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Current level of development in the sphere of deep learning allows replacing existing domain-specific algo-
rithms for military simulation with approximating neural networks. Hyperparameter search allows finding network’s
architecture, appropriate for a task. This work describes that process for the task of predicting area of optical visibility,
taking a fragment of a digital map as input and proposes ancillary architectural solutions for stitching building blocks
together, assuring their conformation for performing search among their possible combinations within the architectural
space. The final proposed result is a channel-wise attention U-Net with an encoder, based on ResNet50 backbone.
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Figure 1: Radar coverage based on terrain

In ground forces simulators [2] every Figure 2: Areas of optical visibility
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Proposed approach

The area of optical visibility is calculated
based on matrixes of height and surfaces for a
correspondent patch of area. Usage of the exist-
ing military simulation system [2] provides lim-
itless amount of training data. U-Net architec-
ture [3] is widely used for the purpose of pro-
ducing a mask within the boundaries of the orig-

Height matrix

inal image, for task like semantic segmentation.
In our case it takes three channels: ideal area,
height and surface matrices (U-Net is modified
in order to take three input channels) and must
produce an area of optical visibility within cir-
cumscribed area around a hypothetical observer,
situated at the center point. Then the output can
be compared with the ground truth area of visi-

bility given from a simulator — Figure 3.
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Figure 3: Area of visibility prediction as a mask

However, the usage of U-Net per se,

hasn’t proved to work well for this. During the
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research, several approaches were considered,

including attention U-Net [4] — Figure 4.
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Figure 4: Attention U-Net model [4]



The key idea behind this model is usage
of attention gates which learn to suppress irrele-
vant regions in an input image while highlight-
ing salient features useful for a specific task.

Usage of Weights & Biases (W&B) de-
veloper platform [5] has proved to be effective
for search of optimal hyperparameters such as:
learning rate, batch size, dropout values and
others. However, search must also be conducted
in the architectural space, because of a plethora
of possible solutions for particular parts of at-
tention U-Net, like usage of spatial, channel-
wise or combined attention; usage of a model
that is trained from scratch, like in [6] or usage

of a pretrained backbone as an encoder; way of
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upsampling, like a 2D transposed convolution or
a bilinear method; numbers of internal parame-
ters in different attentions blocks and others.
Within W&B sweeps a tested model often must
be rebuilt with different architectural parts, in-
stead of just picking a model from list of pre-
configured, because of the exorbitant amount of
possible combinations. Chosen parts must
match each other, like in a case when a number
of output channels of a convolutional layer is a
tuned hyperparameter, and a consequent fully
connected layer must conform that. The follow-
ing architecture is proposed for assuring com-

patibility of separate building blocks — Figure 5.
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An abstract class Block is inherited from
PyTorch nn.Module and presents a set of ab-
stract methods to be redefined in subclasses. A
forward method represents a Template method
pattern [7] which defines a set of consecutive
steps (hook_before_forward, block_forward and
hook_after_forward) implemented in sub-
classes. In the current model architecture some
blocks contain others, representing a nested
structure, like Upscaling_conv_block may con-
tain Channel_wise_attention_block which con-
tains  PSI_for_channel wise_attention_block.
The parameters of nested blocks are set by a
higher level block during the first call of
block_forward through calling
set_shapes_forward method on nested blocks.

Each nested block may have a different signa-

PyTorch framework

‘ Block @ ‘

Upscaling_conv_bloc‘ti,

ture of parameters to configure, so it in turn
calls a not abstract method set_shapes_kwargs
defined in a Block class which checks the
matching of number and shapes of passing ar-
guments (just *kwargs) and calls a method ac-
cept_shapes_forward, which is implemented by
a nested block and has a specific set of parame-
ters in a signature (not just *kwargs) — Figure 6.
Such a gimmick allows having self-descriptive
signatures like accept_shapes_forward (self,
_gate_plus_x_num_ch: int,_x_channels_number
- int) in PSI_for_channel _wise_attention_block
class, instead of just passing a dictionary of
keywords and parsing them uniquely, depending
on a building block. It increases code readability
and also allows checking and handling possible

mismatch without generating an exception.
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Figure 6: Steps of shape initialization during the forward method call



Abstract_element_bulider class pro-
vides a set of methods for getting building
blocks, based on current values from W&B
during sweeps for hyperparameter search —
Figure 7. Two concrete implementations of it
(WandB_elementbuilder and Soli-
tary_elementBuilder) allow switching be-
tween the modes of performing W&B sweeps

and manual experiments.
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Figure 7: Abstract element builder class

Abstract_train_mode class provides a
set of abstract methods for getting parameters,

necessary for the training process — Figure 8.
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Figure 8: Abstract train mode class

Its main purpose is to support two cas-
es. One of them — End-to-End testing that is

provided by Sanity check train_mode im-

plementation, in order not to wait till the end
of sweeps with all the training and testing da-
ta, like with a Real_train_mode implementa-
tion, — second case for real training. Another
implementation is a Prelimi-
nary_eval_train_mode class, which is inherit-
ed from the Real_train_mode. It provides a
way of cutting off obviously bad solutions
with training on partial amount of data and
number of epochs. It’s a means of preliminary
evaluation before other sweeps with the Re-
al_train_mode, and is used as a first phase of
parameter search.

During that first bout of search, it was
found out, that a simple U-Net model and a
simple attention U-Net model, both written
from scratch, works worse than an attention
U-Net model, based on a pretrained ResNet50
backbone. Usage of ResNet152 as a backbone
improves precision a bit, but at the same time
drastically hinders performance in terms of
calculation time.

