The spectra of hydrogen and deuterium interpreted with an alternative
fine structure constant compared to the CODATA recommended value.

Hans Peter Good
Sargans, Switzerland

e-mail: hp.good at catv.rol.ch

November 27, 2024

Abstract

A modified Dirac expression for the electron binding energy in hydrogen-like atoms
is presented, which allows a direct and unambiguous comparison among different
fine structure constants without bound-state QED theory. The least squares
analysis of the parameters, describing the spectra of hydrogen and deuterium, is
grounded on two sets of the most accurately measured energy separations. The
optimal spectroscopic fine structure constant is found to be equal to 0.00 72 84(1),
disagreeing with the determinations ultimately based on renormalized QED but
being in good agreement with the number constant 276775 ~ 0.00 72 84 28 . The
present work compiles experimental values of the Lamb shift of S, P, and D states
with n=1, 2, and 3 derived from those measurements. Accurate predictions for
hyperfine splitting intervals with n > 1 are given and compared to experimental
values for n = 2.

Keywords: fine structure constant, bound-state QED, Dirac binding energy, hydrogen-like atoms,
Lamb shift, hyperfine splitting.

Introduction

Today, the fine structure constant @cyq4:q = 0.00 72 97 35 is derived using a Dyson power series in
powers of the fine structure constant a for the anomalous magnetic moment of the electron. The
coefficients of this power series are not measurable and are calculated using many hundreds of
complicated Feynman multiloop diagrams of quantum electrodynamics (free QED) that only a
handful of theoretical physicists can master. Determinations of the fine structure constant by
other means (quantum Hall effect, ac Josephson effect) also depend on QED and produce identical
results agreeing with each other with a precision of better than 1 part per 108. This is not
surprising because various methods must produce the same result irrespective of the correctness
of QED since they are based on the same theory [1a]. Unfavorably, extracting the fine structure
constant from QED itself is not possible [1b]. The spectrum of hydrogen as the main historical
source of the value for the fine structure constant no longer plays a role in the calculation of its
valuel, and the spectrum is used solely to calculate the auxiliary Rydberg constant R, of infinitely

heavy mass, with the unit of energy (J) defined as R, = %azmecz, acting by its definition as a

! Quotation from Kramida 2010, p. 608: It is not easy to compare the experimental energy levels and transition

frequencies of H, D, and T with the QED calculations because the latter are in fact adjusted to fit the experimental
transition frequencies by adjusting the fundamental constants entering into the QED equations.
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universal scaling factor for all transitions and substituting for either electron mass me or fine
structure constant a as required. The author [2a] has derived the fine structure constant ag.q,

2
represented by the unitinvariant number constant ageo, = 27%77z ~ 0.00 72 84 28 (! ~ 137.28).

This idea does not require a formula for an observable quantity from which the fine structure
constant is evaluated.

The model: an empirical modification to the Dirac equation

In the following, an algebraic scaling formula is presented that allows to decide, using the spectra
of hydrogen (H) and deuterium (D), whether a¢oqqta O @geom describes its spectrum better. In an
arbitrary hydrogen-like atom, the electron binding energy E(n, £, j) in the natural energy (]) unit
{mec?}codata 2010 shall be represented for S(£ = 0), P(£ = 1), and D(£ = 2) states as

E(m4,j) =Ep(mj) -y {1+ A+ 8p0B/n+ 8p16k1C/n 4 8p16k2D /1 + 8p2812E /M + 8p28k3F /n} - (1)

6 is the Kronecker delta function, and y is a scaling factor of all levels that creates a fictitious Dirac
particle with mass y{me}codata 2010 moving in the field of a stationary point nucleus, and reducing
the two-body problem to an equivalent one-body problem. This concept is not the correct
treatment of the relativistic two-body quantum problem and is arbitrarily chosen as the starting
point (gross structure, An # 0) needing corrections. The dimensionless, relativistic Dirac binding
energy Ep, (n, j) for a fixed point nucleus Coulomb potential is analytically given by

Ep(n,j) = f(n,j) -1
where [CODATA 2018, eq. 25; Kramida, eq. 3]
1

o -[r+ 22

§=k—[k? — (Za)?]2
k=j+1/2

Z is the nuclear integer-charge, n is a positive integer called the principal quantum number, £ =
0,1 to n — 1 is the orbital angular momentum, and j = ¢ + 1/2 is the total angular momentum of
the electron, which results from combining the orbital motion of the electron with its intrinsic
angular momentum called spin. The Dirac binding energy fails to take into account the nuclear
mass and recoil and provides the same energy levels for each atom. Also, effects caused by the
difference in the nuclear charge distribution are not included. In all expressions, the Planck
constant {h}codata 2010 is suppressed because it is solely used as a conversion factor to convert
energy (J) to frequency (Hz).

Each hydrogenic atom has its own unique parameter set A to F, which must experimentally be
determined. They are corrections to the scaled Dirac energy levels Ep(n,j)y, neglecting the
hyperfine structure (AF #0), and depend on the nucleus and the charge Z. Accounting for
perturbations of levels with values of orbital angular momentum ¢ > 2 is easily possible by
analogy. With formula (1), a nucleus with one electron infinitely far away and no other electrons
nearby has zero binding energy, so all bound state energy levels are negative. The ¥ dependent
terms in formula (1) remove the degeneracy in £ and produce a splitting of levels with the same
value of j but different values of ¢, for example, between 2S1/2 and 2P1/2 convincingly proven to



exist by WE Lamb and RC Retherford who reported a splitting of 1062(5) MHz [3]. For this reason,
the splitting of levels (A€ # 0) is later called Lamb shift and since then theoretically explained by
bound state QED, in contrast to ordinary QED for free leptons.2

The energy difference AE between two energy states is given by AE = E(ny, €5, j,) — E(ny, €4, j1)-
For the ionization energy of the ground state, this results in I = AE = E(n, - ©,0,1/2) —
E(1,0,1/2) = —E(1,0,1/2). The ionization energy is the negative of the ground state energy, which
is the largest energy for each atom. A common, accurate method of estimating absolute ionization
energies is based on a fit of the modified Ritz formula. Using a Ritz series formula does not depend
on theoretical calculations of the binding energy of any level and is an independent test of the
validity of the fine structure constant (see note ‘a‘in Table 5 and Table 7).

