(UQ)Q

This expression captures the change in enthalpy due to the crack and shows its dependence on the crack dimensions a and b, the
applied stress U%, and the material properties.
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17.5.3 Gibbs Free Energy and Griffith Criterion

The Gibbs free energy, which includes the surface energy of the crack, is given by:

27(1 —v) ab?

AG = — =
¢ 3u E(k)

(0?3)2 + 2myab

To find the conditions for crack growth, we differentiate the Gibbs free energy with respect to a and b:

OAG
da =0
OAG
ob =0

These conditions provide the critical stresses required for crack growth in the a and b directions:

733 b(1— 1) [(—1 + 2k2)E(k) + (1 — k2)F (k)]

Aa \/ 3uyk? B2 (k)

Ab 3uyk?E2(k)
735 T\ (1 — ) [(1+ K)E(k) — (1 — k2)F(k)]

Here, F (k) is the elliptic integral of the first kind:

F(k)z/OW/Q dw

1 — k2sin®w

These expressions indicate whether the crack will grow in the a or b direction, depending on which stress component reaches its critical

value first. If U:gb < Ué%’a, the crack will tend to become more penny-shaped. Otherwise, it will become more slit-like.

17.6 Crack Opening Displacement: Rigorous Derivation

We consider the elastic fields (displacement, strain, and stress) of a slit-like crack under tensile loading stress o45. The goal is to
determine the crack opening displacement d(z) as a function of position z.

Let d(x) be the distance between the crack faces as a function of x. In a purely elastic model, d(£a) = 0, i.e., the crack tip
opening displacement is zero. To determine the displacements along the crack face, we consider an equivalent inclusion problem. The
displacement field u;(«) for an inclusion is given by:

() = ejjz;
where ej; is the eigenstrain of the inclusion. Since we are dealing with a slit-like crack, the displacement in the z-direction (u1) is
zero, and the displacement in the y-direction (uz) on the crack face is given by:

"
Uz = €32y

Here, €3, is the eigenstrain component associated with the opening of the crack. The equivalent inclusion is an ellipse with semi-axes
a and b (with b — 0 in the slit-like crack case). The relationship between x and y on the crack surface is:

The eigenstrain e, is related to the applied stress o4, by:

Uf‘za(l —v)
I

*
€a2 =

where g is the shear modulus and v is Poisson’s ratio. Substituting the eigenstrain into the displacement expression:

A 2 A
1-— 1-
u2(z)022a(u v) /172 Uzz(u v) a2 — 22

A
1—
= ug(x)za”(u V) a? — z?

The crack opening displacement d(z) is twice the displacement ug(x):

Al —
d(x) = 2022(21/) a2 — 12

This is the crack opening displacement in plane strain. In plane stress conditions, the displacement is modified as:

d(z) = 270512 a? — z2
n(1+v)

Using the expression for d(z), we calculate the enthalpy of the crack by measuring the work done while opening up the crack. In

plane stress, the enthalpy change is given by:

AH, = —%/ d(x)osy da

—a

%)



Substituting the expression for d(x) and evaluating the integral:
1 sh(1 — ¢
AH, = —§a§42 . 2M/ Va2 —ax?dx
I —a

The integral evaluates to:
a a2
/ \/(12—:1c2d:r:L
—a 2

Thus, the enthalpy is:

1—-v
AHC = W(U%)2ﬂ'a2

This matches the previously calculated enthalpy, confirming the correctness of the derived crack opening displacement.

17.7 Stress Intensity Factors

Let r be the distance to the crack tip. The stress field in the vicinity of the crack tip exhibits a singularity of the form:

The stress intensity factor K; is defined as:

The three modes of crack opening are:
e Mode I: Tensile mode, K7y,
e Mode II: In-plane shear mode, Ky,
e Mode III: Out-of-plane shear mode, Kij;.

Using Eshelby’s tensor, the stress intensity factors can be related to the eigenstrain inside an inclusion. The auxiliary tensor D%y is:

N ab [*" (z2);' 2r2k(7)
ikl = "o | Tda

with k(v), B, and ~ defined as functions of the geometry. For x > a, the stress field on the crack plane is derived using the Eshelby
tensor and auxiliary tensor components. The stress intensity factor for Mode 1 is:

A
K1 =+/maos,,
A

where 04, is the applied stress normal to the crack plane, and a is the half-length of the crack.