During the second search iteration, it
was determined that channel-wise attention is
generally better for the task than spatial atten-
tion, as well as that 2D transposed convolu-
tion is a better choice for upsampling than a
bilinear method.

The third iteration gave preliminary
values for number of internal channels in at-
tention blocks, batch size for decoder training,
best optimizer and learning rate. While reach-
ing a descent performance on majority of pos-
sible terrains, further analysis of badly pre-
dicted cases revealed that a chosen configura-



tion struggles to cope with the case when the
observer is situated in the forest near a border
with open space, when they can already
through the forest — Figure 9 (colors on a sur-
face mask correspond to different surfaces:

open space, forest, shrubs).
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Figure 9: True mask while looking through the forest

Within the frame of research, in order
to incentivize the network to understand that
it deals with the forest, an auxiliary head with
a fully connected layer was added. Its goal is
to provide a binary classification: whether an
observer is situated in the forest or not, with a
contribution to the main binary cross entropy
loss (nn.BCELoss), whereas Intersection over
Union (loU) is the metric for parameter selec-
tion. Schematic representation of the resultant
architecture (without attention gates and de-

tails) is presented on Figure 10.

ResNet350 encoder

Decoder

CONV
ReLu
Max Pool
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block

Zero G;adding ‘

A 4
Flatten
FC Block

Figure 10: Auxiliary head for binary classification

As a result, such form of feature engi-
neering wasn’t successful. The situation when

an observer can see through the forest towards

open space is quite rare in the train dataset.
So, as an aftermath of that, there is class im-
balance. There are common solutions to cope
with imbalanced datasets like usage of
weighted random sampler [8], class weighting
[9], synthetic minority oversampling tech-
niqgue (SMOTE) [10], or simple additional
oversampling through augmentation of minor-
ity samples or some combinations. In our case
additional data can be just generated from the
simulator, with a stipulated rule, that we add a
current case if both requirements are true: the
observer is in the forest and there is an open
space in the vicinity. After enriching the train-
ing dataset, the network started performing
much better, which was evident even during
preliminary evaluation.

The forth iteration of hyperparameter
search involves usage of the real train mode
with full datasets and number of epochs for
every considered combination of hyperparam-
eters. It eventually allowed picking a set best
hyperparameters for decoder.

The fifth iteration involves unfreezing
encoder and search of hyperparameters for
fine-tuning. After that procedure, the network
is evaluated on a test dataset, not a validation
one used before, in order to check possible
overfitting in hyperparameter search. It
demonstrates an average loU of 0.95 on a test
set. Some examples of predicted masks (areas
of visibility) are presented on Figure 11. The
network was trained on relatively low resolu-

tion of 128x128 in order to check the poten-



tial possibility of the approach, but in case of

a higher resolution it will work the same way.
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Figure 11: Examples of predictions
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Conclusions

Current diversity of neural network ar-

chitectures makes it possible to utilize them

for solving different domain-specific tasks,
including building an area of visibility, given
data from a digital map. Usage of solutions
for hyperparameter search allows evaluating a
plethora of possible configurations. Ancillary
architectural solutions provide a way for
stitching building blocks together, assuring
their conformation for performing search
among their possible combinations within the
architectural space. The final network in this
work is based on combination of parts from
different solutions, like the attention U-Net
form the first source [6], different forms of
attention from the second source [11] and fi-
nally — concrescence with a popular pre-
trained backbone in search of best perfor-
mance. Such a strategy seems to be effective
for solving real machine learning tasks for

applied science.
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PVJIBKO E.B.

MCMNOJIb3OBAHUE U-Net CETU C MEXAHU3MOM BHUMAHUA COBMECTHO C
APXUTEKTYPHbIMU HAOCTPOUKAMU ONA ®PEMMBOPKA PyTorch B PAMKAX
NOUCKA TMMNEPMAPAMETPOB NOCPEACTBOM BUBJIMOTEKU Weights & Biases

AnA NPEACKA3bIBAHUA OBJIACTU BUOAUMMOCTU NO KAPTE MECTHOCTU

Boennas akademus Pecnyonuxu benapyce

Texywuii yposensb pasgumusi 2iyboKko20 obyueHus: n036013em 3aMeHUMb HEeUPOHHbIMU CeMAMU CYWecmByio-
wue cneyughuueckue 0 MOOETUPOBAHUS BOEHHbIX Oelcmeull areopummsl. Tlouck eunepnapamempos 0aém 603MOic-
HOCMb Onpedenums CMpyKmypul cemell, nooxoosauue 0/ peuleHus coomeemcmsyrowux 3aoay. /lannas paboma onu-
cvlgaem npoyecc NOUCKa CMpyKmypol cemu 0 NPeOCKa3anus 30Hbl ONMUYECKol GUOUMOCTU HA OCHO8e (hpazmenma
Yupposoil Kapmel MeCMHOCMU U npediazaem apXumeKmypHule peuieHus 01 KOMOUHUPOBAHUS 603MOJICHBIX COCMAG-
HbIX yacmeil cemu, 00ecneyueas ux COGMecmuMoCmy 6 pAMKAX NOUCKA HAUYyYule2o peulenus. B kauecmee gunanvrozo
sapuanma npeonazaemcs ucnonvzoganue U-Net apxumekmypbl ¢ NOKAHAbHLIM MEXAHUZMOM GHUMAHUS U IHKOOEPOM
Ha ocnose cemu ResNet50.

Knrwouesvie cnoea: enyboxoe obyuenue, U-Net, mexanusm enumanus, cecmenmayus, NOUCK SUNepnapamempos,

WE&B, wabnounwiti memoo.
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HavanpHuk HayuHO-HMCCIIEIOBATENbCKONW JTab0paTopuu MOAETUPOBAHUS
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