According to formula (1), the transition 2S1/2-4S1/2 energy difference is
Epui/  Epeisz
4 2

and for the classic Lamb shift 2P1/2-2S1/2, which is difficult to measure because of the very short
lifetime (natural line width 100 MHz) of the 2P1/2 state, the energy difference is

AE = (ED(4,1/2) - ED(2,1/2))V + A(ED(4,1/2) - ED(2,1/2))V +B ( )y = AE™eas

Epi2,1/2) Epz,1/2)
_/y _C _/y

AE = (ED(Z,l/Z) - ED(z,l/z))V + A(ED(Z,l/Z) - ED(2,1/2))Y +B 5 5

1
= E(B - C)ED(2,1/2)Y = AE™e

For each transition, analogous relations can be written representing, in most cases, an
overdetermined linear system of equations for the parameters 4, B, C, D, E, and F, which has a least
squares solution dependent on y if the equations are linearly independent. The least squares
solution best reproduces the input data or the results of measurements by means of expression
(1). The energy E(n, ¥4, j) calculated with the solutions of the normal equations using formula (1)
is independent of the scale factor y and only depends on Za and quantum numbers.3 This
formalism allows, based on a set of measured energy separations, a direct and unambiguous
comparison among different fine structure constants without theory (bound-state QED), except
the relativistic Dirac equation, in the analysis.

The fine structure constant

In Table C, Kramida [4] tabulated the most accurately measured fine structure intervals
(differences between the corresponding energy levels) for hydrogen. Table C of this article is a
copy of Kramida‘s Table C with two additional measurements at the end for the transitions 1S1/2-
3S1/2 and 2S1/2-8D5/2. In order to derive the fine-structure energy levels listed in Table C from
the available experimental data, purely theoretical corrections using a;,qq.ta Were necessary due
to the hyperfine splitting (hfs) of one or both fine-structure levels involved in the measured
transition. Thus, most transitions listed in Table C cannot be considered purely experimental, and
small systematic errors are most likely to exist in the input data (see Kramida 2010 section 4).

2 Relation 15.3 in [2b] is an incorrect ansatz because it does not take into account the Lamb shift. All results related

to relation 15.3 must be reconsidered.
3 .. . . ,  1-y+A , B , _C , D , E , F
This is because the scaling relations A =T , B =; , C =; , D =; , E =; , F =; apply.
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The reported intervals detailed in Table C were utilized to adjust the six parameters A_nyd to F nyd
by solving the linear system of equations. Measurements marked “not used” were not used to
determine the best compromise values of A nyd to F nyd, which only approximately satisfy all
measured intervals. In total, there are six degrees of freedom to fit 29 input values, that is,
transition frequency measurements. The reliability of the observations was not included in the
calculation due to unknown systematic uncertainties previously addressed.

The scaling factor has no influence on the energy values and can arbitrarily be set to one. Table C
lists, for the 29 measurements considered, the calculated differences Dif f (o) = AE™¢* — AE (@)
for @ = acogata 2010 ANd @ = Ageom- The mean absolute deviation (MAD) of the 29 input values

(results of measurements) is 4.03 MHz for @, ,:4 2010 @nd 0.82 MHz for ay.,m, respectively. For

deuterium, Kramida [4] displayed the most accurately measured fine structure intervals in
Table G replicated in Table G of this article. In order to adjust the parameters A _deut to F deut, 19
linear equations in six unknowns were utilized, resulting in a mean absolute deviation of 4.75 MHz
for a;yqata 2010 @and 0.80 MHz for a .., respectively. Minimizing the function MAD («) yields the
optimal fine structure constant a,,;,, without knowing the scaling factor, that is, the Rydberg
constant R,:,m,, meaning that the experimental values extracted are disentangled from the
measurement of the absolute value of the Rydberg constant. The values obtained are displayed
with estimated error bars in Table 1, revealing for both isotopes that a,,,;, = 0.00 72 84(1) is very
close to ageom and disagrees violently with @ ;.4 2010-
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Historically, the optimal spectroscopic fine structure constant a,,;, agrees with that found by
Houston [5], calculating a value of & ~ 0.00 72 85 (a? =~ 5.307 X 10~°) from purely spectroscopic
measurements of the Rydberg constants for hydrogen and helium. Houston 1927 assumed in his
evaluation that the relativity equation of Sommerfeld is applicable. In the year 1930, Millikan [6]
comments that the experimental situation clearly favors, due to his oil drop work, a value of a =
0.0072 84 (a1 =~ 137.29) that Birge [7] confirmed with the value a~! = 137.31(5) in 1932 by
the simultaneous evaluation of the electron charge and the Planck constant from several known
functional relations between these two constants. It would be interesting to look at the history of
the measurements after Millikan to extract why the physics community settled down to the fine
structure constant ¢ = 0.00 72 97 35, and today is aimlessly shifting the accuracy to ever higher
decimal places.

Kramida 2010 derived optimized energy levels from the measured fine structure intervals listed
in Table C using a least-squares optimization (LOPT) code. The level optimization procedure
involved several iterations using various interpolation and extrapolation procedures and the



fitting of the Ritz series formulas for the nD5/2 and nS1/2 series. Table 5 is a copy of Kramida'‘s
Table 5 with 148 frequency intervals, which resulted from the semi-empirical least-squares level
optimization procedure. Absolute ionization energies tabulated by Kramida 2010 and by NIST are
additionally included in Table 5. The mean absolute deviation of the 148 high precision
determinations (Ritz values) from calculated frequencies by formula (1) is 3.67 MHz for
Acoqata 2010 ANd 0.78 MHz for ageom, respectively. Ritz values do not depend on theoretical

calculations of the binding energy of any level.

For deuterium, the measured fine-structure intervals from Table G were used to derive the energy
levels using the LOPT code. Table 7 lists Ritz values of 116 intervals resulting from the least
squares level optimization procedure of Kramida, similar to that employed for hydrogen. In
Table 7, the ionization energies tabulated by Kramida 2010 and NIST are also included. The mean
absolute deviation of the 116 Ritz values from calculated frequencies by formula (1) is 2.96 MHz
for @y 4ata 2010 @and 1.15 MHz for ageom, respectively.

The mean absolute deviations of the intervals listed in the four tables are summarized below.

MAD (MHz)
# ofintervals  Qgeom  @codata 2010
Table C H 29 0.82 4.03
Table 5 H 148 0.78 3.67
Table G D 19 0.80 4.75
Table 7 D 116 1.15 2.96

In all cases, agzeom gives significantly smaller mean absolute deviations and describes, without
further assumptions, the fine-structure energy levels of H and D more accurately applying the
simple expression (1). In summary, there is convincing spectroscopic evidence with a great deal
of experimental truth that the fine structure constant o based on renormalized QED
determinations should be discarded.