17.8 Another Derivation of Crack Extension Force

Let’s Define the Problem and Initial Conditions. Consider a two-dimensional crack under uniform tension o9 = 04. The crack
half-size is a, and we analyze the situation where the crack extends by a small amount da, making the new crack half-size a + da.

Initially, additional traction forces TjjE are applied on the surfaces of the crack in the region [a,a + da] and [—a — da, —a] to keep
the crack shape unchanged. The traction forces are then removed gradually, allowing the crack to extend freely. The work done by
these forces corresponds to the change in system enthalpy §H. Let’s now Compute the Work Done by Traction Forces. The applied
traction forces on the surfaces of the crack are given by:

T (@) = o), T} (2) = ~0(a)

The crack opening displacement is defined as:

d(x) = uy —uz

The change in enthalpy §H is computed by the work done by the traction forces over the region [a,a + da):

a+da
— +,,+ -
6H—/a (T;7uf + T uy)dz

Since T = —Tj+, the equation simplifies to:
a+da
0H =2 / T;ruj+ dz
a

Substituting T j+ = 092(x) and using the expression for d(z):

a+da
0H = 2/ o92(z)d(z) dx

We shall now Evaluate the Crack Opening Displacement d(z). The crack opening displacement for a two-dimensional crack under
uniform tension is:
JA(l — V)

I

d(z) =2 a? — x?

For small da, d(x) near x = a can be approximated as:

Using the above approximation in the expression for  H:

a+da
2 1—
6H:2/ O'AM\/QG(SGCZJ)
I
a
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Simplifying the integral and keeping only terms linear in da:

40%(1 —v) atoa x
OH = A~ 5q —dx
2 a V 2 —a?

The integral can be evaluated, and in the limit da < a:

B 40%(1 —v) wéa(2a+da) wai(l —v) sa
H 4 o

oH

Let’s Derive the Crack Extension Force. The crack extension force is defined as:

_O0H o4 (1 —v)

f= da 1

This result matches the crack extension force obtained by previous methods, confirming the correctness of this alternative derivation.
Thus, the very rigorous derivation leads to the final expression for the crack extension force:

(1-v)oima
%

=

This matches the previously derived expressions, demonstrating consistency across different approaches.

17.9 J-integral as Driving Force

The J-integral, denoted as J;, in a three-dimensional elastic medium represents the force on an elastic singularity in the i-th direction:

Ji = / (wnz — Tjujﬂ') dS
S

where w is the strain energy density, n; is the unit normal vector to the surface S, T} is the traction vector, and u; ; is the displacement
gradient. In two dimensions, for a crack along the z-axis, the J-integral simplifies to:

J:/ <wdyTau) ds
T ox

where I' is a contour encircling the crack tip. The strain energy density w is:
€ij
w= / oijde;;
0

H=F— / T;Xtuj ds
St

E:/de
%

_oH
0&;

To compute f;, we determine the variation of total enthalpy dH as the crack tip moves by §&;:

The total enthalpy H of the system is:

where F is the total strain energy:

The driving force f; on the singularity at &; is:

i =

oH = / SwdV — / T u; dS
\4 St

Consider a sub-volume V{ with surface Sp, and Vg =V — Vj:

/ owdV = / Uij(;eij dv
Ve Ve

6de=/ aij5uj,idV=/ (0ijouy;),; dV
Ve Vi Ve

Using Gauss’s Theorem:

/ 5de:/ TjeXté'udef/ T;éu;dS
Ve St So

ow ou;
5H:/5wdvf/ TgXt(su'dS:f/ f§idV+/ T.—L5¢;dS
% s 0 vo 08 ¢ s, 0& .

Substituting into d H:

Therefore, the driving force f; is:

66

fi =

/ (wnl — Tjuj,i) dS = JZ
So

17.10 Invariance of J-Integral

The J-integral is a fundamental quantity in fracture mechanics, representing the driving force on a crack. The invariance of the
J-integral with respect to the surface or contour on which it is evaluated is a critical property that makes it a powerful tool in the
analysis of crack problems. The J-integral in its general three-dimensional form is defined as:

ow ou;
= —dV — T,—2d
Ik v, O v o I B S

where:
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e w is the strain energy density,

e T} is the traction vector,

u; is the displacement field,

x) is the spatial coordinate, and
e S is a surface surrounding the crack tip.