The Lamb shift

Without knowing the exact scale factor y and the fine structure constant, Lamb shifts cannot be
extracted from the spectra. First, a clear definition is vital to avoid different interpretations of the
term Lamb shift. Using formula (1), the definition for the Lamb shift £L(nS1/2) shall be

L(nS1/2) =L(n,0,1/2) = Ep(n,1/2) -y -{A+B/n}= Ep(n,1/2) * Vyero - B/

which can easily be generalized to other Lamb shifts £L(n, £, j). The choice of y defines the values
of the Lamb shifts, which are to be understood as effects in addition to what can be obtained from
the scaled Dirac equation. In the literature, the reference point is not unique due to different
corrections applied and, in most cases, even undefined. One possibility for an “experimental”
reference point is to choose the scaling factor such that for y = y,,,, the parameter A is zero,
which implicitly defines ¥,er0 by A(Vzero) = 0 or explicitly* by ¥, = 1 + A(y = 1). Corrections
that affect all states are ascribed to the scaling factor y,,,, and the parameters B to F, which may

4 1-YzerotA(y=1)

The explicit expression follows from the scaling relation A’ = 0 = ”
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be called dimensionless Lamb shift constants, include all corrections that cannot be described by
Yzero- Lhe scaling factor y,,,, completely relies on an experimental input, to wit, Table C or
Table G. The adjusted dimensionless parameters B to F and the experimentally determined
absolute Lamb shifts for n=1,2, and 3 are detailed for y = y,.,, in Table 1. No theoretical
calculations except {mec?/h}codataz010 are involved to evaluate the experimental data for the
absolute Lamb shifts from the input data.

For a nucleus of finite mass M, nuclear motion is accounted for nonrelativistically by replacing the
electron mass me by the reduced mass, which multiplies all energy levels by the reduced mass

-1
correction factor ¥,eq mass = (1 + %) . These factors are tabulated for hydrogen and deuterium

in Table 1 using CODATA 2010 values for the electron-nuclear mass ratios based on high precision
Penning trap mass spectrometry. Comparing the factors ¥,.q mass codata 2010 for both isotopes
with the experimental scaling factors ¥,ero(@codata 2010) reveals that they are nearly equal.
Interestingly, if the experimental scaling factors ¥,¢r( (ageom) are divided by the correction factor

2
Veory = <M> ~ 1.003 591 800
®geom
there results 0.999 455 690 for H as compared with the CODATA 2010 reduced mass factor
0.999 455 679, and 0.999 727 643 for D as compared with 0.999 727 631, which means that the
simple reduced mass correction factors for both isotopes are derived for @y, very accurately
from essentially experimental spectroscopic data, implying a reduction of the relativistic two body
problem to an equivalent one body equation in terms of a single effective mass. The deviations
relative to the tabulated reduced mass factors y.,..; ....«c codata 2010 are 1.0 parts per 108 for H and

1.2 parts per 108 for D, respectively. The close agreement

)/ZBT‘O (atom) ~ )/T‘ed mass (atom) X VCOT‘T‘

is quite remarkable, since the concept of reduced mass has no theoretical basis in relativistic
quantum mechanics, and the assumption that the nucleus behaves inertly and plays no role other
than its mass is an idea of the classic Bohr model. The factor y,,,» might be interpreted as a
correction of the spectroscopic electron mass {me}codataz010 deduced by CODATA from
experimental data through a least squares adjustment with the fine structure constant @, ;,:4 2010

determined by other independent measurements (non-spectroscopic), assuming for the energy
level the expression [CODATA 2010, equ. 22]

Z2R., _ Z?Ro,
{1+6(n,¢,j)}=—-

rel
n2 ntj

E(nl'&]):_ nz

where §(n,4,j) is a dimensionless theoretical correction factor, small compared to one, that
contains the details of the bound-state QED apparatus of each energy level, including the effect of
the finite size of the nucleus as a function of the rms charge radius. Only the Rydberg constant R,
is an adjusted constant in the numerical evaluation carried out by CODATA. The method
mentioned above consists of comparing measured transitions (primarily the 1S-2S frequency in
H and the H-D isotope shift of the 1S-2S frequency) with intervals calculated from a complex
theoretical equation for each energy level scaled with R, which indirectly assigns, using ac,4ata
a fitted value to the absolute electron mass {me}codata that can by no means be directly compared
(i.e., without a theoretical contribution) to the artifact SI standard kilogram.

In order to clarify the significance of the theoretical corrections to the experimental data
mentioned in the text, only the two gross structure transitions 151/2-251/2 and 251/2-8S1/2

6



from Table C (Kramida 2010, column largest theoretical correction) were fitted to the data points,
from which "exact” values for [yzro] and the parameter [B], scaling the Lamb shifts of the nS1/2
levels in terms of the principal quantum number n, can be extracted. The results, reproducing the
reduced mass factor of hydrogen without significant change, are displayed in brackets in Table 1,
which give 2 466 061 413.1859 MHz for the 1S1/2-251/2 intervall and 770 649 350.012 MHz for
the 251/2-8S1/2 intervall. The measured values are marked with an asterix (*) in Table C.> The
fitted parameter [B] is an accurate experimental value admitting a direct comparison with nS1/2
Lamb shift calculations.

Tritium

Since tritium (T) is radioactive and difficult to handle, there is little information about its spectrum
from which a reliable parameter set can be obtained. The Lamb shift parameters B to F of hydrogen
and deuterium are similar in value, which suggests that the most accurate known Lamb shift
parameters B to F of hydrogen could be used as a first approximation for tritium. The most
accurate measured values of four fine structure transitions arranged by Kramida [4] in Table K
are listed below and compared with the values calculated using formula (1), @ = ageom, A = 0, the

parameters B to F of hydrogen (Table 1), and ¥ = ¥yeq mass (T) X Yeorr-

Tritium Fin(.e §tructure AEexp (MHz) Unc. (MHz) ABcic (MHZ)  ABexp - cac (MHZ)
transition (mean meas. freq.) (exp.)
2P3/2-3D5/2 456 841 568.8 1.6 456 841 565.6 3.2
2P1/2-3D3/2 456 851 457.2 1.3 456 851 461.5 -4.3
251/2-3P3/2 456 850 405.8 1.4 456 850 405.0 0.8
251/2-3P1/2 456 847 153.8 1.6 456 847 153.7 0.1

The hyperfine splitting

Formula (1) considers the Lamb shifts as a perturbation to the scaled Dirac energy levels E, (n, j)y.
In the following, the hyperfine splitting manifested as a small splitting of the fine-structure energy
levels is regarded, in analogy to the Lamb shift, as a perturbation to E(n, ?,j) of the form

E(n,¢,j,F)=EMm¢,){1-Q(,j,1,F)-Z-B/n} (2)