To prove the invariance of the J-integral, we start by considering the derivative of the strain energy density with respect to the spatial
coordinate xy:

ow ow 8eij Beij

7 Y g Y

Oz, Oeij Oxy, “ Oxy

Using the relationship between strain and displacement gradients:

o 1 5‘ui + é)uj
i = 2 al‘j 8.’L‘1

we can express the derivative of the strain with respect to x as:

8€Z‘j - 1< 82ui + 82uj )

ox, 2 O0x;j0r,  Ox;0xy

Substituting this into the expression for g—;‘;, we obtain:

ow 0?u; 0 ( (‘3uj)

ow _ _ ]
Oxy, Y OxRdx;  Ox; \ Y Oxy,

The equilibrium condition ;;; = 0 has been used in the last step. We now consider the J-integral over a closed surface Sy containing

no defects. Using the expression for 2% the J-integral becomes:

Oxy
_ [ 9 (, 0w\ Ouy
Jy = /V o <a” (%k) dv /S 0 T; o ds

Applying the divergence theorem to the volume integral:

ou; ou;
Ji = niai-J—T-]) ds
k ~/So ( Jaxk J&xk

where n; is the outward normal to the surface Sy. To prove that the J-integral is invariant with respect to the contour or surface
used in its evaluation, consider two contour lines I'y and I'y around the crack tip in a 2-dimensional problem. If we take a complete
contour I' =T'; + BT —I's + B~ that encloses no singularities, the J-integral over this contour must be zero:

J(T) = J(T1) = J(T2) + J(BT) + J(B)
Since J(B*) = J(B™) (because dy = 0 and T = 0 on the crack faces), we conclude that:
J(Ty) = J(Ty)

This demonstrates the invariance of the J-integral.

17.11 Applications of J-Integral

Consider a very long solid slab with a crack in the middle. The top and bottom surfaces are subjected to constant displacement
boundary conditions, and the left and right ends are subjected to zero surface traction boundary conditions. The J-integral in two

dimensions is expressed as:
0
J:/ (wdy—T “) ds
T 8x

where I' is the contour surrounding the crack tip, w is the strain energy density, and 7" is the traction vector.
1. On S; and Sy, dy = 0 and % = 0, hence the contributions to J are zero.
2. On S; and S5, w =0 and g—; = 0, leading to zero contributions as well.
3. On S3, w = W andg—g:O.

Therefore, the total J-integral becomes:
J = wsoh

where h is the height of the slab.

Consider a two-dimensional crack with a blunt tip. The J-integral for this configuration simplifies to:

J:/wdy
r

This integral represents the average strain energy density around the crack tip.

Consider a mode-I crack with stress intensity factor Kj;. The J-integral is evaluated over a circular contour I' with radius = in
the limit » — 0. The stress fields around the crack are given by the leading singular terms in polar coordinates (r,6):

Kr <5 0 1 30)
Opp = —F— | —COS—= — —COS— | +...

2mr



The strain energy density w is:

w = 5 (009609 + oprerr + 2Jr96r9)

Substituting the stress fields into the expression for w, the J-integral can be evaluated as:

J=1lim [ wdy

r—0 r

The final result is:
K7
T= 5

where £’ is the effective modulus.

18 Dislocations

18.1 Imtroduction to Dislocations

The concept of dislocations was introduced by Volterra in 1907 as a mathematical construct to model discontinuities in a solid mate-
rial. Dislocations are line defects within a crystal structure, where atoms are misaligned. These defects are crucial for understanding
the mechanical behavior of materials, particularly their plasticity.

Dislocations remained a purely theoretical construct until the 1930s, when Taylor, Orowan, and Polanyi independently proposed
that dislocations are responsible for crystal plasticity. They suggested that the motion of dislocations under stress could explain the
actual yield stress observed in metals, which was much lower than previous theoretical predictions.

The theoretical strength of a perfect crystal, 7, is the stress required to cause plastic shear deformation across an entire slip
plane. This theoretical stress is much higher than the experimentally observed yield stress, which is due to the presence of dislocations.