The number I is the spin of the nucleus, and F is the total angular momentum for the whole atom
with the possible values beingj+1, j+1—1,...,|j —I|. Formula (2) can be deduced from the
rephrased equations 5 and 6 (without off-diagonal terms) given by Kramida 2010 by setting
Z?Rq,
n2
[FF+1)—-I1(U+1)—j+ 1]
JjG+ D2+ DI

el = —E(n, £,))

=0

5 The exact measurements are not obtained because the numbers in Table 1 are rounded to 12 decimal places.
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2 Hnuct
HUp
The minus sign in relation (2) ensures that the energy of the F level is lifted and that of the F-1 is

lowered. From formula (2), the hfs interval between two adjacent levels in a hyperfine multiplet
can be written as

B

a

2F
JG+ D+ DI

wich takes into accout Lamb shifts of energy levels. Because the relativistic Dirac theory naturally

(AEYMS = E(n, ¢,j,F) —E(n,¢,j,F —1) = —E(n, 4, j) -

iy Z-B/n (3)

implies the electron’s magnetic dipole moment to be exactly u, = ug, the ratio Z—; in equation (6)

given by Kramida 2010 was set to one. From simplicity requirements on the approximating
function, the reduced mass prefactor ¥,.q mass > has been omitted, assuming that a correction in
the form of an overall reduced mass factor is adequate. These assumptions make relation (3)
compatible with the uncorrected expression (22.13) of Bethe and Salpeter [10], and equation (41)
of Grifffiths [11] setting ge = 2.

u
f nucl

The value o is not directly accessible experimentally, but it can be traced back to maser

UB
experiments by Winkler and coworkers, who determined the bound particle ratio of the magnetic

Unuci(atom

moments of the nucleus and electron L (atom) ), implying that the bound electron moment in Bohr
e

magnetons He(atom) st also be known. This ratio can be approximated by HeUree) — 1 4 Ae,

up UB
where ae [Codata 2010] is the very accurately measured electron magnetic moment anomaly.

Replacing the fine structure constant a by @g¢0, entails that, in addition to 1+ae, the multiplying
factor y,,,» must be taken into account, since the electron mass is given by y.orrime}codata-
Combining all this gives

Hnuct
(14 ae) = geom” -
lp He Mg He (14 2e) = dgeom He

The following table lists the hyperfine splittings of hydrogen and deuterium, which were
calculated using relations (3) and hypothesis (4). The scaling factor y,,.,, and the parameter B
used to compute E(n, ¢, j) correspond to the values listed in Table 1.

o zﬂnucl 2 Hnuct  He 2 Hnuct
== a a " —

B=a ~ ) (1 + ae)ycorr (4)

 —_—— A

hfs [2:4 calc
atom tnue(atom) ; -3 (AE) 5, (MHz) AEex» /AEcal
—===————10° (meas.)
Z I F He(atom) (3) and (4) experiment (correction)
1H 1 1/2 1 1.519 270336  [12a] 1420.401 1420.406 [4] 1.000 003
2H 1 1 3/2 0.466 434539 [12b] 327.149 327.384 [4] 1.000 718

The comparison of theoretical results with experimental values shows a remarkable agreement
(or coincidence?) for hydrogen, and reflects an unclear discrepancy although small with a
substantial correction factor for deuterium. This might be due to the fact that the ratio of the
magnetic moment of the deuteron to the magnetic moment of the electron in the 1S state of
deuterium has never been published. This magnetic ratio should be reevaluated.

Due to the lack of knowledge on the number of multiplying factors that control hypothesis (4), the
dimensionless parameter B, responsible for the splitting, is difficult to calculate. But the existence
of high-precision experimental data on the 1S hfs splitting makes it possible to derive an empirical,
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simple scaling law for other hfs intervals, if the dimensionless parameter B is the same for all
levels. For hydrogen, the scaling law from the ground-state hyperfine splitting is then

E(m,?,)) F 31 :
E(1,01/2) jG+1D(2¢+1) 4 n (5)

For the scaling law from the ground-state hyperfine splitting of deuterium, the factor 3/4 in
formula (5) must be replaced by 1/2. In Table 2, theoretical predictions using the scaling relation
(5) are given and compared to experimental results for 251/2 states. For both isotopes, the
agreement between theory and experiment is impressive with, surprisingly, a relative deviation
of 30 ppm that is independent of the nucleus. Unfortunately, besides the 2P1/2 hfs splitting in
hydrogen of 59.22(14) MHz [Kramida 2010, Table A], no reliable experimental data are available
for other excited states. Theoretical values, calculated by different authors using QED with a;yq4ta,
can be found in Kramida's work, allowing a comparison with the values calculated by means of
expression (5).

(AE)}5(F = 1;F) = (AE)YL; ,(0;1) -
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Table 1: The adjusted dimensionless parameters A to F and the absolute Lamb shifts forn =1, 2, and 3.

isotope hydrogen deuterium
Experimental input Table C Table G

Number of input values 29 19

Omin 0.00 72 838(10) 0.00 72 834(10)

Qcodata 2010 Ageom QAcodata 2010 Ageom

mean abs. dev. (MHz) 4.03 0.82 4.75 0.80
Yzero 0.999 455 610 362 1.003 045 534 235 0.999 727563 649 1.003 318 464 318
[Yzero] [1.003 045 534 890]

Yred mass_Codata 2010 0.999 455 679(1) 0.999 727 631(1)

Yzero / Yeorr 0.999 455 690 0.999 727 643
A alllevels (ppm) 0 0 0 0

B (ns1/2) -2.411 846 -2.441 530 -2.419799 -2.450 077
[B] § [-2.442 137]

C (@P1/2) 0.167 457 0.134 688 0.161 442 0.128 073
D (@P3/2) i 0.105 245 -0.022 870 0.098 994 -0.030 347
E (nD3/2) 0.148 730 0.022 573 0.217 980 0.049 010
F (nD5/2) (ppm) 0.141 163 -0.021 527 0.189 677 -0.015 156
L(151/2) (MHz) 7930.4 8028.0 7958.7 8058.3
L(251/2) 991.3 1003.5 994.8 1007.3
L(2P1/2) § -68.8 -55.4 -66.4 -52.7
L(2P3/2) ! -43.3 9.4 -40.7 12.5
L(351/2) 293.7 297.3 294.8 298.5
L(3P1/2) § -20.4 -16.4 -19.7 -15.6
L(3P3/2) -12.8 2.8 -12.1 3.7
L(3D3/2) 0.0 0.0 0.0 0.0
L(3D5/2) (MHz) 0.0 0.0 0.0 0.0
Notes:

The value a,,;, is the result of minimizing the mean absolute deviation based on Table C or Table G using formula (1)
and the solutions of the linear system of equations. The minima were determined by quadratic regression of 13 values
of the discretized function MAD(a;Table C) or MAD(a; Table G) with @ = [0.00 72 78, 0.00 72 90] and 4a = 0.00 00 01.