Let’s explore a Mathematical Representation of Dislocations. Consider a perfect crystal subject to shear stress 7 along a plane
A, as illustrated in Figure 7.1. The shear stress 7(x) required to displace the upper half of the crystal by a distance z relative to the
lower half is a periodic function due to the crystal’s atomic structure:

where:
e i is the shear modulus,
e b is the magnitude of the Burgers vector (which represents the magnitude of lattice distortion),
e a is a constant related to the atomic spacing.

The maximum shear stress, known as the theoretical critical shear stress 7, occurs when « = b/2:

b

Tth = 5

This theoretical critical shear stress 7y, is significantly higher than the experimentally observed yield stress in metals. The discrepancy
arises because real crystals contain dislocations, which lower the stress required to move atomic planes relative to each other. The
experimentally measured yield stress is much lower than the theoretical prediction because dislocations provide a mechanism for
plastic deformation at much lower stress levels. The movement of dislocations through the crystal lattice under applied stress enables
plastic deformation to occur more easily, thus reducing the yield stress.

This understanding revolutionized the field of materials science, providing insights into why materials deform plastically under much
lower stresses than would be expected from a perfect crystal model.

18.2 Dislocation’s Effects on Mechanical Properties

Dislocations play a critical role in the mechanical behavior of materials, especially in plastic deformation. When a material is subjected
to stress, dislocations move, enabling the material to deform plastically. This section rigorously examines how dislocations affect the
mechanical properties of crystals, particularly metals and semiconductors.

The stress-strain curve of a crystal is linear up to the yield stress, beyond which dislocations begin to move, and plastic defor-
mation occurs. As plastic deformation progresses, the length of dislocations within the crystal increases, necessitating higher stresses
for continued deformation. This phenomenon is known as work hardening.

18.2.1 Orowan’s Law

One of the key relationships describing the plastic deformation due to dislocations is Orowan’s law, which relates the plastic strain
rate ép1 to the dislocation density p, the Burgers vector b, and the average dislocation velocity v:

€pl = pbv
where:
e p is the mobile dislocation density (in units of m=2),

e b is the Burgers vector,
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e v is the average dislocation velocity.

Derivation of Orowan’s Law:

Orowan’s law can be derived using Betti’s theorem. The plastic strain rate é, is proportional to the rate at which dislocations
traverse a given area. Consider a volume element of area A through which dislocations move. If n dislocations pass through A per
unit time, the plastic strain rate is given by:

. bxn
Epl:T

Since n = pvA, where p is the dislocation density and v is the velocity, we have:

This is Orowan’s law. Let’s analyze the Stress-Strain Curve Behavior in BCC Metals. For body-centered cubic (BCC) metals such
as molybdenum, the stress-strain curve under uniaxial tension at a constant strain rate typically shows three stages of deformation:

1. Stage I: Immediately after yielding, plastic deformation occurs with little increase in applied stress. Dislocations primarily
glide on parallel planes with minimal interaction.

2. Stage II: At higher deformation, the slope of the stress-strain curve increases, indicating work hardening. Dislocations on
several non-parallel slip planes interact, blocking each other’s motion and forming dense, entangled structures. The dislocation
density increases significantly.

3. Stage III: The hardening rate decreases as recovery mechanisms begin to annihilate dislocations, leading to a saturation in
dislocation density.

Dislocations also influence fracture behavior. In ductile materials, a crack tip can nucleate many dislocations, which shield and
blunt the crack tip, leading to a higher critical strain energy release rate J. for crack propagation and higher fracture toughness.
Additionally, dislocations can initiate fracture, particularly during fatigue processes. Under cyclic loading, dislocations multiply and
can form pile-ups with high local stresses, leading to crack nucleation even in ductile materials.

18.3 Elastic Fields of a Dislocation Loop

A dislocation loop is a closed dislocation line in a crystal lattice that generates elastic fields within the material. The elastic fields
associated with the dislocation loop include stress, strain, and displacement fields. These fields can be derived using continuum
mechanics and elasticity theory.