The grey-shaded fields present the adjusted dimensionless parameters in formula (1) to compute the essentially
experimental binding energy E (n, ¢, j) for @geom- All numbers are rounded to 12 decimal places.

For the classic Lamb shift 2P1/2-251/2 of hydrogen the energy difference E(2,1,1/2) — E(2,0,1/2) is 1058.86 MHz
using {mec?/h}codata 2010.
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Table 2: Absolute values of the hyperfine splitting frequencies in H and D calculated by scaling

from the hfs of 1S1/2.
hydrogen deuterium
(AE) pfs 151/2 (MHz) 1420.405751768(1) a 327.384 352 5222(17) a
B (ppm) 0.080997 276 b) 0.024 884 934 b)
(AE)pgs 251/2 (MHz) 177.55 15 40.92 32
i 177.55 69 a) 40.92 45 a)
351/2 52.6077 12.12 54
451/2 22.19 38 5.1154
551/2 11.36 32 2.6191
651/2 6.57 59 1.5157
751/2 41411 0.95 45
851/2 2.77 42 0.63 94
951/2 1.94 84 0.44 91
10S51/2 1.42 04 0.3274
1151/2 ; 1.06 72 0.24 60
1251/2 (MHz) 0.82 20 0.18 95
2P1/2(F =1) (MHz) 59.18 39
2P3/2(F =2) i 23.67 33
3P1/2(F =1) 17.5359
3P3/2(F =2) 7.01 43
3D3/2(F = 2) 4.20 86
3D5/2(F = 3) 2.70 55
4D5/2(F = 3) 1.14 14
4F7/2(F = 4) 0.60 39
7F5/2(F = 3) 0.1521
8D3/2(F =2) 0.22 19
8D5/2(F = 3) ! 0.14 27
8F5/2(F =3) (MHz) 0.10 19
4D5/2(F =7/2) (MHz) 0.20 46
4D5/2(F = 5/2) ! 0.14 62
8D5/2(F =7/2) ; 0.02 56
8D5/2(F =5/2) (MHz) 0.01 83

Notes:

Hfs values without a reference are obtained with the help of formula (5) and can be compared with
theoretical values of Kramida 2010 [hydrogen: Table A and Table 1; deuterium: Table B and Table 2].

a) Experimental value [Kramida 2010, p. 591].
b) Calculated from the 1S hfs using formula (3).
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Table C: The best available measurements of fine-structure intervals in hydrogen [4].

interval Measured value (MHz) Unc. (MHz) Diff (MHz)
ageom Xcodata

1S1/2-2S1/2 * 2466061413.187074  0.000034 -0.1 21
2P1/2-281/2 1057.847 009  -10 -23
2P1/2-2P3/2 1096913 01 =01 -01
281/2-2P3/2 9911.201 0012 08 21
'2P1/2-3D3/2  notused 4566858528 17
281/2-3P1/2 4566815499 03  -15 -51
281/2-3P3/2 456684800.1 03  -15 -50
'3P1/2-3D3/2  notused 4566759683 34
281/2-4P1/2 616520017.568 0015  -03 -3.0
281/2-4S1/2 616520150.636 001 04 24
281/2-4P3/2 616521388672 001 -03 -3.0
281/2-4D5/2 616521843.441 0024 13 -9.6
281/2-6S1/2 730690017.097 0021 02 -01
281/2-6D5/2 730690518592 0011 04 -23
281/2-8S1/2 o 770649350.012 009 03 15
281/2-8D3/2 770649504.45 008 00 04
281/2-8D5/2 770649561.584 006 03 05
281/2-10D5/2 789144886.411 0039 02 17
281/2-12D3/2 799191710473 009 01 24
281/2-12D5/2 799191727.404 007 02 24
3P1/2-3s1/2 314818 0048 11 07

3P1/2-3D3/2 notused 32449 3.1

3S1/2-3P3/2 not used 2933.5 1.2
381/2-3D3/2 . 29299 08  -38  -189
381/2-3D5/2 . 4013.155 0048 26  -165

3D3/2-3P3/2 5.5 0.9 2.7 18.3

3D3/2-3D5/2 not used 1083 0.29

3P3/2-3D5/2 notused 1078 1.1

4P1/2-4S1/2 133.2 0.6 0.8 0.7

4P1/2-4P3/2 1370.85 0.22 -0.3 -0.3
‘4P1/2-4D3/2 1371412 11 -55

451/2-4D3/2 not used 1235 2.1

4S1/2-4P3/2 1237.79 0.29 -1.0 -0.8

451/2-4D5/2 1693 0.4 1.0 -7.0
A4D3/2-4F5/2  notused 4568 16

4D3/2-4D5/2 not used 458 2.2

4P3/2-4D5/2 notused  455.7 1.6
'4D5/2-4F7/2  notused 22796 041
5P1/2-551/2 notused 646 5
'5P1/2-5D3/2  notused 704 7
'581/2-5P3/2 notused 622 10
5P3/2-5D5/2  notused 2322 29
5D5/2-5F7/2  notused 117 15
1S1/2-351/2 | 8] 2922743278.678 0013 02 -15
281/2-8D5/2 | o] 770649561.5709 002 03 05
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Table G: The best available measurements of fine-structure intervals in deuterium [4].

interval Measured value (MHz) Unc. (MHz) Diff (MHz)

ageom Xcodata

1S1/2-251/2 2466732407.52171 0.00015 0.1 0.5
2p1/2-281/2 108928 006 0.7 19
‘2s1/2-2p3/2 991261 03 01 15
'2p1/2-3D3/2 4568101138 019 260  -267
‘2s1/2-3p1/2 4568058117 03 0.7 44
'2s1/2-3p3/2 456809062.6 03 09 46
'2P3/2-351/2  notused 456796251 30 T
2P3/2-3D5/2 4568002259 16 15 -234
2P1/2-4D3/2  notused 616690180 A0

251/2-4P1/2 616687769.99 0.19 -0.6 -3.5
‘281/2-45172 616687903573 002 05 26
'281/2-4P3/2 616689141.73 017 04 33
'281/2-4D5/2 616689596.72 04 16 95
'2P3/2-4D5/2  notused 616679760 so T
'2P1/2-5D3/2  notused 690691810 so T
'2P3/2-5D5/2  notused 61681100 70 T
'2P1/2-6D3/2  notused 730890320 60 T
'2P3/2-6D5/2  notused 730879480 go
'2P1/2-7D3/2  notused 755128600 60 T
2P3/27D5/2 motwsed 755117710 so
2P1/2-8D3/2 notused 770860360 210

251/2-8S1/2 770859041.246 0.07 0.2 1.1
'281/2-8D3/2 770859195702 0006 00 01
'281/2-8D5/2 770859252.850 006 04 02
'2P3/2-8D5/2  notused 770849570 2100 T
'2P1/2-9D3/2  notused 781645760 300
'2P3/2-9D5/2  notused 781634790 300
'281/2-10D5/2  789359610.238 0038 02 14
'281/2-12D3/2 799409168.038 009 00 20
'281/2-12D5/2 799409184967 007 01 21
'3p1/2-3s1/2 3153 T 04 12 09
'3P1/2-3P3/2  notused 32507 1
351/2°3P3/2 motwsed 29345 5
3D3/2-3P3/2 _ motused 5 . S
4P1/2-4S1/2 notused 133 5
‘4p1/2-4P3/2 13718 03 02 03
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Table 5: Frequencies of fine-structure transitions in hydrogen derived from the
level-optimization procedure [Kramida 2010, Table 5].

interval AERiz (MHZz) Unc. (MHz)  AEgit;—AEcac (MHz)
(Ritz values) Ageom Acodata
Ionization 2 3288086856.8 0.7 -0.5 5.8
Ionization b 3288086857.128 0.003 -0.1 6.1
_1_8_1_/_2_—_2P1/2 2466060355.339 0.009 0.9 4.4
151/2°251/2  2466061413.18707 000003 <04 21
1S1/2-2p3/2 2466071324389 1 0012 T 07 T4
151/2.3p1/2 292274296315 1 021 T 6T 1297
151/2.351/2 292274327797 1 022 T 205 PR
151/2.3p3/2 292274621324 1 021 T 47T 1297
151/2-4p1/2 3082581430756 1 0015 T 204 Zo8
151/2-451/2 3082581563823 001 T 03 T Z03
1S1/2-4P3/2 3082582801858 | 001 -05 -09
151/2°5p1/2 31565636166 - 11T 00 T 09
151/2°551/2 31565636848 - 1177 04 T 1377
151/2°5p3/2 31565643186 - 11T 2017 09
151/2°5D5/2 31565645497 1 07 T 10T 43
1S1/2°6P1/2 319675139079 1 03 T T 18 "
1S1/2°651/2 3196751430284 1 0021 T 01 T 20
151/2-6P3/2 319675179705 1 003 T 202 18 "
151/2-7p1/2 32209833145 - 12 T D02 27
151/2-751/2 32200833394 - 1277 00 T 28
151/2-7p3/2 32200835704 - 127 7T 202 27
151/2-7D5/2 32209836554 1 % 03 T 16
1S1/2-8P1/2 3236710746525 | 0018 00 35
151/2-851/2 3236710763.199 0.009 | 01 3.6
151/2°8P3/2 3236710917916 1 0019 T 00 T 35
1S1/2°0p1/2 32474934119 - 12 7T 02 Tl
1s1/2°051/2 32474934236 - 1277 02 TTaeTT
1S1/2°0p3/2 32474935323 - 1277 02 T
151/2-9D5/2 3247493572 % 01 T 33
151/2-10p1j2 32552061831 - 1277 03 Ty
151/2-1051/2 32552061916 - 1277 Y
151/2-10p3/2 32552062708 - 1277 03 T4
151/2-11P1/2 32609127577 - 1277 03 a9
151/2.1151/2 32609127641 - 1277 04 T 50
1S1/2-11P3/2 32609128236 12 03 49
181/2-11D5/2 32609128451 07 00 42
181/2-12P1/2 32652530733 12 03 51
181/2-1281/2 32652530782 12 03 51
181/2-12P3/2 3265253124 12 02 51
2P1/2-2S1/2 1057848 | 009 -0 -23
2P1/2-2P3/2 1096905 0015 -02 -02
2P1/2-351/2 456682922.63 | 022 -14 -66



Table 5: Frequencies of fine-structure transitions in hydrogen derived from the
level-optimization procedure [Kramida 2010, Table 5].

interval AERiz (MHZz) Unc. (MHz) AERit;—AEcaic (MHz)
(Ritz values) Ageom Acodata
2p1/2-3D3/2aseessssze 06 T Z507TTEE T
2P1/2-451/2 616521208484 0013 T 2067 247
2p1/2-aD3/2eleszzdads 023 T 50T g
2P1/2°551/2 6905033294 11T 2057 23377
2P1/2-5D3/2 6905039605 07 T 31T 2507
2P1/2-651/2 730691074945 0023 T 208 54T
2P1/2-6D3/2 73069144105 o0a T /R 2497
2P1/2-7S1/2 7549229841 12 -09 -15
2P1/27D3/2 7549232148 07 T 1T 2507
2P1/2-851/2 77065040786 0012 T 2087 208
2P1/2-8D3/2 770650562298 0012 T 07T 2197
2P1/2-951/2 7814330683 12 T 2067 2027
2p1/2-0D3/2 7814331765 07 T 07T i3
2P1/2-1003/2 789145915 008 T 07T 2067
2P1/2-1151/2 7948524088 12 T 2057 06
2P1/2-11D3/2 7948524678 Y A 0T 2027
op1/2-1251/2 7991927229 12T 2057 08
2P1/2-12D3/2 799192768321 0013 T 2107 01"
2S1/2-2p3j2 9911202 0012 T 08 T 21
281/2-3P1/2 45668154996 | 021 -14 5.0
251/2351/2 45668186478 022 T D04 43
251/2.3p3/2 45668480005 021 T 5T 251
251/2-4P1/2 616520017569 0015 T I 25977
251/2°451/2 616520150.636 001 T 04 T 54
251/2-4p3/2el6521388671 001 T 2037 25077
251/2-4D5/2 616521843443 0024 T 137 2967
251/2°5P1/2 6905022034 11T 01T 213
251/2°551/2 6905022716 117 05 T 2097
251/2°5p3/2 6905029054 117 01T 2137
251/2°6P1/2 7306899776 003 T 017 2037
251/2°651/2  730690017.097 0021 T 02 T 201
251/2-6P3/2 73069038386 | 004 -01 -03
281/2-6D5/2 730690518592 0011 04 23
281/2-7P1/2 7549219013 12 01 05
281/2-781/2 7549219262 12 01 ! 07
281/2-7P3/2 7549221572 12 00 ! 06
281/2-8P1/2 770649333338 0018 01 14
281/2-881/2 770649350012 | 0009 1 03 15
251/2-8D3/2 770649504.45 | 0.08 | 00 04
251/2-8P3/2 770649504720 0016 01 T 1477
251/2-8D5/2 770649561584 0007 T 03 T 05
251/2°0p1/2 7814319987 12 T 03 T 20
351/2-0s1/2 7814320104 127 04 T 20