Consider a dislocation loop L in an elastic medium, characterized by a Burgers vector b. The displacement field u(x) at a point x
due to the dislocation loop can be derived using the Green’s function approach:

u;(x) = ﬁbjGij (x —x')dL(x")

where G;;(x — x’) is the Green’s function, representing the displacement at point x due to a unit force applied at point x’. The
Green’s function for an infinite isotropic medium is expressed as:

Gij(x —x') =

87 (1 1— V) {5“7{ L w’i?)nng - x;)]

where r = |x — x| is the distance between the points x and x’. The strain field e;;(x) associated with the dislocation loop is obtained
by differentiating the displacement field:
1 <8ui(x) N 8uj(x))

2 61‘]‘ 83:1-

Substituting the displacement field expression, the strain field becomes:

1 0Gn(x —x)  0C;(x—x
eij(x) = §%Lbk ( ké); X) + jk(‘(;:; X )> dL(X/)
J T

eij(x) =

Let’s analyze the Stress Field Due to a Dislocation Loop. The stress field o;;(x) is related to the strain field through Hooke’s law:
0ij(x) = Cijrieri(x)
where Cj;1; is the fourth-order elasticity tensor for an isotropic material:
Cijki = M0kt + 1(dikdj1 + dudjk)

Substituting the expression for the strain field into Hooke’s law, we get:

1 oG -x')  0Gj(x—x
0ij(x) = iﬁcijklbk < klg;l x) | ]lg;k x )> dL(x")

Due to the symmetry of the problem and the properties of the Green’s function, the expressions for the strain and stress fields can
be further simplified.

For complex dislocation loop geometries, the integrals in the expressions for the displacement, strain, and stress fields are often
evaluated numerically. The loop is discretized into segments, and the fields are computed as the sum of contributions from each
segment:

N
oij(x) = Z o558 (%,x's)

n=1




18.4 Self Energy of a Dislocation Loop

The self-energy of a dislocation loop refers to the energy stored in the elastic fields due to the dislocation itself. It is an important
quantity as it influences the mechanical behavior and stability of dislocations within the material. This derivation rigorously follows
the principles of elasticity theory to compute the self-energy of a dislocation loop.

The self-energy of a dislocation loop F can be evaluated by integrating the strain energy density w over the volume V of the

material:
E= / wdV
v

For a linear elastic material, the strain energy density is given by:

1
W = £0;5€j

2

where 0;; and e;; are the stress and strain tensors, respectively.

An alternative and more elegant method to calculate the self-energy is by considering the reversible work done to create the dis-
location loop. Imagine creating the dislocation loop by applying traction forces F f and F;" on the surfaces S* and S~ of the loop,
respectively. These surfaces are displaced by b, the Burgers vector, relative to each other. The work done W to create the dislocation
loop is given by:

1 1

_ +,,t —=
W—5/5+Fjuj ds*i/S,Fj“j ds

+

Using the relation u; — u; = bj, the above expression simplifies to:

1
sz/akjngbde
2 S

The energy of a dislocation loop obtained from linear elasticity theory is actually singular (infinite) without a proper truncation scheme.
This is because, at the core of the dislocation, the strain fields become very large, leading to a divergent integral for the self-energy. To
address this, a core cutoff radius is introduced, truncating the fields at a small distance from the dislocation line to avoid the singularity.

For practical computations, especially in numerical simulations, dislocation loops are often represented by a set of connected straight

dislocation segments. The stress field from each segment only has physical meaning when summed over the entire loop. The total
stress field of the dislocation loop is obtained by summing over the stress fields of individual segments:

JLOOP Zabeg (n) l‘(n+1) ,b)
n=1

The stress and displacement fields of a dislocation loop in isotropic elasticity can be reduced to line integrals over the dislocation line.
For example, the displacement gradients can be expressed as:

ue};‘ht'c(x) = f Gjnthlmnbmvaik,l(m — x’) dS(x’)
L

This approach, known as Mura’s formula, is valid for evaluating fields around a complete loop and represents the continuous distribution
of the dislocation’s influence.

18.5 Force on a Dislocation

The force acting on a dislocation line is a fundamental concept in dislocation theory, as it determines how dislocations move within a
crystal lattice under applied stresses. This section rigorously derives the force on a dislocation using the principles of energy variation
and the Peach-Koehler force formulation.

Let’s now analyze the Energy Variation and Virtual Displacement. Consider a dislocation loop L with line direction £. Let the
loop undergo a small virtual displacement dr(z), where dr(z)-£€(z) = 0 because a line moving along itself has no physical consequence.
The energy change JE due to this displacement can be expressed as:

B = — jq{L £(z) - or(z) dL(z)

where f(z) is the line force (per unit length) on the dislocation loop L. The force f(z) can be found by differentiating the total energy
E of the system with respect to the virtual displacement or(z).

The total energy E of a system of N dislocation loops can be written as the sum of the loop self-energies E; and the interaction

energies W;; between the loops:
N

E= ZE+Z Z Wi

=1 j=141

To calculate the force on a particular loop L;, we need to compute the variation of the total energy with respect to the virtual
displacement dr;(x) of loop Li:

oFE oW1,
f = — = ‘7
! ory(z) (51-1 Z ory(z

Wiy
=2 Frra) ) corresponds to the interaction force.

The first term 51‘?1]5(;) corresponds to the self-force, while the second term E

Let’s analyze the Interaction Energy and Peach-Koehler Force. For simplicity, consider a system with only two dislocations, so
that we only have one interaction term Wis:

W12:/ ag)(a:)ngl)bg-l) dS(z)
S1
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where Ug)(m) is the stress field due to the second dislocation loop, nl(-l) is the normal to the surface of the first loop, and b§-1) is the

Burgers vector of the first loop.

The variation of Wiy due to the virtual displacement dr(z) of the first loop is given by:

e = [ o @1 ds(z)
651

Using the relation nd.S = dr x vdL, we can express the variation as:

Wiz = %LUS (z )b(l €imnOTm (T )'U 2 ( ) dL(z)

This leads to the expression for the force per unit length on the dislocation loop:

fm( ) eznmgw ( )b(l) (1( )

In vector notation, this is written as:
f=(oc-b)x¢&

This expression is known as the Peach-Koehler force. It describes the force on a dislocation due to an applied stress field, which

can originate from other dislocations, external stresses, or any other source. The self-force contribution 55E(1) is generally divergent

because the self-energy E; of the dislocation loop is singular. This divergence is typically handled by introducing a truncation scheme
or a non-singular dislocation model, which is discussed in the subsequent sections of the document.

18.6 Non-Singular Dislocation Model

In classical dislocation theory, the stress field and self-energy associated with a dislocation are singular at the dislocation core. This
presents difficulties in calculating the self-force on a dislocation. The non-singular dislocation model aims to remove these singularities
while maintaining the analytical structure of the original theory. This derivation will rigorously follow the non-singular dislocation
model’s development, which involves distributing the dislocation core over a finite region.

The stress field for a dislocation loop in the non-singular model is obtained by convolving the classical (singular) stress field with a
spreading function w(x). Consider the classical stress field given by Mura’s formula:

Jaﬁ(if) = j{:C’aﬁklelnthqmnbmvn(x')kayq(x — $/)dL((£l)

In the non-singular theory, the stress field is obtained by convolving this expression with a spreading function w(x), which spreads
the dislocation core over a finite region:

Tap(®) = 0ap(2) * w(z)

A commonly used spreading function is:

15a*

w(m) = 87T(|x|2 + CL2)7/2

where a is a small parameter characterizing the spread of the dislocation core. The convolution of Gy 4(x — ') with w(z) modifies
the singularity at the core:

tr@—2) = [ Gupaler — 2Yula” — a')da”
This convolution results in a non-singular Green’s function:
Rxw(x) =R, =V R?>+a?

Thus, the non-singular stress field becomes:

ons(x) 7{ 00,0, R, [ melmadajﬂ + b €impdl, ] (lu— ” 7{me€imk (0;0408Ra — 6030:0,0,R,) dx);

The self-energy of the dislocation loop in the non-singular model is derived similarly to the classical model but using the non-singular
Green’s function R,:

1 1
E = fl% 167Tb b Ra ppdl'idl'; + mEikléjm7lbkmea7idelde;

The interaction energy between two dislocations in the non-singular model is given by:

Wia = ——f (by X by) - (dLy x dLo)V*R, + —]{ 7{ -dLy)(by - dLo)V*R, + —7{ (b1 x dL1) - VV R, - (by x dLs)
L1 L2 L1 L2 Ll L2

With the non-singular stress field, the Peach-Koehler force can now be safely applied without ambiguity:

f= (0" b) x|
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