Table 5: Frequencies of fine-structure transitions in hydrogen derived from the
level-optimization procedure [Kramida 2010, Table 5].

interval AERiz (MHZz) Unc. (MHz) AERit;—AEcaic (MHz)
(Ritz values) Ageom Acodata
251/2°9p3j2 T 7siazaiion 7 03 T 207
251/2-10p1/2 7891447699 1277 05 T 25
251/2-1051/2 7891447784 127 05 T 25
251/2-10p3/2 7891448576 127 04 T 25
251/2-10D5/2 78914488641 04 T 02 T 1777
251/2-11p1/2 7948513445 12T 04 T 28
251/2-1181/2 7948513509 127 05 T 28
281/2-11P3/2 7948514104 12 04 28
251/2-12P1/2 7991916601 12T 04 T 5077
251/21251/2 799191665 127 04 T 3077
251/2-12D3/2 799191710473 001 T 01T 24
251/2-12p3/2 7991917109 12T 04 T 5077
251/2-12D5/2 799191727404 0.007 T 02 T 24
2P3/2-351/2 45667195358 022 T 1T Ze4
2P3/2-3D3/2 4566748835 06 T 49T 8T
2P3/2-3D5/2 45667596674 022 T g 5297
2P3/2-451/2 616510239434 0016 T S04 245
2p3/2-4D3/2 61651147545 023 T 507 zE T
2P3/2-4D5/2  6les1193224 003 T 05 T ST
2P3/2-5S1/2 6904923604 11 -03 29
2P3/2°5D3/2 6904929914 07 T R 89
2P3/2-5D5/2 6904932253 A 7T S84
2P3/2-651/2 730680105895 0024 T 2067 2537
2P3/2-6D3/2 730680472 004 T T 47T
2P3/2-6D5/2 73068060739 0016 T S04 44T
2p3/2-751/2  7saotzo1s 12T 2077 24T
2p3/2-703/2 7549122457 07 T 2097 258
2p3/2-7D5/2 754912331 07 T S04 2567
2P3/2-851/2 77063943881 0015 T 05T 2067
2P3/2-8D3/2 770639503248 0015 T 208 217
2P3/2-8D5/2 770639650382 o014 T 05T 215
2P3/2-9S1/2 7814220992 12 04 00
2P3/2-9D3/2 7814222075 07 -08 -09
2P3/2-9D5/2 7814222476 | 07 . 06 -09
2P3/2-1081/2 7891348672 12 -03 | 05
2P3/2-10D3/2 78913494595 005 -08 04
2P3/2-10D5/2 78913497521 | 0.04 06 -03
2P3/2-1181/2 7948414397 12 -03 | 08
2P3/2-11D3/2 7948414987 1 07 -08 -01
2P3/2-11D5/2 7948415207 07 T 20777 00 "
2P3/2-1251/2 7991817538 12T 2047 09"
2P3/2-12D3/2 799181799271 0015 T 20777 03 "
3P3/2-12D5/2 799181816202 o014 T 20677 04



Table 5: Frequencies of fine-structure transitions in hydrogen derived from the
level-optimization procedure [Kramida 2010, Table 5].

interval AERiz (MHZz) Unc. (MHz) AERit;—AEcaic (MHz)

(Ritz values) Ageom Acodata
3P1/2-351/2 31482 005 11 07
3P1/2-3D3/2 32448 06 26 -182
3P1/2-3P3/2 325009 003 -01 00
351/2-3D3/2 29299 06 -38 -189
351/2-3P3/2 293527 006 -12 -08
351/2-3D5/2  4013.16 005 26 -16.5
3D3/2-3P3/2 53 1 06 25 181
3D3/2-3D5/2 10832 | 06 63 24
3P3/2-3D5/2 107789 007 37 -158
4P1/2-451/2 133.067 0018 0.7 06
4P1/2-4P3/2 1371102 0018 -01 00
4P1/2-4D3/2  1369.08 023 -09 -75
4S1/2-4D3/2 123602 023 -16 -80
4P3/2-4D5/2 45477 003 16 -66
5P1/2-581/2 68201 0019 04 04
5P1/2-5D3/2  699.2 13 22 -56
5P1/2-5P3/2 702.019 0012 0.0 00
551/2-5P3/2 633.818 0022 -04 -04
5D3/2-5D5/2 23392 008 13 05
5P3/2-5D5/2 2311 13 -09 -51
8D3/2-8D5/2  57.134 001 03 01
12D3/2-12D5/2 16931 0.012 01 01
Notes:

a) Ritz series limit [Kramida 2010, Table D].
b) NIST: Atomic Spectra Database 78 [version 5.11]: lonization Energies Form.
Energy has been determined from bound-state QED ab initio calculations.
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Table 7: Frequencies of fine-structure transitions in deuterium derived from
the level-optimization procedure [Kramida 2010, Table 7].

interval AERitz (MHZz) Unc. (MHz)  AEgiz—AEcac (MHz)
(Ritz values) Ageom Acodata
Ionization 2 3288981521.1 2.3 -1.1 31
Ionization b 3288981522.062 0.003 -0.09 4.1
1S1/2-2P1/2 2466731348.24 0.06 0.7 2.5
1S1/2-281/2 2466732407.52171  0.00015 01 05
1S1/2-2P3/2 24667423201 03 00 20
1S1/2-3P1/2 29235382192 03 -06 -39
1S1/2-351/2 29235385346 | 05 07 3.0
1S1/2-3P3/2 29235414701 03 -09 41
1S1/2-4P1/2 3083420177.53 | 017 -06 3.0
Isij2asi/z30ma0311098 002 05 21
1S1/2-4P3/2 3083421549.28 0.15 -0.4 -2.8
1S1/2-5P1/2 3157422491 7 30 41
1S1/2-581/2 3157422559 6 29 40
1S1/2-5P3/2 3157423193 7 33 43
1S1/2-5D5/2 31574234332 23 50 - -03
1S1/2-6P1/2 3197621201 7 25 25
1S1/2-651/2 3197621241 6 -18 -1.8
1S1/2-6P3/2 3197621608 7 -19 -1.9
1S1/2-6D5/2 31976217463 . 23 22 02
1S1/2-7P1/2 3221859720 6 -0.7 01
1S1/2-751/2 3221859745 6 -04 04
is2pyz s o cas o2
1S1/2-7D5/2 3221860061.9 2.3 0.8 0.1
1S1/2-8P1/2 3237591432.01 03 01 15
1S1/2-851/2 3237591448.768 | 007 03 17
1S1/2-8P3/2 3237591603.48 | 004 01 16
1S1/2-9P1/2 3248377032 7 09 28
1S1/2-9S1/2 3248377044 6 12 31
1S1/2-9P3/2 3248377153 7 15 34
1S1/2-9D5/2 32483771915 23 02 14
1S1/2-10P1/2 3256091901 7 02 25
1S1/2-10S1/2 3256091910 ¢ 6 07 30
1S1/2-10P3/2 3256091989 7 04 27
1S1/2-11P1/2 3261800029 7 08 34
S1/2-1181/2 3261800035 6 05 ... 30 .
181/2-11P3/2 3261800095 T ] 09 ... 35 .
181/2-11D5/2 3261800116.1 23 02 ... 24
181/2-12P1/2 3266141526 | I 1z 40
181/2-12S1/2 3266141531 | 6 13 41
181/2-12P3/2 3266141577 T 14 42
2P1/2-2581/2 1059.28 0.06 -0.7 -1.9
2P1/2-2P3/2 109719 04 -0.7 -0.4
2P1/2-351/2 4568071864 05 00 54



Table 7: Frequencies of fine-structure transitions in deuterium derived from
the level-optimization procedure [Kramida 2010, Table 7].

interval AERitz (MHZz) Unc. (MHz)  AEgiz—AEcac (MHz)
(Ritz values) Ageom Acodata
2P1/2-3D3/2 4568101142 18 56 -263
2P1/2-451/2 61668896286 | 007 02 45
2P1/2-4D3/2  616690198.83 | 024 -18 -125
2P1/2-581/2 690691211 7 33 -63
2P1/2-5D3/2 6906918508 23 28 34
2P1/2-6D3/2 7308902627 . 23 08 29
2P1/2-751/2 755128397 7 -09 -1.9
pij7byz7ssizeessz 23 s -an
2P1/2-8S1/2 770860100.53 0.6 -0.5 -0.8
2P1/2-8D3/2  770860254.98 | 006 -0.7 -1.8
2P1/2-951/2 781645696 7 08 09
2P1/2-9D3/2 7816458031 23 -08 -12
2P1/2-10S1/2 789360562 7 03 08
2P1/2-10D3/2 78936064026 | 007 -0.7 0.6
2P1/2-11S1/2 795068687 7 00 08
2P1/2-11D3/2 7950687459 23 -06 -01
2P1/2-1251/2 799410183 7 08 19
2P1/2-12D3/2 79941022732 | 006 -0.7 01
251/2-2P3/2 99126 03 -01 15
astj2spyzasesssily o3 o7 an
281/2-3S51/2 456806127.1 0.5 0.7 -3.5
251/2-3P3/2 456809062.6 03 -09 46
251/2-4P1/2 616687770.01 017 -06 35
251/2-451/2 616687903573 | 002 05 26
251/2-4P3/2 616689141.76 | 016 -04 33
251/2-4D5/2  616689596.72 | 004 16 95
251/2-5P1/2 690690083 6 36 51
251/2-5P3/2 690690785 7 38 54
251/2-6P1/2 730888794 7 20 25
251/2-6P3/2 730889200 7 24 29
251/2-7P1/2 755127312 7 -12 -09
2S1/2-7P3/2 755127568 7 -l2 08
281/2-8P1/2 77085902449 | 003 .| 00 ... 10
281/2-8P3/2 77085919596 ! 004 00 ... 1o
281/2-9P1/2 781644625 T 13 28
281/2-9P3/2 781644745 ] T ] 09 ... 24
281/2-10P1/2 789359494 T ] 07 ... 25
281/2-10P3/2 789359582 T 09 ... 27 ..
251/2-11P1/2 795067621 6 0.3 2.4
251/2-11P3/2 795067687 ¢ 6 03 24
251/2-12P1/2 799409119 7 17 40
251/2-12P3/2 799409169 7 09 32
2P3/2-351/2 4567962145 06 07 5.0
2P3/2-3D3/2 4567991423 18 -49 -258



Table 7: Frequencies of fine-structure transitions in deuterium derived from
the level-optimization procedure [Kramida 2010, Table 7].

interval AERitz (MHZz) Unc. (MHz)  AEgiz—AEcac (MHz)
(Ritz values) Ageom Acodata

2P3/2-451/2 616677991 | 03 05 41
2P3/2-4D3/2 616679227 | 04 -1.0 ~120
2P3/2-4D5/2 6166796841 | 03 17 -11.0
2P3/2-581/2 690680239 7 27 59
2P3/2-5D3/2 6906808789 . 23 36 29
2P3/2-5D5/2 690681113 23 50 - 24
2P3/2-651/2 730878921 7 -16 37
apsjobyz sowrozsvs a3 a6 aa
2P3/2-6D5/2 730879426.3 2.3 2.3 -2.1
2P3/2-751/2 755117425 7 -03 -15
2P3/2-7D3/2 7551176564 23 02 22
2P3/2-7D5/2 7551177417 23 07 20
2P3/2-851/2 7708491287 | 03 03 -03
2P3/2-8D3/2 7708492831 | 03 00 -14
2P3/2-8D5/2 7708493403 | 03 04 -12
2P3/2-951/2 781634724 7 14 12
2P3/2-9D3/2 7816348313 . 24 00 -0.7
2P3/2-9D5/2 7816348714 23 02 -0.6
2P3/2-10S1/2 789349590 7 09 11
2P3/2-10D3/2 7893496684 03 01 01
2P3/2-10D5/2 789349697.7 0.3 0.3 0.0
2P3/2-11S1/2 795057715 7 06 11
2P3/2-11D3/2 795057774 23 01 03
2P3/2-11D5/2 795057796 23 02 04
2P3/2-1281/2 799399211 7 14 22
2P3/2-12D3/2 7993992555 | 03 01 06
2P3/2-12D5/2 7993992724 | 03 02 06
3P1/2-351/2 3154 04 13 1.0
3P1/2-3P3/2 32509 04 -03 -02
3D3/2-3D5/2 10836 . 24 64 25
4P1/2-451/2 13357 017 1.1 09
Notes:

a) Ritz series limit [Kramida 2010, Table H].
b) NIST: Atomic Spectra Database 78 [version 5.11]: lonization Energies Form.
Energy has been determined from bound-state QED ab initio calculations.
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